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Abstract

This thesis addresses the critical challenge of generalization in

deep neural networks, particularly within the context of Sketch-

Based Image Retrieval (SBIR). A primary contribution is the de-

velopment of a novel empirical framework to evaluate and bench-

mark the generalization capacity of deep networks. This frame-

work introduces metrics that quantify both model accuracy and

the ability to handle data diversity, offering a practical approach

to assess model performance on unseen data and identifying trade-

offs crucial for effective model selection.

Building on this generalization framework, the research proposes

domain adaptation strategies specifically tailored for SBIR to

bridge the significant gap between sketch and image domains .

A single-source domain adaptation algorithm is introduced, uti-

lizing canonical correlation analysis (CCA) alongside dictionary

learning principles and sparse optimization techniques to facili-

tate effective knowledge transfer from a source (e.g., images) to a

target domain (e.g., sketches), even in few-shot scenarios . This

approach is further extended to a multi-source domain adapta-

tion algorithm, capable of integrating information from multi-

ple diverse source domains to enhance robustness and adaptabil-

ity. Computational efficiency is a key consideration, addressed

through the use of low-rank matrix decomposition and online

dictionary learning techniques.

Overall, this work provides a comprehensive approach to enhanc-

ing SBIR system performance by directly tackling generalization

limitations through principled empirical assessment and efficient



single- and multi-source domain adaptation methods. The find-

ings contribute to both the understanding of generalization in

deep learning and the development of practical, adaptable SBIR

systems.
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Chapter 1

Introduction

In the realm of deep learning, the quest for understanding and optimizing

model performance transcends theoretical boundaries and delves into diverse

practical applications. This thesis focuses on enhancing the generalization

capabilities of Sketch-Based Image Retrieval (SBIR) systems through effec-

tive domain adaptation strategies. By developing methods to quantitatively

assess generalization and implementing domain adaptation techniques specif-

ically tailored for SBIR, this research aims to advance the state of the art in

sketch-based retrieval systems.

1.1 Background and Motivation

Sketch-based Image Retrieval (SBIR) stands at the intersection of computer

vision, multimedia analysis, and human-computer interaction, offering an

intuitive approach to search for images using hand-drawn sketches. The un-

derlying premise of SBIR is compelling: humans can communicate visual con-

cepts through simple sketches that capture essential structural attributes, al-

lowing for a more natural query mechanism than text-based alternatives. The

capacity to search using free-hand sketches offers significant advantages in

scenarios where textual descriptions prove inadequate, or when the searcher’s

mental image is more readily articulated visually than verbally.

The origins of SBIR can be traced back to the early 1990s with pioneering

works by (Faloutsos et al. 1994), (Hirata and Kato 1992), and (Niblack et al.

14



1993). These early systems primarily focused on simple contour matching

between line drawings and image edges. However, the field remained rela-

tively constrained due to limited computational resources and the scarcity

of digital sketch data. The landscape transformed dramatically with the

widespread adoption of touchscreen devices, enabling the collection of large

sketch datasets and facilitating more sophisticated SBIR approaches.

The remarkable growth in SBIR research coincided with broader advances

in computer vision and machine learning, particularly deep learning. Mod-

ern SBIR systems leverage convolutional neural networks (CNNs) and other

deep architectures to learn discriminative representations that bridge the

substantial gap between sketches and photographic images. This evolution

has shifted the focus from handcrafted feature engineering to data-driven

representation learning, significantly enhancing retrieval performance.

Despite these advancements, SBIR systems continue to face significant

challenges that limit their practical application. A fundamental issue lies in

the inherent domain gap between sketches and photos – while sketches pri-

marily capture shape and structural information through sparse line draw-

ings, photographs contain rich texture, color, and contextual details. Fur-

thermore, sketches exhibit high variability due to differences in drawing style,

abstraction level, and artistic ability across users. These factors create a com-

plex retrieval problem that demands robust and adaptive solutions.

Additionally, the rapid development of data generation and the diver-

sity of visual content necessitate SBIR systems that can generalize beyond

their training distributions. This requirement becomes particularly challeng-

ing when confronted with new categories or domains not represented in the

training data, a scenario known as zero-shot or few-shot learning. The ability

to adapt to novel classes or domains without extensive retraining represents

a critical frontier in SBIR research and forms a core motivation for the work

presented in this thesis.
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Figure 1.1: The representative sketches of (a) the Sketchy Dataset and (b)
the TU-Berlin dataset.

Figure 1.2: The sketch-based image retrieval examples
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1.2 Research Problems

The fundamental research problem addressed in this thesis centers on enhanc-

ing the generalization capabilities of Sketch-Based Image Retrieval systems

through domain adaptation. While current SBIR approaches demonstrate

reasonable performance within controlled settings using well-established datasets,

they often falter when confronted with data from novel domains or categories.

This limitation significantly hampers their practical utility in real-world ap-

plications where the diversity and continual evolution of visual content are

inevitable.

The research problem encompasses several interconnected challenges:

1. Domain Gap: A substantial gap exists between the domain of sketches

and that of photographic images, characterized by differences in visual

characteristics, information density, and abstraction levels. Existing

SBIR systems struggle to bridge this gap effectively, particularly for

categories with high intra-class variability.

2. Limited Generalization: Current SBIR models demonstrate inade-

quate generalization to unseen data, manifesting as performance degra-

dation when tested on categories or visual styles not represented in the

training data. This limitation restricts the practical applicability of

these systems in dynamic, real-world scenarios.

3. Dataset Discrepancies: Multiple SBIR datasets exist with overlap-

ping categories but distinct characteristics due to variations in collec-

tion methodologies, sketching styles, and abstraction levels. The dif-

ferences between these datasets introduce additional complexity when

attempting to leverage diverse data sources.

4. Few-Shot Learning Constraints: In practical scenarios, new visual

categories emerge continuously, but obtaining substantial labeled data

for these categories is resource-intensive. SBIR systems must therefore

adapt to new categories with minimal labeled examples—a capability

not adequately addressed by existing approaches.
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5. Computational Efficiency: The computational demands of sophis-

ticated deep learning models pose practical challenges for deployment,

particularly in resource-constrained environments. Efficient domain

adaptation techniques that maintain performance while reducing com-

putational overhead are essential.

1.3 Research Questions

This thesis addresses the following key research questions:

1. How can the generalization capacity of deep neural networks

for SBIR be effectively quantified? This question examines the

development of metrics that accurately reflect a model’s ability to per-

form well on unseen data, particularly across different domains. It

explores the relationship between model accuracy, data diversity, and

generalization performance.

2. What methods can effectively bridge the domain gap between

sketches and photographic images while maintaining compu-

tational efficiency? This question investigates adaptation techniques

that preserve domain-invariant information while accommodating the

unique characteristics of sketches, such as abstraction and structural

emphasis.

3. How can knowledge from multiple source domains be inte-

grated to enhance SBIR performance in few-shot and zero-

shot scenarios? This question explores the leveraging of diverse vi-

sual domains (e.g., clipart, real images, paintings) to improve retrieval

performance, particularly when limited labeled data is available for

target categories.

4. To what extent do traditional machine learning techniques

complement deep learning approaches in addressing domain

adaptation for SBIR? This question examines the synergistic poten-

tial of integrating established techniques such as Canonical Correlation

18



Analysis with deep learning models to overcome the limitations of pure

deep learning approaches.

5. What is the relationship between model complexity, com-

putational efficiency, and retrieval performance in domain-

adapted SBIR systems? This question explores the trade-offs be-

tween model sophistication, computational requirements, and retrieval

accuracy, seeking optimal configurations for practical deployment.

These research questions guide the investigations presented in this thesis

and provide a framework for evaluating the contributions of the developed

methods.

This thesis contends that addressing these challenges requires a compre-

hensive approach that combines robust generalization metrics with effective

domain adaptation strategies. By developing methods to quantitatively as-

sess generalization capabilities and implementing domain adaptation tech-

niques specifically tailored for SBIR, this research aims to advance the state

of the art in sketch-based retrieval systems.

1.4 Research Aims and Objectives

The overarching aim of this research is to develop a robust framework for

enhancing the generalization capabilities of Sketch-Based Image Retrieval

systems through effective domain adaptation strategies. This aim is pursued

through the following specific objectives:

1. Develop an empirical generalization metric for deep networks:

Establish a quantitative framework to assess the generalization capa-

bilities of deep neural networks used in SBIR, enabling objective com-

parison between different architectures and identifying optimal models

for cross-domain retrieval tasks.

2. Design and implement single-source domain adaptation meth-

ods for SBIR: Create adaptation techniques that effectively transfer
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knowledge from a source domain (photographic images) to a target do-

main (sketches), bridging the fundamental domain gap in SBIR while

maintaining computational efficiency.

3. Extend domain adaptation capabilities to multi-source sce-

narios: Develop methods that leverage multiple source domains si-

multaneously to enhance the robustness and versatility of SBIR sys-

tems, particularly for handling diverse visual representations beyond

the conventional sketch-photo pair.

4. Evaluate and validate the proposed methods on benchmark

datasets: Conduct comprehensive experimentation on established SBIR

datasets to quantify improvements in retrieval performance, particu-

larly focusing on few-shot and zero-shot scenarios that reflect real-world

challenges.

5. Analyze the computational efficiency of the proposed approaches:

Assess the computational requirements of the developed methods to

ensure practical applicability, particularly through the use of low-rank

matrix decomposition and other efficiency-enhancing techniques.

These objectives collectively address the identified research problems and

contribute to advancing the field of SBIR, with particular emphasis on en-

hancing generalization capabilities through domain adaptation.

1.5 Scope and Limitations

This research focuses specifically on domain adaptation for Sketch-Based Im-

age Retrieval using single and multiple source domains. While comprehensive

within this scope, several important limitations delineate the boundaries of

this work:

1. Focus on 2D Sketches and Images: This research exclusively ad-

dresses 2D sketches and photographic images, excluding 3D models,

videos, or other multimedia formats that might benefit from sketch-

based retrieval.
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2. Categorical Retrieval: The retrieval paradigm employed is primarily

categorical, aiming to retrieve images from the same semantic category

as the query sketch, rather than focusing on fine-grained instance-level

retrieval.

3. Pre-drawn Sketches: The evaluation utilizes pre-drawn sketches

from established datasets rather than real-time sketches drawn by users

in interactive settings, which might introduce additional variations and

timing considerations.

4. Computational Constraints: The methods developed prioritize prac-

tical computational efficiency, potentially sacrificing theoretical opti-

mality for approaches that can be feasibly implemented in realistic

settings.

5. Dataset Limitations: The evaluation is conducted on established

benchmark datasets (Sketchy, TU-Berlin, DomainNet) which, while

comprehensive, may not entirely reflect the diversity of real-world sketch-

ing styles and image types.

These limitations establish a focused research scope while acknowledging

potential areas for future expansion beyond the current work.

1.6 Thesis contributions and outlines

In this thesis, I introduce a pioneering approach to addressing the critical

aspect of generalization in deep learning, which forms the foundation for the

subsequent exploration in sketch-based image retrieval (SBIR). The main

contributions are summarized as follows:

Framework for Assessing Generalization in Deep Learning: The

foremost contribution is the development of an innovative framework that

introduces an intuitive metric system for benchmarking deep networks. This

system, focusing on both model accuracy and the diversity of unseen data,

provides a comprehensive assessment of a network’s generalization capac-

ity. It offers vital quantitative and qualitative insights, paving the way for
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understanding and enhancing the generalization capabilities of deep neural

networks across various learning scenarios.

Building upon this understanding of generalization, the research extends

to specifically address the Domain Adaptation (DA) problem in practical

SBIR scenarios:

1. Single Source DA-SBIR Algorithm: Leveraging insights from the

generalization framework, I propose an algorithm for image-to-sketch

domain adaptation and dataset-to-dataset domain adaptation. This

algorithm facilitates the transfer of learning models from one source

domain to a target, enhancing adaptability based on generalization

principles.

2. Multiple Sources DA-SBIR Algorithm: Expanding further, I in-

troduce an algorithm that transfers learning models to a target domain

using insights gained from multiple source domains. This approach un-

derscores the importance of generalization across varied domains.

3. Efficiency in Computational Complexity: In line with the generalization-

centric approach, I employ canonical correlation analysis and online dic-

tionary learning technologies. These technologies are chosen for their

ability to handle large datasets efficiently, aligning with the need for

effective generalization in complex scenarios.

By emphasizing the importance of generalization in deep learning, this

thesis lays a robust foundation for addressing the DA problem in SBIR. The

proposed DA-SBIR algorithms utilize low-rank matrix decomposition tech-

nology for its efficiency, and the methodologies extend to zero-shot settings,

applying deep learning techniques informed by the generalization framework.

This comprehensive approach underlines the interconnectivity between gen-

eralization in deep learning and the specific challenges in SBIR.
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1.7 Thesis Structure

This thesis is organized into six chapters, each addressing specific aspects

of the research on enhancing generalization in Sketch-Based Image Retrieval

(SBIR) through domain adaptation: As illustrated in Figure 1.3, the thesis

Figure 1.3: The SBIR workflow showing the relationship between thesis chap-
ters and system components. Chapter 3 develops the foundation model selec-
tion methodology, Chapter 4 implements single-source domain adaptation,
and Chapter 5 extends this to multi-source scenarios.

follows a logical progression that maps to the components of the SBIR system:

• Chapter 2 reviews the literature on generalization in deep learning and

state-of-the-art approaches to sketch-based image retrieval. It provides

theoretical foundations and identifies research gaps in domain adapta-

tion for SBIR that this thesis addresses.

• Chapter 3 introduces a framework for assessing generalization in deep

learning, establishing a methodology for selecting optimal foundation

models. This chapter develops empirical metrics that quantify both
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model accuracy and data diversity, providing the theoretical basis for

the model selection component shown in the workflow.

• Chapter 4 addresses the transfer learning component through single-

source domain adaptation for SBIR. It presents methods for effectively

transferring knowledge from a source domain (photographic images)

to a target domain (sketches), implementing the domain adaptation

techniques shown in the central flow of the workflow diagram.

• Chapter 5 extends the domain adaptation capabilities to multi-source

scenarios, enabling the system to leverage diverse input domains simul-

taneously. This chapter corresponds to the input expansion component

in the workflow, allowing the system to handle multiple visual domains

beyond the conventional sketch-photo pair.

• Chapter 6 concludes the thesis, summarizing the main findings, dis-

cussing limitations, and suggesting directions for future research to

further enhance generalization in SBIR systems.

The integration of these components creates a comprehensive SBIR system

with enhanced generalization capabilities through effective domain adapta-

tion, implementing the complete workflow from foundation model selection

through single-source and multi-source domain adaptation to produce im-

proved retrieval results.

1.8 Previously published work

Chapter 3 contains work published in Scientific Reports, 2025. This publi-

cation presents the deep network benchmarking and encourage contributions

to expand the dataset and foster further theoretical and practical research.

Chapter 4 and Chapter 5 contain work published in ACM Transactions

on Multimedia Computing, Communications and Applications, 2023. This

publication presents the domain adaptation methods for both single-source

and multi-source scenarios in SBIR, forming a substantial component of the

contributions presented in this thesis.
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Chapter 2

Literature Review

This chapter presents a comprehensive review of literature related to gener-

alization metrics, sketch-based image retrieval, and domain adaptation tech-

niques. Following the workflow established in Chapter 1, this review is struc-

tured to provide the theoretical foundation for the methodologies developed

in subsequent chapters. The review begins with an examination of gener-

alization in deep learning networks, which forms the foundation for model

selection. It then explores sketch-based image retrieval approaches and the

challenges they face, before delving into domain adaptation methods that

bridge the gap between sketches and images. This progression establishes a

coherent narrative that connects the components of the SBIR workflow: from

foundation model selection to single and multi-source domain adaptation.

2.1 Generalization in Deep Learning

Generalization—the ability of a model to perform effectively on unseen data—is

a cornerstone concept in machine learning. This section explores recent ad-

vances in understanding and measuring generalization in deep neural net-

works.

2.1.1 Theoretical Frameworks for Generalization Bounds

Traditional machine learning theories, primarily based on worst-case scenar-

ios as noted by Zhang et al. (2021b), have proven insufficient in compre-
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hensively explaining the generalization observed in deep learning models.

This gap is particularly pronounced in understanding the robust general-

ization performance of over-parameterized neural networks, as discussed by

Neyshabur et al. (2018).

A pivotal contribution to this field was made by Neyshabur et al. (2018),

who introduced a complexity measure grounded in unit-wise capacities, pro-

viding a refined generalization bound for two-layer ReLU networks. Valle-

Pérez and Louis (2020) further expanded on this topic through a detailed re-

view of generalization error bound estimation. Their review proposed seven

criteria for evaluating generalization in deep learning models, systematically

categorizing existing approaches based on these criteria.

These approaches can be categorized into four main groups:

1. Data-independent and algorithm-independent algorithms: Char-

acterized by minimal assumptions and low reliance on training data.

This approach, exemplified by the VC dimension bounds explored in

studies like those by Shalev-Shwartz and Ben-David (2014) and Harvey

et al. (2017), represents a foundational approach in the field.

2. Data-dependent but algorithm-independent algorithms: These

methods rely on training data while maintaining minimal assumptions

about the models. Key examples include the Rademacher complexity

bounds, as discussed in the works of Bartlett and Mendelson (2002)

and Shawe-Taylor and Williamson (1997).

3. Data-independent but algorithm-dependent algorithms: These

approaches, including those by Hardt et al. (2016), Mou et al. (2018),

and Brutzkus et al. (2017), carry strong assumptions about the models

but do not depend on the specifics of the training data.

4. Data-dependent and algorithm-dependent algorithms: Charac-

terized by strong assumptions that rely heavily on the training data.

This approach is evident in the methodologies proposed by Barron and

Klusowski (2019), Golowich et al. (2018), and Neyshabur et al. (2018),

among others.
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These diverse research efforts are crucial not only for their theoretical

significance but also for laying the groundwork for a deeper understanding

of generalization in deep learning.

2.1.2 Generalization in Generative Models

Beyond supervised learning, Generative Adversarial Networks (GANs) have

gained prominence in modeling complex real-world data. A noteworthy ob-

servation by Radford et al. (2021) suggests that GANs tend to produce syn-

thetic datasets that align more closely with test sets than training sets in

well-trained deep network classifiers’ feature spaces. This finding points to

the potential of GANs in exploring generalization error bounds, although

evaluating the generalization capacity of Deep Generative Models (DGMs)

remains challenging due to dimensionality issues.

Metrics for evaluating DGMs, such as the Inception Score and Fréchet In-

ception Distance, aim to estimate the distance between generated and target

distributions using a polynomial number of samples. Despite their intu-

itive appeal and computational efficiency, the reliability of these metrics has

been called into question. Addressing these concerns, Thanh-Tung and Tran

(2020) introduced a Minimum Description Length-inspired metric suitable

for a broad class of generative latent variable models.

The NeurIPS 2020 Predicting Generalization in Deep Learning competi-

tion (Jiang et al. 2020) provided valuable insights into the correlation between

model complexity and actual generalization errors using Conditional Mutual

Information. This competition highlighted the difficulty in developing reli-

able metrics for predicting generalization performance, emphasizing the need

for empirical approaches that capture a broad range of hyperparameter vari-

ations.

2.2 Sketch-Based Image Retrieval

Sketch-based Image Retrieval (SBIR) has evolved significantly over the past

decade, transitioning from traditional feature-based methods to sophisticated
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deep learning approaches. This section examines this evolution and the cur-

rent state of the art in SBIR.

2.2.1 Traditional SBIR Methods

Early SBIR approaches relied on hand-crafted features and traditional ma-

chine learning techniques. These methods typically operated within a bag-of-

words search framework (Hu and Collomosse 2013, Saavedra 2014), focusing

on matching edge maps extracted from photos with input sketches. While

conceptually straightforward, these approaches faced significant challenges in

handling the inherent abstraction and variability in sketches, as well as the

substantial domain gap between sketches and photographs.

Traditional SBIR methods generally followed a pipeline of:

1. Edge detection and feature extraction from images

2. Shape/contour matching between sketch features and image edge maps

3. Similarity computation and ranking

Despite their intuitive design, these methods struggled with real-world

variations in sketching styles and the semantic gap between abstract sketches

and detailed photographs.

2.2.2 Deep Learning Approaches for SBIR

The advent of deep learning has revolutionized SBIR, enabling more robust

feature representations and better cross-domain matching. Contemporary

SBIR methods can be broadly categorized into two approaches:

1. Representation Learning: Methods that learn discriminative rep-

resentations for sketches and images, often using convolutional neural

networks (CNNs). SketchNet (Zhang et al. 2016) pioneered this direc-

tion by employing a triplet network architecture consisting of sketch,

positive, and negative photos for training their deep model, showing

significant improvements in retrieval with deep feature representation.
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2. Cross-Modal Matching: Approaches that explicitly model the re-

lationship between sketches and images, often using siamese or triplet

networks with specialized loss functions. Works like Yu et al. (2016),

Song et al. (2017), and Li et al. (2017) focus on identifying subtle differ-

ences between photos and sketches, addressing challenges such as the

high abstraction of sketches and the scarcity of labeled sketch-photo

datasets.

Deep hashing methods have also gained prominence in SBIR, enabling

efficient retrieval at scale. Efforts like Deep Sketch Hashing (Liu et al. 2017)

and Generative Domain-migration Hashing (Zhang et al. 2018) have been

developed to align sketches with visually similar images while preserving

sketch-specific details.

Recent research has further refined these approaches by incorporating

additional modalities. For instance, Dutta and Akata (2020) and Wang et al.

(2021) have integrated textual semantic information into deep networks to

address the domain adaptation challenges in SBIR.

2.3 Zero-Shot and Few-Shot Learning in SBIR

The practical utility of SBIR systems hinges on their ability to handle new

categories with minimal or no labeled examples, a scenario commonly ad-

dressed through zero-shot and few-shot learning frameworks. This section

explores these approaches in the context of SBIR.

2.3.1 Zero-Shot Learning for SBIR

Zero-shot learning (ZSL) in SBIR refers to the capability of retrieving images

from categories that were not seen during training. This capability is crucial

for practical applications, as it is impractical to train models on all possible

object categories. A comprehensive review of ZSL approaches is provided by

Xian et al. (2018).
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ZSL methods in SBIR generally rely on indirect associations, particularly

through semantic spaces, to bridge seen and unseen categories. The progres-

sion of ZSL approaches in the computer vision field provides valuable insights

for SBIR:

1. Early Attribute-Based Methods: Initial ZSL approaches (Lampert

et al. 2013, Jayaraman and Grauman 2014, Changpinyo et al. 2016,

Al-Halah et al. 2016) utilized a two-step process involving attributes

to classify images from unseen categories. These methods relied on

predefined attribute descriptions that could be shared across categories.

2. Direct Embedding Methods: More recent research (Frome et al.

2013, Romera-Paredes and Torr 2015, Akata et al. 2015b a, Kodirov

et al. 2017) has shifted toward directly establishing connections between

image features and semantic spaces, eliminating the need for explicit

attribute definitions.

3. Complex Embedding Approaches: Many ZSL methods develop so-

phisticated, multi-faceted embeddings (Socher et al. 2013, Akata et al.

2015a, Xian et al. 2016), primarily aiming to connect image character-

istics with semantic space effectively.

4. Shared Space Alignment: Another strategy in ZSL involves aligning

both image and semantic features into a common intermediary space

(Zhang and Saligrama 2015, Fu et al. 2015, Zhang and Saligrama 2016),

enabling more direct comparisons between modalities.

In the specific context of SBIR, zero-shot retrieval faces additional chal-

lenges due to the cross-modal nature of the task. Zero-Shot SBIR (ZS-SBIR)

methods, such as those proposed by Shen et al. (2018), Yelamarthi et al.

(2018), and Dey et al. (2019), must bridge not only the category gap but

also the modality gap between sketches and images.
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2.3.2 Few-Shot Learning for SBIR

Few-shot learning addresses scenarios where only a limited number of labeled

examples are available for new categories. This paradigm is particularly rel-

evant for SBIR, as acquiring labeled sketch-photo pairs is resource-intensive.

In practical SBIR settings, datasets typically contain fewer sketches than

images for each category, and new datasets often have a limited number

of labeled examples. Few-shot learning enables the adaptation of classifiers

trained on known datasets to new categories with minimal labeled examples.

As an emerging area in transfer learning, few-shot learning has gained sig-

nificant attention in both machine learning and computer vision (Xian et al.

2019, Schonfeld et al. 2019, Koch et al. 2015, Dong et al. 2021, Wang et al.

2021, Garcia and Bruna 2017).

Few-shot learning approaches in SBIR often build upon zero-shot meth-

ods, extending them to scenarios with limited supervision. The key strategies

include:

1. Metric Learning: Learning a similarity metric that can generalize to

new categories with few examples.

2. Meta-Learning: Training models to quickly adapt to new tasks using

only a few examples.

3. Data Augmentation: Generating synthetic examples to expand the

limited training data for new categories.

4. Transfer Learning: Leveraging knowledge from related categories to

improve performance on target categories.

From a practical standpoint, evaluating retrieval performance in few-shot

scenarios is essential, as these situations closely approximate real-world ap-

plications where complete datasets for all categories are rarely available.
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2.4 Domain Adaptation

Domain adaptation addresses the challenge of transferring knowledge from a

source domain with abundant labeled data to a target domain with limited or

no labeled data. This section explores domain adaptation techniques relevant

to SBIR, focusing on methods that can bridge the gap between sketches and

images.

2.4.1 Fundamentals of Domain Adaptation

In many application areas, large quantities of unlabeled data are regularly

produced, while data labeling remains costly. Domain adaptation (DA) has

emerged as a solution to this challenge, enabling the utilization of knowledge

from related domains to improve performance on target domains.

The fundamental assumption in traditional machine learning is that train-

ing and test data share similar distributions. However, in practice, data dis-

tributions often shift across domains or over time (Quiñonero-Candela et al.

2008). These shifts can arise from various factors, such as different lighting

conditions, backgrounds, or viewing angles in image-based tasks.

Domain adaptation specifically addresses settings where:

1. Source and target domains have different distributions

2. Source and target domains share the same task (e.g., classifying the

same set of categories)

3. The source domain has abundant labeled data, while the target domain

has limited or no labeled data

Based on the availability of labeled data in the target domain, domain

adaptation approaches can be categorized into:

1. Unsupervised Domain Adaptation: No labeled data is available

in the target domain (Gong et al. 2012)

2. Supervised Domain Adaptation: Labeled data is available in both

source and target domains
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3. Semi-supervised Domain Adaptation: Labeled data from the source

domain and a small amount of labeled data from the target domain are

available (Mehrkanoon and Suykens 2017)

2.4.2 Shallow Architectures for Domain Adaptation

Domain adaptation problems can be categorized as homogeneous (where

source and target domains share the same feature space) or heterogeneous

(where the feature spaces differ). For homogeneous domain adaptation, if

Xs represents data from the source domain and Xt represents data from the

target domain, then Xs = Xt but P (Xs) ̸= P (Xt).

Several shallow architecture techniques have been developed for domain

adaptation:

Instance Re-weighting Methods: These techniques assign different

weights to each training instance to reduce the discrepancy between source

and target distributions (Sugiyama et al. 2007). Common approaches include

calculating weights based on the density ratio between domains, jointly opti-

mizing weights and classifier parameters (Chu et al. 2013), or using maximum

entropy principles to determine optimal re-sampling weights (Shimodaira

2000).

Feature Transformation: A central challenge in domain adaptation is

developing feature representations that work effectively for both source and

target domains. Transfer Component Analysis (TCA) (Pan et al. 2010) ex-

emplifies this approach by identifying shared latent features between domains

while ensuring similar distributions and preserving local geometric structure

through a smoothness term.

2.4.3 Deep Architectures for Domain Adaptation

Recent advances in image classification have been driven by deep convolu-

tional architectures trained on large-scale labeled datasets, particularly sub-

sets of ImageNet (Deng et al. 2009). These models not only achieve superior

classification accuracy but also produce features that can be repurposed for
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new tasks (Donahue et al. 2014), even when these tasks differ substantially

from the original training objective.

In domain adaptation, initial approaches that simply applied deep fea-

tures without explicit adaptation already outperformed traditional methods

on benchmark datasets like Office (OFF31) (Saenko et al. 2010) and Of-

fice+Caltech (OC10) (Gong et al. 2012). Deep Convolutional Activation

Features (DeCAF) (Donahue et al. 2014) demonstrated superior performance

even without target domain adaptation compared to methods using SURF-

BOV features with domain adaptation (Chopra et al. 2013, Donahue et al.

2014, Sun et al. 2016, Csurka et al. 2016).

As shown by Bengio et al. (2013) and Yosinski et al. (2014), deep neu-

ral networks learn more abstract and robust representations that encode

category-level information and reduce domain-specific biases (Donahue et al.

2014, Sun et al. 2016, Csurka et al. 2016, Saxena and Verbeek 2016).

Deep architectures for domain adaptation can be broadly categorized into

three approaches:

1. Feature Extraction: Using deep networks as feature extractors and

applying traditional domain adaptation techniques to these features.

Methods like Feature Augmentation (Daumé III 2009), Max-Margin

Domain Transforms (Hoffman et al. 2013), and Geodesic Flow Kernel

(Gong et al. 2012) have been applied to DeCAF features (Donahue

et al. 2014).

2. Fine-tuning: Adapting pre-trained deep networks for new target tasks

or domains. This approach typically involves training the network on

source domain data and, if available, a small amount of labeled target

domain data (Zeiler and Fergus 2014, Oquab et al. 2014, Babenko et al.

2014, Chu et al. 2016).

3. Domain-Specific Architectures: Developing deep learning architec-

tures specifically designed for domain adaptation. These include meth-

ods for feature adaptation (Glorot et al. 2011), correlation subspace

learning (Pan et al. 2010), and cross-domain feature representation

(Leggetter and Woodland 1995, Reynolds et al. 2000).
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2.4.4 Multi-Source Domain Adaptation

While many domain adaptation methods focus on single-source scenarios,

practical applications often involve multiple source domains. Multi-source

domain adaptation (MSDA) addresses settings where knowledge from mul-

tiple source domains must be transferred to a target domain.

Several approaches have been developed for MSDA:

1. Feature Augmentation (FA): Adding domain-specific feature sets to

data representations, with each set originating from a different source

domain (Daumé III 2009).

2. Adaptive Support Vector Machine (A-SVM): Utilizing a collec-

tion of auxiliary classifiers, each focused on a specific source domain,

to fine-tune the parameters of the target classifier (Yang et al. 2007).

3. Domain Adaptation Machine: Employing a set of source classi-

fiers along with a domain-related regularizer based on the principle of

consistency (Duan et al. 2012).

4. CP-MSDA: Assigning weights to each source classifier based on their

conditional distributions (Chattopadhyay et al. 2012).

5. Domain-Specific Class Means (DSCM): Relying on domain-specific

class means for both metric learning and target class label prediction

(Csurka et al. 2015).

6. Expanded MSDA: Aggregating domain and classifier regularization

terms specific to each source domain (Csurka et al. 2016).

7. Robust Domain Adaptation via Low-Rank Reconstruction (RDALRR):

Transforming each source domain into a new representation that al-

lows for linear reconstruction using target domain examples, maintain-

ing connections between reconstructed examples through a low-rank

method and identifying outliers through sparsity constraints.
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2.5 Semi-Supervised Learning and Domain Adap-

tation

Semi-supervised learning (SSL) and semi-supervised domain adaptation (SSDA)

provide frameworks for leveraging both labeled and unlabeled data, which is

particularly relevant for SBIR where labeled data may be limited.

2.5.1 Semi-Supervised Learning

Similar to domain adaptation, semi-supervised learning addresses scenarios

with limited labeled data. However, while domain adaptation deals with data

from different domains with distributional shifts, SSL focuses on labeled and

unlabeled data from the same domain.

With the emergence of deep learning, novel approaches to deep SSL have

been developed:

1. Consistency Regularization: Ensuring model consistency by com-

paring predictions on original and augmented data (Laine and Aila

2016, Tarvainen and Valpola 2017).

2. Virtual Adversarial Training: Identifying minimal perturbations

that destabilize model predictions (Miyato et al. 2018).

3. Mean Teacher: Averaging model predictions during training (Laine

and Aila 2016) or combining model parameters (Tarvainen and Valpola

2017).

4. Self-Teaching: Employing memory modules or monitoring conver-

gence speed for self-supervised learning (Chen et al. 2018, Cicek et al.

2018).

5. Distribution Alignment: Directly addressing mismatched data dis-

tributions in SSL through augmentation distribution alignment (Wang

et al. 2019b).
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2.5.2 Semi-Supervised Domain Adaptation

Semi-supervised domain adaptation (SSDA) combines elements of both SSL

and domain adaptation, utilizing a structured source distribution along with

some labeled samples from the target distribution.

Several approaches have been developed for SSDA:

1. Enhanced Constraints: Addressing domain disparities by enhancing

constraints on existing labeled data (Donahue et al. 2013).

2. Subspace Alignment: Reducing distributional differences by estab-

lishing a new subspace (Yao et al. 2015).

3. Soft Labeling: Generating soft labels for labeled target samples based

on the source model and merging them with hard labels to guide the

target model (Ao et al. 2017).

4. Minimax Entropy Training: Bridging the gap between unlabeled

target samples and class prototypes through entropy-based minimax

training (Saito et al. 2019).

2.6 Feature Extraction and Representation Learn-

ing

The success of deep learning in computer vision tasks, including SBIR, is

largely attributable to its ability to learn complex features directly from raw

image pixels. This section examines feature extraction techniques relevant

to SBIR.

2.6.1 Deep Convolutional Networks for Feature Ex-
traction

Following the success of AlexNet in the 2012 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) (Krizhevsky et al. 2012), deep convolu-

tional neural networks (CNNs) have become the dominant approach for vi-
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sual feature extraction. These networks comprise multiple layers, with each

layer passing its output to the next in a hierarchical fashion.

Standard CNN architectures include:

1. Linear filters (convolution) followed by non-linear activation functions

(e.g., ReLU)

2. Spatial pooling functions (e.g., max/average pooling) for dimensional-

ity reduction

3. Normalization functions (e.g., LRN, batch normalization) for regulat-

ing activations

4. Fully-connected layers for final feature representation or classification

5. Loss functions for guiding the learning process through backpropaga-

tion

CNN models typically contain millions of parameters, with architectures

like AlexNet featuring 60M parameters (Krizhevsky et al. 2012), GoogleNet

4M (Szegedy et al. 2015), and VGG 138M (Simonyan and Zisserman 2014).

To prevent overfitting, techniques such as data augmentation, weight regu-

larization, and dropout are employed.

During training, CNN layers learn to respond to specific input patterns,

forming a hierarchical representation of features. As demonstrated by Zeiler

and Fergus (2014) in their DeconvolutionNet study, lower layers capture basic

features like color and edges, while upper layers recognize more complex

patterns like eyes, wheels, and faces.

2.6.2 Feature Representation for Image Retrieval

Deep CNN models have been adapted for Content-Based Image Retrieval

(CBIR) by utilizing activations from upper layers as image descriptors (Sharif Raza-

vian et al. 2014, Babenko et al. 2014). These features can be further refined

through similarity learning or fine-tuning on target datasets, as shown by

Wan et al. (2014).
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Several techniques have been developed to enhance feature representa-

tions for retrieval:

1. Regional Maximum Activation of Convolutions (R-MAC): Com-

bining max-pooled activations from various image regions at different

scales across CNN layers (Tolias et al. 2015).

2. Contrastive and Triplet Losses: Improving image representations

through similarity-based learning objectives (Gordo et al. 2016, Hoffer

and Ailon 2015, Radenović et al. 2016, Schroff et al. 2015, Wang et al.

2014, Wang and Gupta 2015).

3. Multi-scale Orderless Pooling (MOP-CNN): Extracting CNN

features at various scales and combining them using Vector of Locally

Aggregated Descriptors (VLAD) (Gong et al. 2014).

4. Deep Hashing: Converting deep features into binary forms for effi-

cient retrieval, either through supervised approaches (Lin et al. 2015,

Gao et al. 2015) or unsupervised methods focusing on quantization loss,

code balance, and rotation invariance (Lin et al. 2016).

5. Context-Based Learning: Using spatial context to train models for

predicting the relative positions of image patches (Doersch et al. 2015).

2.7 SBIR Datasets and Evaluation Protocols

The development and evaluation of SBIR methods rely on several benchmark

datasets, each with its unique characteristics and challenges.

2.7.1 Benchmark Datasets for SBIR

Sketchy Dataset: Originally introduced by Li et al. (2017), this dataset

contains 75,471 hand-drawn sketches of 12,500 objects across 125 categories.

It was expanded by Liu et al. (2017) with 60,502 real images from ImageNet,

resulting in an average of 484 images per category. The Sketchy dataset

is known for its relatively detailed and less abstract sketches, which, while
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comprehensive, can present challenges in practical applications due to their

relative lack of abstraction compared to casual sketches.

TU-Berlin Dataset: Developed by Saavedra (2014), this collection com-

prises 250 categories of hand-drawn sketches, with approximately 80 sketches

per category. It was later augmented by Liu et al. (2017) with 191,067 Ima-

geNet images for SBIR purposes, yielding an average of 764 images per cat-

egory. The TU-Berlin dataset exhibits greater diversity in sketching styles

compared to the Sketchy dataset, with more abstraction and variability.

QuickDraw Extended Dataset: This massive collection contains ap-

proximately 50 million drawings across 345 categories, sourced from the

Quick, Draw! Game (Wang et al. 2015a). The sketches in this dataset

are often more abstract and simplified compared to those in Sketchy and

TU-Berlin, reflecting casual drawing styles.

DomainNet Dataset: Encompassing 345 object categories across six

domains—clipart, real-world photos, sketches, infographics, paintings, and

quickdraw—this dataset (Saavedra et al. 2015) offers a diverse range of visual

representations for domain adaptation research.

These datasets often overlap in categories but differ significantly in their

characteristics, primarily due to variations in sketching abilities and styles,

which introduce different levels of abstraction and uncertainty.

2.7.2 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) (Hotelling 1992) is a technique for

discovering linear projections of two views that maximize correlation while

ensuring orthogonality within each view. This method has been extensively

used and extended for cross-modal matching tasks, including SBIR.

Key extensions and variants of CCA include:

1. Regularized CCA: Incorporating ridge regression to improve stability

(Vinod 1976).

2. Kernel CCA (KCCA): Applying non-linear transformations through

kernel functions (Akaho 2006, Melzer et al. 2001, Bach and Jordan 2002,

Hardoon et al. 2004).
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3. Scalable KCCA: Employing random Fourier features (FKCCA) or

Nyström approximation (NKCCA) for computational efficiency (Lopez-

Paz et al. 2014).

4. Deep CCA (DCCA): Modeling transformation functions using deep

neural networks (Andrew et al. 2013).

5. CorrNet: An encoder-decoder architecture that maximizes correla-

tion between view projections without computing canonical compo-

nents (Chandar et al. 2016).

6. Deep Canonically-correlated Autoencoder (DCCAE): An encoder-

decoder model optimizing both CCA formulation and input reconstruc-

tion (Wang et al. 2015b).

7. Non-parametric CCA (NCCA): A non-parametric approach achiev-

ing performance comparable to DCCA without neural networks (Michaeli

et al. 2016).

8. Soft-CCA: Replacing strict decorrelation requirements with more flex-

ible constraints for improved efficiency and scalability (Chang et al.

2018).

9. Soft-HGR: A neural framework optimizing a softer formulation of

Hirschfeld-Gebelein-Reónyi maximal correlation (Wang et al. 2019a,

Hirschfeld 1935, Gebelein 1941, Rényi 1959).

10. ℓ0-CCA: Creating a sparse version of DCCA through stochastic gates

performing multiplication on input data (Lindenbaum et al. 2021).

In cross-modality retrieval, CCA-based techniques have been employed to

build shared embedding spaces capturing the strongest connections between

modalities. Notable approaches include Deep CCA for cross-modal retrieval

(Yan and Mikolajczyk 2015) and Ranking-CCA, an end-to-end model mini-

mizing pairwise ranking loss for superior retrieval results (Dorfer et al. 2018).
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2.8 Summary

This chapter has provided a comprehensive review of literature relevant to the

generalization metrics, sketch-based image retrieval, and domain adaptation

techniques that form the foundation of this thesis. The exploration began

with generalization in deep learning, which is crucial for selecting optimal

foundation models. It then examined the evolution of SBIR methods, from

traditional approaches to deep learning-based techniques, highlighting the

challenges of zero-shot and few-shot learning scenarios. Finally, it delved

into domain adaptation techniques, including single-source and multi-source

approaches, which are essential for bridging the gap between sketches and

images.

This literature review establishes the theoretical groundwork for the method-

ologies developed in subsequent chapters. Chapter 3 will build upon the

generalization concepts explored here to develop an empirical generaliza-

tion metric for deep networks. Chapters 4 and 5 will leverage the insights

from SBIR and domain adaptation literature to propose novel approaches for

single-source and multi-source domain adaptation in SBIR, respectively.
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Chapter 3

An Empirical Generalization
Framework for Model Selection
in SBIR

The selection of appropriate deep learning models for Sketch-Based Im-

age Retrieval (SBIR) requires a robust understanding of their generaliza-

tion capabilities. While significant theoretical progress has been made in

establishing generalization error bounds for deep networks, practical appli-

cations—such as SBIR—demand intuitive and empirical metrics that allow

developers to compare models effectively. This chapter addresses this need

by introducing a novel framework for evaluating generalization in deep net-

works, with particular emphasis on its application to model selection for

SBIR systems.

The concept of generalization—a model’s ability to perform effectively on

new, unseen data—is fundamental to machine learning theory. A model with

strong generalization capacity does not merely memorize its training data but

extracts underlying patterns that remain valid when confronted with novel

examples. This capacity is particularly crucial for SBIR systems, which must

bridge the inherent domain gap between sketches and images while handling

diverse sketch styles and previously unseen object categories.

Traditional approaches to measuring generalization have relied on theo-

retical constructs such as VC dimension and Rademacher complexity. How-

ever, as reviewed in Chapter 2, these classical measures often prove inad-
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equate for deep neural networks, producing bounds that are too loose to

provide practical guidance. Recent research has attempted to address this

limitation, with notable contributions from Neyshabur et al. (2018), who de-

veloped tighter generalization bounds for two-layer ReLU networks, and Dzi-

ugaite and Roy (2017), who introduced methods for calculating non-vacuous

PAC-Bayes generalization bounds. Despite these advances, the application

of these theories to multilayer networks frequently results in estimates sig-

nificantly larger than the actual parameter count, highlighting their limited

practical utility.

The Predicting Generalization in Deep Learning (PGDL) competition at

NeurIPS 2020 (Jiang et al. 2020), building on work by Jiang et al. (2018),

attempted to address these limitations. However, comprehensive studies in-

volving extensive hyperparameter searches (Jiang et al. 2019) have shown

that current generalization bounds remain ineffective, with the fundamental

mechanisms underlying generalization in deep networks still elusive.

While theoretical efforts continue, there is growing recognition of the need

for empirical metrics that can provide practical guidance for model selection

and optimization. This need is particularly acute in the context of SBIR,

where selecting models with strong generalization capabilities is essential

for bridging the domain gap between sketches and images. Despite this

requirement, there is a notable scarcity of research on empirical generalization

metrics for comparative model assessment.

This chapter addresses this gap by introducing a comprehensive frame-

work for evaluating generalization in deep networks, with specific application

to model selection for SBIR. my approach builds upon the insights from deep

learning generalization research reviewed in Chapter 2, while addressing the

practical requirements of SBIR systems identified in my literature review.

The proposed framework provides a quantitative assessment of a model’s

generalization capacity based on both its classification accuracy and its abil-

ity to handle diverse, unseen data—two factors that are crucial for effective

SBIR performance.
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3.1 Methodology

3.1.1 Rationale for the Proposed Approach

The development of my generalization metric is motivated by several key

limitations in existing approaches identified in the literature review. First,

as demonstrated by Zhang et al. (2021b) and Neyshabur et al. (2018), con-

ventional generalization bounds often fail to explain the empirical success

of overparameterized networks. Second, theoretical measures such as VC

dimension and Rademacher complexity, while mathematically elegant, typi-

cally yield bounds that are too loose for practical applications (Bartlett and

Mendelson 2002, Harvey et al. 2017). Third, recent research by Jiang et al.

(2020) and Jiang et al. (2019) has shown that many existing generalization

metrics lack predictive power when applied to real-world model selection

scenarios.

Drawing on these insights, my approach adopts a fundamentally empirical

perspective while incorporating theoretical understanding from both tradi-

tional and recent generalization research. Rather than attempting to derive

tight theoretical bounds, I propose a metric system that directly measures

two key aspects of generalization:

1. **Classification accuracy on unseen data**: This reflects the model’s

ability to make correct predictions beyond its training distribution—the pri-

mary goal of generalization.

2. **Diversity handling capacity**: This captures the model’s robust-

ness when confronted with varied, novel inputs—a critical requirement for

SBIR systems that must accommodate diverse sketching styles and unseen

categories.

This dual focus is particularly relevant for SBIR applications, where mod-

els must not only achieve high accuracy but also demonstrate robustness to

the inherent variability in sketch inputs. As highlighted by Yu et al. (2016)

and Song et al. (2017), the abstraction gap between sketches and images,

combined with the diversity of sketching styles, creates a challenging gener-

alization problem that conventional metrics fail to adequately address.
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my methodology builds on the linear probe approach introduced by Rad-

ford et al. (2021) in the CLIP framework. This choice is motivated by the

probe’s ability to isolate and evaluate the quality of learned representations

without the confounding effects of complex classification models. When a

simple linear model achieves high performance using features from a pre-

trained network, it indicates that the network has learned meaningful, gen-

eralizable representations—a crucial capability for effective SBIR systems.

Furthermore, my framework considers three dimensions that significantly

affect generalization performance:

1. **Model size**: Following insights from Neyshabur et al. (2018) and

Arora et al. (2018), I examine how parameter count influences generalization

capacity.

2. **Randomness**: Building on studies of weight fluctuations and op-

timization dynamics (Hardt et al. 2016), I incorporate a measure of model

robustness to parameter perturbations.

3. **Zero-shot capability**: Inspired by zero-shot learning research (Xian

et al. 2018), I assess a model’s ability to handle completely novel cate-

gories—a critical requirement for practical SBIR applications.

This multidimensional approach provides a more comprehensive assess-

ment of generalization than existing metrics, which typically focus on a single

aspect of performance.

3.1.2 Framework Components and Implementation

The proposed metric measures the generalization capacity of a model through

accuracy (classification correct or error rates) and the diversity of test data

(using the Kappa statistic) across three factors: model size, randomness, and

zero-shot capability. my framework consists of two primary components:

1. **Benchmarking Testbed**: Produces raw performance data across

different dimensions of generalization. 2. **Empirical Generalization Metric

System**: Evaluates and quantifies the model’s generalization capacity.
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Figure 3.1: (a) Illustration of Benchmark Testbed showing the structure
with pre-trained model and linear probe; (b) A 3D array visualization of
the generalization metric space, where each cell contains accuracy (g) and
diversity (k) measurements. The pink slice represents tests without noise
(SSIM=1) and the blue slice represents tests without zero-shot examples.

The Benchmarking Testbed adopts the linear probe structure similar to

CLIP (Radford et al. 2021), which provides several advantages for generaliza-

tion assessment. This approach allows me to evaluate how effectively a deep

learning model captures essential features within its hidden layers by training

a simple linear model (e.g., logistic regression) using features extracted from

a specific layer of the pre-trained network. This methodology is particularly

well-suited for generalization assessment because:

1. It isolates representation quality from classifier complexity 2. High per-

formance with a linear probe indicates that the learned features themselves

contain the necessary discriminative information 3. It enables fair compari-

son across different network architectures by standardizing the classification

model

As illustrated in Figure 3.1(a), the benchmarking process involves:

1. Pre-training the model on training data 2. Freezing the pre-trained

model’s weights 3. Training a linear probe on all available data 4. Evaluating

the combined model on a mixture of holdout data and zero-shot data

This evaluation process provides insights into both the feature extrac-

tion capabilities of the model and its ability to generalize to new or unseen

data—two critical factors for SBIR performance.

Following Jiang et al. (2020), I define generalization error as:
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g (fw;D) =
1

|Dtest |
∑

(x,y)∈Dtest

1 (fw(x) ̸= y)− 1

|Dtrain |
∑

(x,y)∈Dtrain

1 (fw(x) ̸= y)

(3.1)

where w denotes the model’s weight set and 1 is the indicator function.

A key innovation in my approach is the systematic investigation of how

various hyperparameters affect generalization performance. Different hyper-

parameter configurations result in diverse weight values, producing many

variants of a given model architecture. To capture this variability and its

impact on generalization, I draw inspiration from Jiang et al. (2020) and

sample weight values across a spectrum of hyperparameter types.

my experimental design includes repeated model training on identical

data while monitoring weight fluctuations. As shown in Figure 3.2, these

fluctuations typically follow a normal distribution pattern. To account for

this inherent randomness, I establish a framework where each weight in a pre-

trained model defines the center of a sampling window. By taking multiple

random samples within these windows (over 50 in my implementation), I

generate numerous model variations. The average performance across these

variations serves as a robust benchmark for a given window size, with the

window size itself indicating the level of randomness being tested.

This approach allows me to systematically explore the relationship be-

tween model robustness to parameter perturbations and generalization per-

formance—a relationship that is particularly relevant for SBIR systems, which

must be robust to the inherent variability in sketch inputs.

Empirical Generalization metric system is to seek for a trade-off point

to illustrate the generalization of test models, as shown in Algorithm 1.

Step 1. Experimentally, I calculate the accuracy of individual classes on

test data using Eq.3.1 and assess the diversity of the test data, encompassing

both holdout data and zero-shot data. The former computation allows for

deriving a distribution of error rates across all classes, whereas generalization

error typically pertains to the overall error rate. On the other hand, the
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Algorithm 1 Empirical Generalization Metric System

• Preparation: training a given model and its invariants, including
training linear prob layer.

• Computing accuracy and Kappa by Eq.3.1&Eq.3.6;

• Computing similarity of each cell and the origin cell by KL-D on the
accuracy and Kappa respectively, and updating the 3D array with these
two kinds of KL-D;

• Searching a trade-off point on the updated 3D array by Eq.3.3&Eq.3.4;

measurement of diversity can be achieved using the Kappa statistic [Cohen,

1960], Given a dataset with n classes, I may divide all the classes into two

parts according to the current class i, that is, the i-th class and non i-th class.

The classification results can be described as, classifying a sample to the i-th

class is denoted as hi = 1 and not to the i-th class as hi = −1; classifying a

sample to the group {hj : j ̸= i, j = 1..n} is denoted as hj ̸=i = 1 and not to

the group {hj : j ̸= i, j = 1 . . . n} is denoted as (hj ̸=i) = −1. The confusion

matrix is defined as below:

hi = 1 hi = −1

{hj ̸=i} = 1 #a #c

{hj ̸=i} = −1 #b #d

where #a is the number of samples predicted as positive in line with the

events hi and {hj ̸=i}, and similarly for #b, #c, and #d. It is conceivable

that certain samples may be unrecognized by the benchmarking model due

to excessively high loss or low probability in the model outputs. Thus, I set a

threshold to identify such failed samples and count them in ”#d”. Moreover,

it is possible that there are samples not to be recognised by the model since

the model outputs very close probabilities for multiple candidate classes,

including the i-th class. I simply set a threshold for probability difference to

identify the conflict cases, i.e. the events of hi and {hj ̸=i} agree with each
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other in the confusion matrix, and count them to ”#a”. The others count

to ”#b or #c”. The Kappa is defined as,

ki =
p1 − p2
1− p2

p1 =
a+ d

N

p2 =
(a+ b)(a+ c) + (c+ d)(b+ d)

N2

(3.2)

where N denotes the number of total class samples. A model with strong

generalisation capacity should be adaptable to highly diverse data. When

Kappa is high, it means that the model classifies different classes and results

in the conflict cases too much. The model has a low diversity, i.e. low gener-

alisation capacity. Otherwise, it has a high diversity, i.e. high generalisation

capacity.

Step 2. I gather measured data by Eq.3.1 and Eq.3.6 across three distinct

dimensions: model size (representing the number of weights), randomness

(indicated by the window size), and the proportion of zero-shot data (com-

prising one hundred percent of the test data). This compilation results in a

three-dimensional array as shown in Figure 3.3. Each cell within this array

records both the accuracy “g” and Kappa metrics “k”. I focus on test data

diversity. Thus, I collect the correct rates or error rates of each class as the

accuracy data “g” and the Kappa data of each class as the diversity data “k”.

The resulting “g and k” adhere to distributions across the classes of test data

and are stored in one cell. Different cells within the 3D array correspond to

their individual settings of three dimensions. Employing a Histogram on a

singular cell (denoted as a pair of “g and k”) makes its distribution visualized

in Figure 3.4.
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Figure 3.2: fluctuation of a weight with 500 trainings

Figure 3.3: 3D array with three dimensions of zero-shot percent, randomness
and model size
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Figure 3.4: Histogram of a singular cell in the figure above

Step 3.I compute the similarity of each cell and the origin cell of the 3D

array by KL-Divergence on the accuracy and Kappa respectively, and denote

the KL-Divergence of the accuracy as KLg (ZeroShot, Rand, WeightNum)

and the KLDivergence of the Kappa as KLk (ZeroShot, Rand,WeightNum)

here. The origin cell refers to the setting of non-zero-shot data (i.e. holdout

data), non-randomness on model, and the model maximum size (see red

block in Figure 3.3). For a test model, the origin cell should be of its optimal

performance. Ideally, both kinds of KL-Divergences tend to Zero, that is,

the model with different settings can still approach the optimal performance.

In practice, I used to employ Jensen-Shannon Divergence instead for data

visualization purpose.

Step 4. I estimate the trade-off point based on the 3D array updated with

the two kinds of KL-Divergences, i.e., KLg (ZeroShot,Rand,WeightNum) and

KLk (ZeroShot,Rand,WeightNum). Searching the tradeoff point on the 3D
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array is expressed as,

TradeOff = arg min
(x,y,z)∈3DA

∥KLg(x, y, z)−KLk(x, y, z)∥2 (3.3)

For such multivariate optimization problem, I apply the marginalization

approach to the KLg and KLk as below,{
KLg(x ∼ 3DA( ZeroShot )) =

∑
(y,z)∼3DA( Rand,WeightNum ) KLg(x, y, z)

KLk(x ∼ 3DA( ZeroShot )) =
∑

(y,z)∼3DA( Rand,WeightNum ) KLk(x, y, z)

(3.4)

There are three pairs of marginal distributions in total. Each pair results

in a cross point. These 3 cross points indicate the values of three dimensions

separately, i.e. model size, randomness, and zero-shot percentage, which is

called as the trade-off point.

3.2 Experiment

This section I follow the step in the methodology and record the result under

different settings.

3.2.1 Implementation details

I use the CIFAR-100 dataset (Krizhevsky et al. 2009) for training and test,

which consists of 60,000 color images associated with 100 classes. Each class

contains 600 images. In my experiments, I pick up 50 classes for training and

the rest 50 classes for the zero-shot scenario tests. I use the Two-Layer-ReLU

network presented in (Neyshabur et al. 2018) and a simple CNN network as

shown in Figure 3.5. The model size is indicated by the parameter number

of the model in my tests. In the step 0 of Algorithm 1, the models and their

invariants (e.g. the same original model with different model sizes) are pre-

trained based on the training data. All the data, models, and benchmarking

results are available on
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Figure 3.5: two test model architecture

3.2.2 Tests

I organise my experiments in terms of the Algorithm 1 to illustrate how

to use the proposed empirical generalisation metric. As there is a lack of

similar work available for comparison, I only benchmark two models in Figure

3.5. Alongside the illustration of each step in Algorithm 1, the intuitive

observations are given as well. These intuitive and qualitative analysis can

be quantified by the trade-off point. Finally, I conclude the benchmarking

results through the trade-off points.

Step 1. Collect accuracy and Kappa data of a model Accuracy

data.I test the model of Two-Layer-ReLU and store the correct rates of

each class in each cell of a 3D array. The average of all the correct rates in

one cell represents the accuracy of the model with a specific setting of three

dimensions. Figure 3.6 shows the changes of accuracy along with different di-

mensions. For the dimension of randomness (i.e. window size), I set 5 window

sizes for each parameter of the model, i.e. 0,0.2,0.4,0.6,0.8, and sample 50

random values for each parameter at every window size level. Although each
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data point in Figure 3.6 is the average of 50 trials, randomness still appears

by big ups and downs on curves. It can be noted that randomness results

in the accuracy decreasing quickly. Moreover, Figure 3.6a shows the results

without randomness (i.e. window size is Zero). It can be noted that small

models have low accuracy and the accuracy can be increased when model

size (i.e. parameter number) increasing. Obviously, over-parameterization

stops this trend. It is because when model size exceeds the size of training

data, increasing model size continuously will not bring about the accuracy

improvement. I further illustrate the performance of accuracy and window-

size in Figure 3.7. I select 4 model sizes here, i.e. parameter numbers of

1M, 16M, 32M, 64M. It is clear that randomness results in the accuracy

decreasing quickly.

Moreover, Figure 3.6a shows the results without randomness (i.e. window

size is Zero). It can be noted that small models have low accuracy and the

accuracy can be increased when model size (i.e. parameter number) increas-

ing. Obviously, over-parameterization stops this trend. It is because when

model size exceeds the size of training data, increasing model size contin-

uously will not bring about the accuracy improvement. I further illustrate

the performance of accuracy and window-size in Figure 3.7. I select 4 model

sizes here, i.e. parameter numbers of 1M, 16M, 32M, 64M. It is clear that

randomness results in the accuracy decreasing quickly.

Statistic Kappa. I set 5 window sizes for each parameter of the model,

i.e. 0,0.2,0.4,0.6,0.8, to obtain 50 random values for each parameter at each

window size level. I test the model of Two-Layer-ReLU and store the Kappas

of each class in each cell of the 3D array. The average of all the classes’

Kappas in one cell represents the diversity of the model with a specific setting

of three dimensions. Figure 3.8 shows the change of diversity along with

different dimensions. It can be noted that the Kappa is increasing when

adding zero-shot data.

Step 2.Histogram.The measure data of accuracy and Kappa, including the

correct rates and Kappa values of each class, is cell-wise stored in the 3D array

according to three dimensions. Figure 3.6,Figure 3.7 and Figure 3.8 may

provide insights into potential performance trends rather than facilitating a
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quantitative analysis. In fact, each cell contains two distributions—namely,

accuracy and diversity distributions. I apply Histogram to this 3D array to

illustrate these two distributions in cells. Figure 3.9 shows the Histograms of

the original cell (best performance) and of the cell (worst performance) with

maximum zero-shot data, maximum randomness and smallest model size in

the 3D array.

Figure 3.9: Histograms of the best (left) and worst (right) cells.

Step 3.JS-Divergences I apply Jensen-Shannon divergence to the 3D array

and update it with the resulting JS divergences. I set 5 window sizes for each

parameter of the model here, i.e. {0, 0.2, 0.4, 0.6, 0.8}. The JS divergence of

accuracy is shown in Figure 3.10. It can be noted that the JS-Divergence

is increasing along with the window size increasing. This implies that ran-

domness brings about big JS-divergences of accuracy. Moreover, I show the

performance of accuracy JS-divergences and randomness in Figure 3.11. I

set 6 model sizes here, i.e., parameter numbers of {1M, 2M, 4M, 8M, 16M,

32M }. Figure 3.11 enhances my observation in Figure 3.10, i.e. random-

ness brings about big divergences. The JS divergence of Kappa is shown in

Figure 3.12. The key observation is that when the model size exceeds the

training data size, JS-Divergences rapidly decrease and subsequently tend to

stabilize or smooth out. This is due to the over-parameterization. More-

over, along with the randomness increasing (i.e. window size) and zero-shot

data involving, JS-Divergences are increasing. However, it can be noted that
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for the non-zero-shot-data scenarios (i.e. zero-shot=0), JS-Divergences have

small changes. This implies that this model is not adaptable with zero-shot

scenarios. The model’s diversity is very limited.

Furthermore, I show the performance of Kappa JS divergence and ran-

domness (i.e. window size) in Figure 3.13 . I select 6 model sizes here,

i.e. parameter numbers of 0.25M, 0.5M, 1M, 16M, 32M, 64M. It is obvi-

ous that when increasing randomness, all the JS divergences are converging.

This implies that randomness results in all the performances converging and

decreasing. The model has the low randomness

Step 4.Trade-off point.I compute the trade-off point based on 3 pairs of

marginal distributions and show them in Figure ??a gives the cross point at

(0.30, 0.26), Figure ??b gives the cross point at (0, 0.24), and Figure ??c

gives the cross point at (809832, 0.28). The trade-off point for this model is of

(Rand=0.30, ZeroShot=0, WeightNum=809882). The average of marginals

is around 0.26, which reflects the overall performance. Moreover, I also test

the CNN model and show its trade-off point as well as the trade-off point of

Two-Layer-ReLU model in Figure ??. It can be noted that??f has multiple

cross points. Usually, I prefer to small size of the model. Thus, the cross point

in ??f is selected at (3634764, 0.33). The trade-off point is of (Rand=0.58,

ZeroShot=0.01672616, WeightNum=3634764). The average of marginals is

around 0.34. Two trade-off points are shown as below for comparison,

Model Marginal Rand
Zero-

Shot(%)
WeightXum

TwoLaxer 0.26 0.30 0 809882

CNN 0.34 0.58 0.01673 3634764

It can be noted that the Two-Layer-ReLU model has no transfer learning

ability since zero-shot percentage is zero, while the CNN model has certain

transfer learning ability against the Two-Layer-ReLU model. However, the

model size of CNN model is increasing drastically when generalization capac-

ity increasing. Obviously, a big size of the model is not widely acceptable.
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3.3 Experiment on deeper neural network

In this section I updated my benchmark and test it on some deeper neural

networks which is widely used by researchers right now.

3.3.1 The updated benchmark design for SOTA deep
network

The updated benchmark is still to seek for a trade-off point to illustrate the

generalization of the test models, but with a little modification as shown in

the following steps:

g (fw;D) =
1

|Dtest |
∑

(x,y)∈Dtest

1 (fw(x) ̸= y)− 1

|Dtrain |
∑

(x,y)∈Dtrain

1 (fw(x) ̸= y)

(3.5)

Step 1.I compute the ErrorRate of individual classes on the test data

using Eq.1. It enables the derivation of a distribution of error rates across all

classes, while the generalization error typically refers to the overall error rate.

I then evaluate the diversity of the test data using the Kappa statistic (Cohen

(1960)). In the context of multi-class classification problem, I are dealing

with agreement and disagreement among classifier outputs. The Kappa is

indeed more robust than simple percentage agreement because it adjusts for

the possibility of agreement occurring by chance. This is particularly useful

when there is a class imbalance, as chance agreement would be higher for the

more frequent classes. Similarly, it also results in a distribution of Kappa

across all classes.

Given a dataset with multiple classes, I may divide all the classes into

two parts according to the current class i, that is, the i-th class and non

i-th classes. The classification event is denoted as hi(x) = 1 for classifying

x into the i-th class or hi(x) = −1 for classifying x not into the i-th class.

Similarly, hī(x) = 1 for classifying x into the non i-th classes or hī(x) = −1

for classifying x not into the non i-th classes. The classification results can be

described as {(x1, y1), (x2, y2), ..., (xn, yn)}, where yi ∈ {−1, 1} are the class
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labels of binary classification. The confusion matrix of the {hi} and {hī} for

binary classification is

hi = 1 hi = −1

hī = 1 #a #c

hī = −1 #b #d

where #a represents the number of samples predicted as positive in line

with the events hi and hī, and similarly for #b,#c,#d. For example, when

the fine-tuned model outputs high but very close probabilities for multiple

candidate classes, including the i-th class, this results in conflict. The samples

can not be recognized by the model. I thus count them in ”#a”. When

the fine-tuned model outputs low but very close probabilities for multiple

candidate classes, including the i-th class, this results in conflict as well. The

samples cannot also be recognized by the model. I thus count them in ”#d”.

It can be noted that #a and #d refer to conflict case numbers while #b,#c

refer to conflict-free case numbers. It is conceivable that certain samples

may go unnoticed by the fine-tuned model due to excessively high loss or

low probability in the model outputs. Therefore, I set a threshold to identify

such failed samples and count them in “#d”. The Kappa about the i-th class

is defined as,
ki =

p1 − p2
1− p2

p1 =
a+ d

N
, p2 =

(a+ b)(a+ c) + (c+ d)(b+ d)

N2

(3.6)

where N denotes the number of total class samples. The average of the

Kappas for all the classes may be regarded as the generalization Kappa.

A model with strong generalization capacity should be adaptable to highly

diverse data. When the Kappa statistic is high, it indicates that the model

is struggling to properly classify samples into different classes, leading to an

excessive number of conflict cases. This suggests that the model has low

diversity, and consequently, a low generalization capacity. Conversely, if the

Kappa statistic is low, it implies that the model exhibits high diversity, and

therefore has a high generalization capacity.
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Different from the previous method, I take the robustness into consider-

ation and remove the randomness dimension from my test bed. Regarding

the robustness dimension, in deep learning, robustness measures how well

a network performs under controlled variations such as noise or distortions,

providing insights into the network’s ability to generalize effectively (Natekar

and Sharma (2020)). This concept is extended to adversarial robust learning

settings under the umbrella of adversarial robustness. Recent works focus

on the generalization gap in robust learning contexts (Zhang et al. (2021a),

Yang et al. (2020)). Further exploration of robust generalization challenges

in adversarial learning models can be found in (Li et al. (2022) and Kim

et al. (2023)). Moreover, (Bubeck and Sellke (2023)) highlights that ”over-

parameterization” is also necessary for robust learning. Consequently, ro-

bustness is incorporated into my testbed by introducing adversarial samples

into the test data.

Within the three dimensions (zero-shot%, weight number, robustness)

of the 3D array, I can calculate two distributions on a cell-wise basis: one

related to ErrorRate and the other to Kappa. These calculations are carried

out by Eq.3.1 for ErrorRate and Eq.3.6 for Kappa, and are stored within the

3D array (denoted as a pair of ”g and k” for each cell, see Figure3.1b).

I depict these two distributions of each cell by three kinds of statistics,

i.e., means (denoted as M), standard deviations (denoted as SD), and 10th

percentiles (denoted as 10P ). The 10th percentile score indicates that 10% of

the trials scored below it. Since smaller means are better in this context, the

10th percentiles represent the best performing 10% of classification outcomes.

I update each cell in the 3D array by these three kinds of statistics with

respect to two distributions (i.e., ErrorRate and Kappa) within three dimen-

sions, that is,Mg(ZeroShot, Robust,WeightNum), SDg(ZeroShot, Robust,WeightNum),
10Pg(ZeroShot, Robust,WeightNum) on ErrorRate andMk(ZeroShot, Robust,WeightNum),

SDk(ZeroShot, Robust,WeightNum), 10Pk(ZeroShot, Robust,WeightNum)

on Kappa.

Step 3. I estimate the trade-off point based on the three kinds of statis-

tics within three dimensions in the 3D array. The desired generalization

capacity should be achieving high performance of accuracy and diversity by

67



maximizing two dimensions of zero-shot capabilities and robustness, while

minimizing the dimension of model size as much as possible.

Searching the trade-off point over the 3D array (3DA) is described as,

min
(x,y,z)∈3DA

(
Mg(x, y, z) + SDg(x, y, z) +

10Pg(x, y, z)

+Mk(x, y, z) + SDk(x, y, z) +
10Pk(x, y, z)

)
subject to


c1 : x ⩾ ZeroShotmin

c2 : y ⩾ Robustmin

c3 : z ⩽ WeightNummax

(3.7)

where (ZeroShotmin, Robustmin,WeightNummax) are the given maximum(/minimum)

bounds of three dimensions. Particularly, I prefer to maximize (or minimize)

these bounds for generalization purpose here. Equation3.7 may be converted

to a minmax optimization problem as follows,

min
(c1,c2,c3)

∥C∥2

subject to:



min
(x,y,z)∈3DA

(
Mg(x, y, z) + SDg(x, y, z) +

10Pg(x, y, z)+

Mk(x, y, z) + SDk(x, y, z) +
10Pk(x, y, z)

)
c1 ⩾ 1− x

c2 ⩾ y

c3 ⩾ z

(3.8)

where C = (c1, c2, c3) denotes the upper bounds. I apply GEKKO?

to minimize the upper bounds of three dimensions (i.e., ZeroShot, Robust,

WeightNum) to approach the trade-off point. Ideally, the resulting (x, y, z)

would be equal to the resulting (c1, c2, c3). I always select the resulting

(x, y, z) as the trade-off point in practice.

To visualize it, I compute the marginal distributions with respect to three

dimensions separately. The marginal distributions with respect to the dimen-
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sion of ZeroShot is computed as,

Mg(x ∼ 3DA(ZeroShot)) =∑
(y,z)∼3DA(Robust,WeightNum) Mg(x, y, z)

SDg(x ∼ 3DA(ZeroShot)) =∑
(y,z)∼3DA(Robust,WeightNum) SDg(x, y, z)

10Pg(x ∼ 3DA(ZeroShot)) =∑
(y,z)∼3DA(Robust,WeightNum)

10Pg(x, y, z)

Mk(x ∼ 3DA(ZeroShot)) =∑
(y,z)∼3DA(Robust,WeightNum) Mk(x, y, z)

SDk(x ∼ 3DA(ZeroShot)) =∑
(y,z)∼3DA(Robust,WeightNum) SDk(x, y, z)

10Pk(x ∼ 3DA(ZeroShot)) =∑
(y,z)∼3DA(Robust,WeightNum)

10Pk(x, y, z)

(3.9)

There are a total of three sets of marginal distributions separately for three

dimensions. Each set illustrates the generalization bounds (referred to as

Mg, SDg,
10Pg) and diversity (referred to as Mk, SDk,

10Pk) concerning the

scale at each dimension specified by the trade-off point, one after another.

Theoretical equivalence is expected among these three sets of marginal prob-

abilities at the trade-off point.

In fact, the trade-off point indicates the model’s tolerance on three di-

mensions at an expected marginal probability level. The area delimited by

the trade-off point intuitively and quantitatively illustrates the generalization

capacity of the test model.

3.3.2 Data and Models

I use CIFAR-100 (Krizhevsky et al. (2009)) and ImageNet datasets (Rus-

sakovsky et al. 2015) for fine-tuning and tests. In my experiments, I pick up

50 classes for training and the rest 50 classes for the zero-shot scenario tests

from CIFAR-100. I randomly select 100 object classes from ImageNet. Sim-

ilarly, I divide it into two parts, i.e., 50 classes for training and the other 50
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classes for tests. These two datasets are widely used in deep learning applica-

tions. The primary difference is the image size; ImageNet images are larger

than those in CIFAR-100. Larger images in ImageNet provide more data,

which generally leads to better learning outcomes. In contrast, the smaller

images in CIFAR-100 often result in ambiguity, where additional context is

necessary to accurately interpret the images. In addition, I apply augmenta-

tion approaches to these datasets to generate unseen data or classes in case

that the pretrained models have seen data in their previous training.

I select the CLIP and EfficientNet models for benchmarking tests since

they both share similar architecture. They have some connections as well

as differences. I use 5 pre-trained CLIP models from Radford et al. (2021)

and 8 EfficientNet models from Tan and Le (2019). Table 3.1 shows the pre-

trained model sizes of CLIP and EfficientNet respectively. Although these

pre-trained models have been optimised, they still need to be fine-tuned

with the linear probe on the training data in advance. I only use the weight

number of each model as the dimension of model size in the experiments,

neglecting the other issues such as layers, depth, the change of structure,

so that the pre-trained models line up in an ”over-parameterization” way.

I hope to have an insight to the generalisation capacity of these two kinds

of pre-trained models, i.e. CLIP group and EfficientNet group. Moreover,

the test data is added noises for robustness tests. To quantify noise levels,

I employ the Autoencoder to the test data to generate noisy data and use

the Structural SIMilarity (SSIM) Index metric to control noise levels. When

SSIM is decreasing towards zero, the noise level is increasing. All the ex-

periments work on a Workstation with Nvidia 12G RTX2080. All the data,

models, and benchmarking results are available on GitHub.

3.3.3 Trade-Off points of CLIP and EfficientNet

The pre-trained CLIP models (i.e. RNxxx) and EfficientNet models are

CNN-based (see Table3.1). For comparison, the CLIP ViT-xxx models are

not taken into account here.
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EfficientNet # Params CLIP # Params

efficientnet-b0 5.3M RN50 38M

efficientnet-b1 7.8M RN101 56M

efficientnet-b2 9.2M RN50x4 87M

efficientnet-b3 12M RN50x16 167M

efficientnet-b4 19M RN50x64 420M

efficientnet-b5 30M ViT-B/32 87M

efficientnet-b6 43M ViT-B/16 86M

efficientnet-b7 66M ViT-L/14 304M

Table 3.1: Pretrained Models’ Parameters

Step 1. Collect ErrorRate and Kappa data of both kinds of test

models

I test the pretrained models of CLIP and EfficientNet on test data across

three dimensions (i.e., zero-shot%, weight number, SSIM) and store the error

rates and Kappas for each class in each cell of a 3D array.

Step 2. Update 3D Array

I compute three kinds of statistics related to the distributions of ErrorRate

and Kappa across all classes, i.e., means, standard derivations, 10th per-

centiles, and update them cell-wise in the 3D array.

Step 3. Trade-Off point

I compute the trade-off points by Eq.3.8 and visualize the trade-off points by

Eq.3.9 based on three pairs of marginal distributions, as shown in Figure 3.

The trade-off points of CLIP and EfficientNet on CIFAR1-100 and ImageNet

respectively are shown in Table 3.2 and Table 3.3.

It can be noted that, (1) CLIP model does not outperform the

EfficientNet model. Comparing the trade-off points in Tables 3.2 and

3.3, CLIP’s generalization bound exceeds EfficientNet’s by up to 0.16 on

ImageNet, and its diversity bound is higher by up to 0.01. On CIFAR-

100, CLIP’s generalization bound is lower by up to 0.05, while its diversity

bound is higher by up to 0.02. Although the CLIP’s SSIM(lower bound) and
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MODEL TYPE CLIP EFFICIENT NET

GENERALIZATION BOUND 0.364 0.206

DIVERSITY BOUND 0.087 0.075

SSIM(lower bound) 0.779 0.891

ZEROSHOT(upper bound) 0.175 0.106

MODEL SIZE(lower bound) 167M 23M

Table 3.2: TradeOff points on ImageNet

MODEL TYPE CLIP EFFICIENT NET

GENERALIZATION BOUND 0.852 0.902

DIVERSITY BOUND 0.164 0.139

SSIM(lower bound) 0.824 0.976

ZEROSHOT(upper bound) 0.228 0.166

MODEL SIZE(lower bound) 56M 43M

Table 3.3: TradeOff points on CIFAR-100

ZeroShot(upper bound) are better than EfficientNet’s, EfficientNet’s model

size is much smaller than CLIP’s.

Comparing the marginal distributions in Figure 3.15, the trends of CLIP

and EfficientNet (including ErrorRate and Kappa) on SSIM and ZeroShot

dimensions are similar (see the 1st and 2nd columns in Figure 3.15). However,

the trends for CLIP are opposite to those for EfficientNet on the model size

dimension (see the 3rd column). EfficientNet is a compact CNN architecture

that uses a compound coefficient to scale models effectively, rather than

randomly scaling width, depth, or resolution. Compared to the pretrained

CLIP models, EfficientNet models are much smaller and more sensitive to

changes in model size. Consequently, the CLIP model does not show an

advantage against the EfficientNet model.

latex Copy code

A reasonable explanation is that the available pretrained CLIP models

include both CNN and Transformer types. Here, I selected CNN-based pre-

trained CLIP models, but ViT-based CLIP models might perform better.
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Figure 3.14: TradeOff points of two kinds models, CLIP and EfficientNet
(denoted as ” ⋆ ”). The solid vertical lines indicate the selection of trade-off
points on each marginals. (a)-(c) CLIP on ImageNet, (d)-(f) EfficientNet on
ImageNet, (g)-(i) CLIP on CIFAR-100, (j)-(l) EfficientNet on CIFAR-100
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(2) difference between datasets. It can be noted that the generalisation

and diversity bounds on ImageNet are much less than on CIFAR-100 in Ta-

ble 2 and 3. Moreover, it can be noted that STD Kappas on CIFAR-100 are

obviously more than those on ImageNet in Figure 2. This indicates that the

results on ImageNet are always better than on CIFAR-100 since big images

can provide more data.

3.3.4 Consistency check with existing Generalisation
Estimations

Dziugaite et al. (2020) and recent work (Sanae Lotfi (2023)) present 23 gen-

eralization measures, which I apply to all the pre-trained models listed in

Table 3.1. my goal is to assess the consistency between existing theoretical

estimations and actual measures, and to evaluate agreement/disagreement

rates among the available theoretical approaches. For comparison, I focus on

two slices of the 3D array rather than the entire array: one for data without

robustness and another for data without zero-shot capacity. This allows me

to obtain two distributions of error rates—one for robustness and model size

dimensions, and the other for zero-shot and model size dimensions. Note

that Kappa is not considered here, as the available complexity estimations

focus on generalization error rates. I conduct the consistency check between

theoretical estimations and actual measures using these two distributions.

The dimensions of robustness and zero-shot capacity are regarded as two

independent factors. I compute two marginal probabilities of these two slices

with respect to the dimension ofWeightNum (i.e., distributions with respect

to WeightNum) as below,
dtrg(z ∼ 2DSLICE(WeightNum)) =∑

(y)∼2DSLICE(Robust) dtrg(y, z)

dtrg(z ∼ 2DSLICE(WeightNum)) =∑
(x)∼2DSLICE(ZeroShot) dtrg(x, z)

(3.10)

Figure3.15(a)-(d) shows these marginals based on ImageNet and CIFAR-100

respectively. Then, I compute the empirical sign-error of generalization in
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terms of the resulting marginal probabilities Eq.3.10 as below,

SEg =
1
2
E(w,w′)∼{WeightNum} [1− sgn(dtrg(w)

−dtrg(w
′))sgn(C(w)− C(w′))]

(3.11)

where w and w′ denote two different WeightNums from the range of model

size; C(.) denotes the complexity measures computed using (Dziugaite et al.

(2020), Sanae Lotfi (2023)). If the practical measures (dtrg) and complexity

measures (C) exhibit consistent changes, the sign-error (SEg) approaches

zero. Conversely, inconsistent changes lead to an SEg approaching one.

Consequently, an SEg exceeding 0.5 indicates a potential mismatch between

theoretical estimation and actual measures. Figure3.15(e)-(h) visualizes the

distributions of sign-errors through scatter plots.

It can be noted that most of generalisation bound estimations are

not consistent with actual measures.

Regarding the robustness dimension (SSIM), although Figure3.15e shows

that 30% of SEg error rates exceed 0.5, Figure3.15g indicates that all SEg

values are above 0.5. Furthermore, in both Figure3.15e and 3.15g, the SEg

values for the 10th percentile are all greater than 0.5, implying that the top-

performing 10% of cases have an error rate exceeding 50%. This highlights

a significant issue with the reliability of the estimation. For the ZeroShot

dimension, Figure3.15f shows that 43% of SEg error rates exceed 0.5, while

Figure3.15h indicates that only 21% exceed 0.5. This suggests that the esti-

mation performs better in the ZeroShot dimension compared to robustness.

However, most of SEg of 10th percentiles in Figure3.15f and 3.15h are still

more than 0.3. The estimations’ reliability is questionable.

3.4 Summary

This chapter, I propose an empirical generalization metric designed for

deep networks. my approach involves a step-by-step illustration of the pro-

posed generalization metric system, demonstrated through a series of tests

on a singular model. I derive a quantifiable trade-off point that serves as a

reliable indicator of the generalization capacity of the tested model.
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Furthermore, I extend my examination to various SOTA model, bench-

marking all models with respect to marginal probability (performance), ran-

domness, robustness, model size, and zero-shot percentage. The versatility of

the proposed metric is evident in its applicability for benchmarking a diverse

range of deep networks.

In future, to enhance benchmarking, a broader range of architectures

is required. I have initiated a public GitHub repository for deep network

benchmarking and encourage contributions to expand the dataset and fos-

ter further theoretical and practical research. Furthermore, I will organise a

comprehensive generalization benchmarking competition for deep networks.

This future endeavor seeks to provide developers with a baseline platform

to test new theories, thereby enhancing the understanding of why deep neu-

ral networks generalize. The benchmarking testbed will facilitate rigorous

analyses, enabling developers to assess how well these theories align with the

complexities observed in real-world models.
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Chapter 4

Enhancing Generalization in
Sketch-based Image Retrieval
through Single Source Domain
Adaptation

Sketch-based image retrieval (SBIR) is an active research area intersecting

computer vision, multimedia, and machine learning. Traditionally, SBIR

systems perform well when confined to a fixed dataset; however, their ef-

ficacy diminishes when exposed to new, unseen data categories, mirroring

challenges in deep learning generalization. This issue is exacerbated when

SBIR systems encounter test data from completely unfamiliar classes, reveal-

ing limitations in their ability to generalize beyond trained concepts. Such

challenges highlight a critical need for robust domain adaptation strategies

that enhance the model’s generalization capabilities.

Current SBIR methodologies, while effective under controlled conditions,

often falter due to two primary factors: the significant discrepancy between

images and sketches and the varying abstraction levels introduced by different

artist skills. This chapter expands upon the notion of domain adaptation in

SBIR by proposing a novel framework that not only addresses the inherent

disparities in SBIR but also enhances the system’s adaptability across diverse

datasets. This is achieved through the integration of canonical correlation

analysis and advanced optimization techniques, enabling effective domain
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transfer and robust feature extraction.

Building directly upon the empirical generalization framework introduced

in Chapter 3, this chapter implements a practical domain adaptation ap-

proach that applies these generalization principles to the specific context of

SBIR. The model selection methodology established in Chapter 3 serves as

the foundation for identifying optimal networks that can effectively bridge

the domain gap between sketches and images, while the domain adaptation

techniques presented here provide the mechanism for transferring knowledge

between domains.

my main contributions are twofold. Firstly, I introduce a single-source do-

main adaptation algorithm for SBIR that facilitates effective transfer learning

from one domain to another, enhancing the system’s ability to handle new

classes with minimal computational overhead. Secondly, I employ low-rank

matrix decomposition and nonlinear approximation methods to significantly

reduce computational complexity while maintaining high adaptation fidelity.

This approach not only bridges the gap between theoretical advancements

and practical applications in SBIR but also sets a foundation for future ex-

plorations into adaptive, generalizable retrieval systems.

4.1 Methodology

4.1.1 Overview of the Single Source Domain Adapta-
tion Approach

This section presents my single-source domain adaptation methodology for

SBIR, which directly implements the generalization principles established

in Chapter 3. my approach addresses the challenge of transferring knowl-

edge from data-rich source domains to target domains with limited labeled

samples—a fundamental requirement for enhancing generalization in SBIR

systems. The method integrates three key technical components: transfer

learning through canonical correlation analysis, dictionary learning principles

in the optimization process, and low-rank matrix decomposition for compu-

tational efficiency.
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Figure 4.1 illustrates the architecture of my proposed approach. The

workflow begins by identifying a target domain T with a structure similar to

the new domain Y for which I have limited examples. I then employ canonical

correlation analysis (CCA) to develop a model based on the relationship

between the source and target domains. Finally, I apply this model to the

new domain Y, using the few available labeled examples to fine-tune the

adaptation.

Figure 4.1: The structure of the proposed single source domain adaptation
method. The process involves three key steps: (1) identifying a suitable tar-
get domain with structure similar to the new domain, (2) employing canonical
correlation analysis to learn domain-invariant representations, and (3) trans-
ferring the model to the new domain with few-shot adaptation.
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4.1.2 Transfer Learning via Canonical Correlation Anal-
ysis

Transfer learning, a core component of my approach, allows me to leverage

knowledge gained in a source domain with abundant data to improve per-

formance in a target domain with limited data. Unlike conventional transfer

learning methods that typically involve fine-tuning entire networks, my ap-

proach identifies and transfers the essential statistical relationships between

domains through canonical correlation analysis.

Consider a scenario with one source domain S and one target domain T,

each containing k categories. For the i-th category, I can express the feature

representations of examples in both domains as Si ∈ Rn1×f and T i ∈ Rn2×f ,

i = [1..k], respectively. Here, n1 and n2 represent the number of samples,

and f denotes the feature dimension. I assume the features are unit-norm

and n1 > n2, reflecting the common scenario where labeled samples in the

target domain are limited.

The fundamental challenge in transfer learning for SBIR is to identify

transformations that align the source and target domains while preserving

the discriminative information necessary for accurate retrieval. Canonical

correlation analysis provides a principled mathematical framework for this

alignment by finding linear transformations that maximize the correlation

between the two domains.

I apply CCA to each class of data as follows:

C
− 1

2
SS CSTC

− 1
2

TT = LDRT ∈ Rn1×n2 (4.1)

where Css = SiSiT , CST = SiT iT , and CTT = T iT iT , i ∈ [1...k] represent

the covariance matrices. The matrices L and R contain the canonical vectors,

while D is a diagonal matrix of canonical correlations that quantifies the

strength of relationship between the domains.

The canonical correlation eigenspaces can be defined as: LS = C
− 1

2
ss L ∈ Rn1×n2

RT = C
− 1

2
TT R ∈ Rn2×n2

(4.2)

81



such that:

LT
SCSTRT = D ∈ Rn2×n2 (4.3)

Computing the projections of the sets Si and T i onto these eigenspaces

yields:

Ps = SiTLS ∈ Rf×n2

PT = T iTRT ∈ Rf×n2
(4.4)

These projections, PS and PT , represent transformed feature spaces where

the correlation between source and target domains is maximized. This trans-

formation effectively bridges the domain gap between sketches and images

by identifying the shared subspace where both domains are most aligned.

4.1.3 Dictionary Learning and Sparse Optimization

After obtaining the canonical correlation projections, I establish a mapping

between the source and target eigenspaces:

PSQ = PT (4.5)

where Q is a transformation matrix that can be initially estimated using

the pseudoinverse of PS:

Q = P+
S PT (4.6)

my approach incorporates principles from dictionary learning—a tech-

nique where signals are represented as sparse linear combinations of basis

elements (atoms) from a learned dictionary. In my context, I view the trans-

formation matrices as dictionaries that enable sparse representations of the

domain adaptation mapping. This dictionary learning perspective offers sev-

eral advantages:

1. Improved generalization by capturing only essential domain relation-

ships 2. Robustness to noise and variations in sketching styles 3. Efficient

representation of complex domain transformations
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For a pair of highly correlated samples Ŝ and T̂ , I expect the correlation

of their projections onto the eigenspace PT to approach one:

〈
ŜTPSQ, T̂ TPT

〉
≈ 1 (4.7)

For the mean S̄i ∈ Rf of the set Si in the source domain, I expect the

correlations of the projections of S̄i and the set T i onto the eigenspace PT

to be:

(
(S̄i)TPSQ

i
) (

T iPT

)T ≈ (1, ..., 1)1×n2 (4.8)

To enhance numerical stability and address the non-convexity of the opti-

mization problem, I introduce a new variable Ω and formulate the optimiza-

tion as:

min
Ω

∥∥∥∥−→1 −
(
T iPT

)
Ωi

(
S̄iTPSQ

i
)T

∥∥∥∥ , i = 1..k,Ωi ∈ Rn2×n2 (4.9)

This allows me to estimate the mean of the set T i in the target domain

as:

T̄ iT = S̄iTPsQ
iΩiP+

T , i = 1..k (4.10)

where P+
T is the pseudoinverse of PT , and

−→
1 denotes a vector of ones.

Equation 4.9 requires solving for a matrix Ω rather than a vector, pre-

senting a non-convex optimization problem that may be susceptible to noise

from computational processes or the inherent variability in sketches. To

address this challenge, I introduce a sparsity constraint on Ω, formulated

as min ∥Ωi∥0, and employ the orthogonal matching pursuit (OMP) method

(Pati et al. 1993) for solving this sparse optimization problem.

The OMP algorithm is particularly suitable for my application because it

progressively identifies the dictionary atoms most correlated with the current

residual without requiring preset sparsity parameters or error limits. This

progressive selection process aligns with my goal of capturing only the most

relevant domain relationships while discarding noise.
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Through this sparse optimization procedure, I effectively establish a k-

mean classifier based on the source and target domains S and T according

to Equation 4.10.

4.1.4 Low-RankMatrix Decomposition for Efficient Do-
main Adaptation

Low-rank matrix decomposition forms a critical component of my approach,

addressing the computational challenges associated with high-dimensional

feature spaces while ensuring robust transfer between domains. When work-

ing with large-scale retrieval systems, the transformation matrices can be-

come prohibitively large, leading to computational inefficiency and potential

overfitting.

Low-rank approximation addresses these challenges by:

1. **Dimension reduction**: Representing high-dimensional data in a

lower-dimensional subspace 2. **Noise filtering**: Capturing only the most

significant patterns in the data while discarding noise 3. **Computational

efficiency**: Reducing the number of parameters that need to be optimized 4.

**Improved generalization**: Limiting model complexity to avoid overfitting

my implementation employs the orthogonal matching pursuit (OMP) al-

gorithm as a form of low-rank decomposition. By progressively selecting the

most relevant components, OMP effectively produces a low-rank approxima-

tion of the transformation matrices. This approach is particularly valuable

in SBIR applications, where the inherent variability in sketching styles intro-

duces noise that can degrade retrieval performance.

4.1.5 Transfer to New Domains with Few-Shot Sam-
ples

To extend my approach to new domains with limited labeled examples (the

few-shot scenario that is critical for practical SBIR applications), I consider

a domain Y with the same k classes as the source domain S. Let the few-shot

sample sets from Y be Y i ∈ Rn2×f , i = 1...k. I transfer the classifier from

Equation 4.10 to the new domain Y by updating Qi as:
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Qi = QiΩiT (4.11)

I then introduce a new variable Ω for Y i into Equation 4.9 and solve:

min
Ω

∥∥∥∥−→1 −
(
Y iPT

)
Ωi

(
S̄iTPSQ

i
)T

∥∥∥∥ , i = 1...k,Ωi ∈ Rn2×n2 (4.12)

This leads to a similar estimation of the mean:

Ȳ i = PTΩ
iQiTP T

S S̄
i, i = 1..k, Ȳ i ∈ Rf (4.13)

The classifier from Equation 4.10 is thereby transferred to the new domain

Y, resulting in a new classifier (Equation 4.13) based on the source domain

S and the new domain Y. Compared to Equation 4.10, Equation 4.13 offers

the distinct advantage of bypassing the domain adaptation procedure from

Equation 4.5, saving computational time. However, this efficiency may come

at the cost of accuracy, as analyzed in Section 4.2.

4.1.6 Progressive Approximation for Convergence

my progressive approximation scheme draws inspiration from the progressive

iteration approximation property (Lin et al. 2005). To compute the initial

mapping between modalities (Q in Equation 4.5), I use the samples in Si and

T i as constraints. I then update the constraint Si with S̄i and incorporate

Q as a new constraint in Equation 4.9.

With sufficient constraints to update the mapping—for instance, by se-

lecting arbitrary subsets of Si as constraints and iteratively solving for a new

Ω while absorbing the previous Ω into Q—the resulting mapping converges

to the mapping between the means Si and S̄i in Equation 4.10.

This presents a non-convex optimization problem since the basis PSQΩP T
T

in Equation 4.9 is positive semidefinite and likely rank-deficient. While The-

orem 2.1 in (Lin et al. 2005) requires a nonsingular basis, I address this

challenge by applying the low-rank decomposition technique OMP to mini-

mize Equation 4.9, ensuring the mapping converges effectively.
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The integration of transfer learning, dictionary learning, and low-rank

matrix decomposition creates a comprehensive framework for domain adap-

tation in SBIR that directly implements the generalization principles estab-

lished in Chapter 3. This methodology enables effective knowledge transfer

from source to target domains while maintaining computational efficiency—a

critical requirement for practical SBIR applications.

4.2 Experiment

This section first present the Implementation details including datasets and

evaluation protocol. Then I compare my single source DA-SBIR method’s

performance with different other state-of-art algorithms in the normal few

shot SBIR scenario. At last I evaluate the performance when I apply the

method in Database-to-Database scenario.

4.2.1 Implementation details

Here, I provide the experimental details to evaluate the efficacy of the pro-

posed approach for sketch-based image retrieval application. I start with the

datasets used and evaluation details.

Datasets Used: In this work, I use three benchmark domain adaptation

datasets.

The Sketchy Dataset (Sangkloy et al. 2016) is a large collection of sketch-

photo pairs. The dataset consists of images from 125 different classes, with

100 photos each. Sketch are collected via crowd sourcing, which resulted

in 75,471 sketches. This dataset also contains a fine-grained correspondence

(aligned) between particular photos and sketches as well as various data

augmentations for deep learning-based methods.In order to fit the task of

large-scale SBIR, Liu et al. (2017) extended the dataset by adding 60,502

photos from Imagenet(Deng et al. 2009) yielding in total 73,002 images. I

randomly pick 25 classes of sketches and images as the un-seen test set for

the zero-shot SBIR, and the data from remaining 100 seen classes are used

for training.
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The TU-Berlin Dataset (Eitz et al. 2012) contains 250 categories with a

total of 20,000 sketches extended by Zhang et al. (2016) with natural images

corresponding to the sketch classes with a total size of 204,489. 30 classes of

sketches and images are randomly chosen to respectively form the query set

and the retrieval gallery. The remaining 220 classes are utilized for training.

I follow Shen et al. (2018) and select classes with at least 400 images in the

test set.

Feature Extraction: my feature extraction part is flexible and for the

comparison I choose Doodle to search (Dey et al. 2019) method for single

source domain adaptation on Sketchy and TU-Berlin dataset.

Evaluation protocol: The proposed evaluation uses the metrics used by

Yelamarthi et al. (2018). Moreover, I also provide metrics on the whole

dataset. Images labelled with the same category as that of the query sketch,

are considered as relevant. Note that this evaluation does not consider vi-

sually similar drawings that can be considered correct by human users. For

the existing datasets, I used random splits which contains same classes in

both datasets. The mean Average Precision (mAP@all) is the main metric

I use in the following experiment. First, I introduce the definition of preci-

sion in information retrieval scenarios. The precision is defined as the ratio

of the retrieved images that are relevant to user’s query over the retrieved

documents. It can be represented as below:

precision =
| {relavant images } ∩ { retrieved images } |

| { retrieved images } |
(4.14)

By default, precision takes all the retrieved documents into account, but

however, it can also be evaluated at a given number k of retrieved docu-

ments, commonly known as cut-off rank, where the model is only assessed

by considering only its top-k-most queries. The measure is called precision

at k or P@k. The Average Precision can be described as below:

AP@n =
1

GTP

n∑
k=1

P@k × rel@k (4.15)
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where GTP refers to the total number of ground truth positives, n refers

to the total number of documents you are interested in, P@k refers to the

precision@k and rel@k is a relevance function. The relevance function is an

indicator function which equals 1 if the document at rank k is relevant and

equals to 0 otherwise. For each query, i, I can calculate a corresponding AP.

The mAP is the mean of all the queries that the use made.

mAP =
1

n

n∑
i=1

APi (4.16)

mAP@all means n equals to the number of total images in the above equation.

The second metric I utilize is classification rate. I classify the data in target

domain after the domain adaptation and check the classification accuracy of

each class.

4.2.2 Domain adaptation between images and sketches

The domain gap between image and sketch is the obstruction which strongly

effect the retrieval result. I choose the image as the source data and sketch

as the target. I build up a K-mean classifier according to Eq4.10 for SBIR

applications. The key point is to assess the means of images and sketches

in each class. I compare my methods, DA-SBIR algorithms, with the ZSIH

(Shen et al. 2018),ZS-SBIR (Yelamarthi et al. 2018), SEM-PCYC (Dutta

and Akata 2020) and DSN (Wang et al. 2021) methods on the two datasets:

Sketchy and TU-Berlin. I employ the feature representation in the Doodle

to search (Dey et al. 2019) I test the mean-average precisions (mAP@all) for

all method and compare its result.

A concern is emerging regarding how the quantity of few-shot examples

impacts retrieval performance. Figure 4.2 shows the few-shot SBIR perfor-

mance of my model Eq.4.10 on the Sketchy and TU-Berlin databases re-

spectively comparing with other methods. It can be noted that the results

converge around 4 shot samples, and the DSN’s result is close to ours on the

Sketchy. I hope to point out that the DSN employs semantic information for

retrieval. A pretrained Word2Vec (Mikolov et al. 2013) or GloVe (Pennington
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et al. 2014) network is required. However, my method Eq.4.10 still outper-

forms others though it does not involve semantic information. This can be

noted in Table 4.1 as well, which illustrates the mAP@all and precision@100

with 20 few-shot samples. Moreover, the second issue is whether the fea-

ture representation influences the performance of algorithms. I take each

method’s feature representation as my method Eq.4.10’s in turn and carry

out 1-by-1 comparisons in Figure 4.3. It can be noted that (1) my method

Eq.4.10 outperforms the others (see the dashed lines); (2) the feature repre-

sentation heavily influences the methods’ performance. This is not surprised

since the performance of the classifiers (the neural networks such as ZSIH

(Shen et al. 2018),ZS-SBIR (Yelamarthi et al. 2018), SEM-PCYC (Dutta

and Akata 2020) and DSN (Wang et al. 2021) methods on the two datasets:

Sketchy and TU-Berlin. I employ the feature representation in the Doodle to

search (Dey et al. 2019)) always depends on the feature extraction and rep-

resentation. Additionally, the feature representation of the Domain-Aware

SE Network (Lu et al. 2021), which is applied to my method Eq.4.10 in Fig-

ure 4.3, does not involve semantic information. The feature representations

of four existing methods contain semantic information, which are applied

to my method Eq.4.10 respectively in Figure 4.3 (see the dashed lines). It

can be noted that applying the feature representation of the Domain-Aware

SE Network to my method Eq.4.10 achieves the results comparable with the

state-of-the-art (see the dashed lines of using the DSN feature in Figure 4.3).

There is much room for improvement of the feature representation. It is

meaningful to separate the feature representation from the classifier design

in SBIR applications.

89



Figure 4.2: The illustration of the influence of the few-shot sample number
in the target domain to retrieval performance.
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Figure 4.3: 1-by-1 performance comparison of each method with my method
(Eq.4.10). (The dashed lines indicate my method’s performance.
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Table 4.1: COMPARISON OF Methods’ Performance when the number of
few-shots is of 20.

Sketchy TU-Berlin

mAP@all precision@100 mAP@all precision@100

ZSIH 0.4527 0.5728 0.4523 0.5837

ZS-SBIR 0.3587 0.4782 0.4122 0.5462

SEM-PCYC 0.6063 0.7387 0.6005 0.7283

DSN 0.8574 0.9764 0.6631 0.7927

my Method Eq.4.10 0.8863 0.9813 0.7882 0.8827

Table 4.2: The worst/best mAP@all of my method and their distances be-
tween the estimated and the ground truth means on the TU-Berlin database.
(Note that the few-shot number is 4)

mAP@all / distance of means ZSIH ZS-SBIR SEM-PCYC DSN my method

Worst class 0.2759 0.1275 0.4736 0.5837 0.1364

Best class 0.8758 0.6927 0.9647 0.9826 0.9321

Average 0.4073 0.3964 0.5572 0.6129 0.6037

Distance between Estimated and
Ground Truth (worst class)

0.9473 0.9972 0.8863 0.8037 0.9382

Distance between Estimated and
Ground Truth (best class)

0.5729 0.7746 0.3974 0.3472 0.3863

The third issue refers to increasing the number of few-shots does not

improve the retrieval performance significantly. To address this issue, I take

4 labeled sketches from the target by default to satisfy the few-shot settings

based on the TU-Berlin dataset and further check all the mAP@all of the

classes. Table4.2 shows the best and worst performance using my method

Eq.4.10. Moreover, I also plot the sample distributions of the best and worst

classes by the t-SNE (Van der Maaten and Hinton 2008) in Figure 4.4. It can

be noted that the sample distribution of the worst class is very dispersal and

the few-shot samples are likely from “outliers”. Usually few-shot samples are

less than 5% of total samples in the target. There is no sampling approach

to guarantee that few-shot samples are good representative of a statistical

population. This also answers the above-mentioned question, that is, for
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few-shot scenarios, the limited number of few-shot samples in the target are

likely from outliers and result in incorrect classification.

Figure 4.4: Illustration of the best class (top) and the worst class (bottom)
sample distribution and the estimations of the means
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Qualitative Results. Next, I analyze the retrieval performance of my pro-

posed model qualitatively in Figure 4.5. Some notable examples are as fol-

lows. Sketch query of tank retrieves some examples of motorcycle probably

because both of them have wheels in common. For having visual and se-

mantic similarity, sketching guitar retrieves some violins. Querying castle,

retrieves images having large portion of sky, because the images of its seman-

tically similar classes, such as, skyscraper, church, are mostly captured with

sky in background. In general, I observe that the wrongly retrieved candi-

dates mostly have a closer visual and semantic relevance with the queried

ones. This effect is more prominent in TU-Berlin dataset, which may be due

to the inter-class similarity of sketches between different classes. Therefore,

for TU-Berlin dataset, it is challenging to generalize the unseen classes from

the learned representation of seen classes.

Figure 4.5: Top 10 image retrieval examples given a query sketch. All the
examples correspond to a few-shot setting(20-shot). First two rows provides
a retrieval result from Sketchy Dataset and last two rows shows the result of
TU-Berlin Dataset. Note that in some retrieval cases, for instance, Dolphin
is confused with fish images which can be true even for humans. Green circle
and Red Cross stands for correct and incorrect retrievals.
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4.2.3 Domain Adaptation between databases

In practice, new sketch-photo datasets continually become available for var-

ious SBIR applications. Transferring classifiers trained on well-established

datasets to these new datasets is highly beneficial. However, these fresh

datasets are typically characterized by their limited size, offering only a few

labeled sketch-photo pairs per category, thus presenting a data scarcity issue.

This scenario is often referred to as the few-shot problem. In my approach, I

create a source/target domain configuration using the ”Sketchy dataset” as

the source and the ”TU-Berlin dataset” as the new target domain. To tackle

this challenge, I employ a K-mean classifier based on Eq.4.10 and adapt it to

the new domain using only a small number of labeled samples from the new

domain, emphasizing the domain adaptation problem. In contrast, I eval-

uate other existing methods exclusively on the ”TU-Berlin dataset,” where

both the source and target samples are drawn from the same dataset. This

is because these existing methods do not utilize the source/target learning

approach and do not require the introduction of a new domain. Typically,

data from the same dataset exhibits better consistency compared to data

from different datasets. As a result, the domain adaptation problem may be

trivial when data is from the same dataset. The workflow of the Domain

Adaptation between databases is shown in Figure 4.6

Figure 4.6: The workflow of the Domain Adaptation between databases
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Firstly, I check the influence of the number of few shots to retrieval results

in Figure 4.7. It implies again that increasing few-shot samples does not

benefit retrieval performance. Thus, I choose the few-shot number as 4 by

default. Moreover, it can be noted that although my method works across

different datasets, the performance is comparable with the other methods

working on a single dataset.

Figure 4.7: The influence of the number of few-shots to retrieval results.

Table 4.3 further shows the performance using 20 few-shot samples. It can

be noted that my method still achieves competitive results compared with

the state-of-the-art though the performance decreases slightly in the scenario

of crossing datasets. Moreover, the classifier of Eq.4.13 saves computational

time but does not cause a noticeable decrease in performance.
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Table 4.3: PERFORMANCE OF CROSSING DATABASES
Source/Target:TU-Berlin - single dataset mAP @ all precision@100

ZSIH 0.4523 0.6037

ZS-SBIR 0.4122 0.5582

SEM-PCYC 0.6005 0.7283

DSN 0.6631 0.7927

my method (Eq.4.10) 0.6553 0.7818

my Method (Eq.4.13) - crossing datasets
(Source:Sketchy vs. Target:TU-Berlin)

0.5867 0.7189

Secondly, I still find out the best and worst performance by my method

of Eq.4.13 according to the distances between the mean’s estimations and

the ground truth means within all classes as shown in Table 4.4. I further

visualize the sample distributions of two best classes and worst class by the

t-SNE in Figure 4.8. Compared with Figure 4.4, it shows again that the

limited number of few-shot samples in the target are likely from the out-

liers and results in incorrect classification. The selection of few-shot samples

from the target indeed affects retrieval results. To further improve retrieval

performance, it is most likely to involve text-base side information such as

semantic space (Dutta and Akata 2020) (Wang et al. 2021).

Table 4.4: PERFORMANCE OF my METHOD (Eq.7) ACCORDING TO
THE MEAN ESTIMATIONS. (THE FEW-SHOT NUMBER IS 4)

distance(sketch) accuracy@N (sketch) distance(image) accuracy ( s (image)

Best class 1 1.23391 96.25% 0.831107 79.34%

Best class 2 1.0995 96.29% 0.5355 95.57%

Worst class 1.18755 5% 0660308 34.52%
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Figure 4.8: Illustration of the sample (images) distribution of the best class
2 (top) and worst class (bottom)

4.3 Summary

This chapter presents my SBIR algorithms for single source domain adap-

tation scenario. The main merits include, in few-shot scenarios deal with

98



the cases of image-to-sketch domain adaptation and dataset-to-dataset do-

main adaptation. This is indeed to transfer learning models from one source

domain to a target. Compared with the state-of-the-art methods, my algo-

rithms do not use text based semantic information except sketches, but ex-

periments on the Sketchy and TU-Berlin benchmark databases demonstrate

that my algorithms achieve competitive results. This does not only show

the effectiveness of my algorithms and also illustrate a promising perspec-

tive, that is, combination of deep networks with traditional machine learning

techniques can bring about compelling performance.
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Chapter 5

Multi-Source Domain
Adaptation for Robust SBIR
Systems

Building upon the single-source domain adaptation approach presented in

Chapter 4, this chapter extends my generalization framework to the more

complex yet practically valuable scenario of multi-source domain adaptation

(MSDA). This extension directly implements the generalization principles

established in Chapter 3 while addressing the limitations of the single-source

approach in Chapter 4, creating a comprehensive solution for enhancing SBIR

performance across diverse domains.

5.1 Advancing Generalization through Multi-

Source Integration

Sketch-based Image Retrieval (SBIR) faces significant challenges in real-

world applications due to the inherent differences in feature distributions

and patterns between training (source domains) and testing (target domains)

datasets. This discrepancy, known as the domain gap, is particularly pro-

nounced in SBIR where sketches and photos can vary greatly not only in

style but also in representational detail such as color and texture. While

the single-source approach in Chapter 4 demonstrated promising results, it
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remains limited when the target domain exhibits characteristics that differ

substantially from the single source domain.

my empirical generalization framework from Chapter 3 identified that

both model accuracy and data diversity are critical factors in generalization

performance. The multi-source domain adaptation (MSDA) methodology

presented in this chapter directly addresses the data diversity component by

leveraging multiple source domains to create a more robust representation

space, thereby improving the model’s ability to generalize across different

visual representations. This approach represents a natural progression in my

exploration of generalization enhancement for SBIR systems.

Traditional methods in SBIR often suffer from a lack of robustness when

confronted with new classes or variations within the data. These methods

typically employ discriminative modeling to align sketches with photographs

by reducing intra-class variance and maximizing inter-class differences. How-

ever, such approaches can falter under the practical constraints of limited

labeled data in the target domain. By contrast, my proposed MSDA frame-

work utilizes multiple diverse source domains to enrich the model’s ability to

generalize across different visual representations, directly implementing the

data diversity principles established in my generalization framework.

my MSDA approach not only addresses the challenge of integrating di-

verse data sources but also ensures that the retrieval system can effectively

utilize unlabeled or sparsely labeled data from target domains. I extend the

canonical correlation analysis approach from Chapter 4 and integrate it with

online dictionary learning to minimize computational complexity while max-

imizing domain adaptation effectiveness. The ultimate goal is to develop a

retrieval system that maintains high performance across various data dis-

tributions by preserving domain-invariant features and effectively mitigating

the domain gap, thus achieving superior generalization as measured by my

empirical metric system.
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Figure 5.1: The structure of the multi-source domain adaptation approach for
SBIR. The method extends the single-source framework from Chapter 4 by
integrating multiple source domains through a shared canonical correlation
space, enabling more robust generalization to target domains with limited
labeled samples.

5.2 Methodological Advancement and Con-

tributions

This chapter methodologically advances my generalization framework through

several key contributions:

Introduction of a Robust MSDA Framework for SBIR: I propose
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a novel multi-source domain adaptation approach that significantly enhances

the generalization capability of SBIR systems by effectively leveraging mul-

tiple source domains. This directly extends the single-source approach from

Chapter 4 to address more complex real-world scenarios where diverse train-

ing data is available.

Computational Efficiency: Building upon the low-rank matrix decom-

position techniques introduced in Chapter 4, I incorporate online dictionary

learning to handle the increased complexity of multi-source scenarios. These

techniques not only improve adaptation accuracy but also maintain computa-

tional efficiency, making my framework suitable for large-scale applications.

This addresses the practical challenges identified in my generalization frame-

work regarding model complexity and performance trade-offs.

Practical Applicability: By addressing both theoretical and practical

aspects of domain adaptation, my approach bridges the gap between aca-

demic research and real-world SBIR applications, providing a robust frame-

work that can be readily implemented in various settings. This aligns with

my overall goal of enhancing generalization in practical SBIR systems, as

established in Chapter 3.

The multi-source approach presented in this chapter represents a signif-

icant advancement over the single-source method introduced in Chapter 4.

While both approaches utilize canonical correlation analysis and low-rank

matrix decomposition, the MSDA framework introduces additional tech-

niques to handle the increased complexity of integrating multiple source do-

mains:

1. The single-source approach establishes domain transfer between one

source and one target domain, whereas the MSDA framework must effec-

tively combine information from multiple source domains while filtering out

domain-specific noise.

2. The multi-source approach requires more sophisticated optimization

techniques to balance the contributions of different source domains, necessi-

tating the integration of online dictionary learning with my canonical corre-

lation framework.
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3. The computational complexity increases substantially with multiple

source domains, requiring additional efficiency measures beyond those em-

ployed in the single-source approach.

my proposed multi-source DA-SBIR algorithms adopt low-rank matrix

decomposition technology as a linear approximation method to keep com-

putational complexity manageable. While it is feasible to implement these

algorithms using nonlinear approximation approaches such as deep networks

to potentially improve performance, my focus on linear methods aligns with

the efficiency requirements identified in my generalization framework from

Chapter 3.

The following sections detail my multi-source domain adaptation method-

ology, experimental validation, and analysis of results, demonstrating how

this approach implements and extends my generalization framework to en-

hance SBIR performance across diverse domains.

5.3 Methodology

The diagrams of the suggested methods are shown in Figure 5.2 When dealing

with a fresh field Y, my initial step involves identifying a target area T that

shares a similar or identical structure with Y. Subsequently, I employ the

source/target learning method with canonical correlation analysis (CCA) to

build a model (eq4.10).
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Figure 5.2: The structure of the proposed multi-source domain adaptation
method

Consider the single source to a target scenario. From the chapter 4 I can

conclude that to estimate the mean of the set T i in the target domain as,

T̄ iT = S̄iTPsQ
iΩiP+

T , i = 1..k (5.1)

In a situation where multiple source datasets and one target dataset were

used, the goal was to determine the average values of the classes in the target

dataset, based on information from the multiple source datasets. Initially,

it made sense to use a specific equation Eq.5.1 separately on each of the

source datasets and also on the target dataset. Then, the correlations can

be expressed as,

(
T iP i,j

T

)
Ωi,j

(
Qi,jTP i,j

S S̄i,j
)
, i = 1..k, j = 1..q (5.2)

where T i denotes the i-th class dataset in the target domain. Let Ai,j =

P i,j
T Ωi,jQi,jTP i,jT

S ∈ Rf×f . The correlations can be rewritten as,

T iAi,jSi,j (5.3)
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Similar to Eq.4.9, I optimize a new variable α through,

min
α

∥∥∥∥∥∥∥∥
−→
1 − T i

(
Ai,1, . . . , Ai,q

)
αi


S̄i,1

. . .

S̄i,q


∥∥∥∥∥∥∥∥
2

F

, i = 1..k, αi ∈ Rqf×qf (5.4)

to estimate the mean of the i-th class in the target domain as,

T̄ i =
(
Ai,1, . . . , Ai,q

)
αi


S̄i,1

. . .

S̄i,q

 , i = 1..k (5.5)

The advantage is that the Eq.5.5 relies on all the source data in case of

biased estimations. However, in a more realistic setting, Eq.5.4 is not feasible

since the total size of source datasets may be too big to fit all the data into

memory. Obviously, increasing the source number q results in a huge square

matrix alpha in Eq.5.4 and memory overflowing quickly. Alternatively, I

adopt the online dictionary learning (ODL) technology to deal with a large

number of source datasets and lower the computational complexity. I firstly

apply the ODL to,

min
D,α

q∑
j=1

∥∥Ai,j −Diαi

∥∥2
+ ρ ∥αi∥1 , i = 1..k (5.6)

where Di ∈ Rf×f , αi ∈ Rf×f ,to generate the dictionary D for each class.

Theoretically, ODL can deal with any number of source domain datasets, i.e.

q may be very big. However, it adopts traditional iterative batch procedures,

which is prone to biased estimations. To tackle this deficiency, I still have

to generate some linear combinations of the current and previous Ai,q as

additional source data and update D through Eq.5.6 for unbiased estimations.

This can effectively reduce biases. Then, I apply sparse coding technology

to,

min
β

∥∥∥−→1 − T iDi

(
S̄i,1, . . . , S̄i,q

)
βi

∥∥∥ , i = 1..k, βi ∈ Rq (5.7)
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to determine the sparse weights beta to combine the class means from

different source domain datasets together. The mean of the i-th class in the

target domain is estimated by,

T̄ i = Di

(
S̄i,1, . . . , S̄i,q

)
βi, i = 1..k (5.8)

Usually, when q is very big, the sparsity makes sense. So far, I set up

the multisource classifier of Eq.5.8 based on q source domain data and one

target domain data. Furthermore, like Eq.4.12, I can transfer the classifier

of Eq.5.8 to the new domain Y with the same k classes as the T. Using the

same skill, i.e., (
S̄i,1, . . . , S̄i,q

)
=

(
S̄i,1, . . . , S̄i,q

)
βi, βi ∈ Rq (5.9)

I introduce a new variable β for each class Y l and solve it by minimizing,

min
β

∥∥∥−→1 − Y iDi

(
S̄i,1, . . . , S̄i,q

)
βi

∥∥∥ , i = 1..k, βi ∈ Rq (5.10)

which yields a new classifier for the domain Y,

Ȳ i = Di

(
S̄i,1, . . . , S̄i,q

)
βi, i =| 1..k (5.11)

5.4 Experiment

5.4.1 Implementation details

Here, I provide the experimental details to evaluate the efficacy of the pro-

posed approach for sketch-based image retrieval application. I start with the

datasets used and evaluation details.

Datasets Used: In this work, I use three benchmark DA datasets.

DomainNet (Peng et al. 2019) is a recently released large scale DA dataset

with 6 different domains and a total of 345 classes with over 0.6 million

images. Due to the prevalence of noise, experiments are conducted on the

partial dataset consisting of 6 domains and 121 classes. This dataset I choose

as the auxiliary dataset for multi-domain adaptation to help improve the

retrieval result.
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Figure 5.3: The Domainnet Dataset (Peng et al. 2019)

Feature Extraction: my feature extraction part is flexible and for the

comparison I choose CUMIX method (Mancini et al. 2020) for multi-source

domain adaptation on DomainNet dataset.

Evaluation protocol:I randomly pick training and test data from the above-

mentioned datasets, containing same classes in both datasets, and employ the

metrics of the mean Average Precision (mAP@all), precision considering top

100 (precision@100) and the classification accuracy as below,

Accuracy@all =
Nrelevant

N
(%) (5.12)

5.4.2 Multisource Domain Adaptation experiment on
DomainNet Dataset

I apply my method of Eq.5.8 to the DomainNet dataset for multisource do-

main adaptation applications. The DomainNet dataset has 6 different do-

mains, including Clipart, Infograph, Painting, Quickdraw, Real, Sketch. In

my experiments, I select the Sketch domain from the DomainNet dataset as

my target domain, while the remaining five domains serve as the multi-source

domains. Firstly, I examine the impact of the few-shot number on retrieval

performance as depicted in Figure5.4. I notice a consistent peak performance

with 3-4 few-shots, and encounter the same phenomenon where an increase in
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few-shot samples does not markedly enhance retrieval performance. There-

fore, I consistently opt for a default few-shot number of 4 in my experiments.

Secondly, I illustrate the retrieval results of my method (Eq.5.8) using dif-

ferent numbers of multisource domains from the DomainNet as shown in

Table 5.1. I observe that as the number of source domains increases, the

enhancement in retrieval performance tends to plateau at around 4 source

domains. This suggests that the accumulation of noise from various domains

could significantly hinder retrieval performance.

Figure 5.4: Influence of the few-shot number to retrieval results.

Table 5.1: Comparison of mAP@all when the number of few-shots is of 20.

Number of domains 1 2 3 4 5

mAP@all 0.2611 0.5003 0.5031 0.5772 0.4792

Accuracy@all 27.77% 54.70% 54.21% 59.49% 53.14%
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I further compare my algorithm of Eq.5.8 with two existing multisource

methods: DCTN (Xu et al. 2018) and M3SDA (Peng et al. 2019) on the Do-

mainNet dataset and summarize their classification accuracies in Table 4.2.

It is clear that multisource domains can evidently improve the classification

accuracy compared with single source scenarios. The experiment of DCTN

(Xu et al. 2018) and M3SDA (Peng et al. 2019) are conducted under unsu-

pervised condition and cannot run under few shot settings. Thus, I compare

my few-shot method with their original settings. my method of Eq.5.8 out-

performs the other existing methods and avoids the negative transfer in the

quickdraw domain.

Table 5.2: Comparison of classification accuracies before and after deleting
the classes with the worst variances
Target domain Clipart infograph painting quickdraw real sketch Average

DCTN 48.6% 23.5% 48.8% 7.2% 53.5% 47.3% 38.2%

M3SDA 57.2% 24.2% 51.6% 5.2% 61.6% 49.6% 41.6%4

my method 54.4% 28.0% 41.4% 47.5% 53.9% 53.0% 46.4%4

Thirdly, a straightforward idea of further improving classification accu-

racy is to delete some seriously dispersal classes from the available multi-

source domains. However, the improvement is limited. These worst classes

can be found out in terms of the variance of every class. For each class, I only

delete the worst one within five source domains, so that each class has four

sets of class data. For every class, Table 5.3 shows the classification accura-

cies and distances between the estimated and ground truth means before and

after deleting the worst classes. The worst classification result before deleting

is of the class 0, whose variances range 0.7546 to 0.9475. Deleting the class

of 0.9475, the classification accuracy increases from 0% to 50.68%. Whereas

the best classification result before deleting is of the class 38, whose variance

ranges from 0.6680 to 1.100. Deleting the class of 1.100, the classification

accuracy decreases from 100% to 86.92%. Although the overall performance

is somewhat improved through deleting worst classes (see average), it can

still be noted that the classification accuracies of some classes are decreas-

ing. Moreover, it can also be noted that the classification accuracy of some
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classes remains very low throughout, e.g. the classes 1,15,18 and 31. This is

because the sample distribution of these classes is too dispersal and the few-

shot samples may be the outlies from the target. Thus, selecting few-shot

samples from the target becomes very sensitive.
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Table 5.3: Comparison of classification accuracies.(Note that the few-shot
number is 4)
class index accuracy before deleting distance before deleting accuracy after deleting distance after deleting

0 0.00% 1.3751 50.68% 1.1724

1 18.84% 1.2131 16.15% 1.1131

2 98.57% 0.7865 97.86% 0.9538

3 85.00% 1.0227 88.07% 0.9802

4 70.00% 1.1178 79.50% 1.0008

5 74.00% 1.1507 87.00% 0.9984

6 73.36% 1.1598 69.63% 1.1598

7 92.09% 0.9469 69.49% 1.1261

8 51.16% 1.1090 50.87% 1.1090

9 68.37% 1.1884 89.98% 1.0662

11 45.33% 1.0920 42.67% 1.0839

12 1.85% 1.5678 85.93% 0.9424

13 82.48% 1.1473 83.94% 1.1473

14 83.10% 1.0650 47.18% 1.2314

15 4.49% 1.3621 4.49% 1.3621

16 58.24% 1.1194 59.77% 1.1194

17 54.55% 1.2466 1.36% 1.3393

18 2.15% 1.5406 0.86% 1.5406

19 93.94% 1.1197 73.48% 1.1197

20 91.21% 1.0916 92.86% 1.0916

21 87.10% 1.1619 86.02% 1.1619

22 34.30% 1.1724 33.51% 1.1724

23 31.01% 1.1247 41.86% 1.1247

24 68.00% 0.9985 32.80% 1.0771

25 83.50% 1.1236 89.50% 1.0250

26 70.48% 1.1451 69.52% 1.1171

27 42.06% 1.2289 36.51% 1.2289

28 85.33% 0.9824 87.26% 0.9777

29 2.11% 1.3391 67.61% 1.1994

30 56.17% 1.1317 52.77% 1.1317

31 9.52% 1.2959 8.99% 1.2959

32 65.49% 1.1861 88.73% 1.0284

33 18.85% 1.1694 94.76% 0.8927

34 49.17% 1.1127 39.17% 1.1127

35 88.98% 1.1088 78.74% 1.1672

36 36.57% 1.2661 61.14% 1.1707

37 47.57% 1.1716 50.49% 1.1716

38 100% 0.8367 86.92% 1.1444

39 90.20% 1.1370 99.35% 0.8762

40 75.18% 1.0452 73.76% 1.0452

41 56.82% 1.2302 82.39% 1.1520

average 57.83% 1.1556 62.08% 1.1185
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Qualitative Results. Next, I analyze the retrieval performance of my pro-

posed model qualitatively in Figure 5.5. Some notable examples are as fol-

lows. Sketch query of cannon retrieves some examples of truck probably be-

cause both of them have wheels in common. Sketching guitar retrieves wine

bottle because of the shape. Querying zebra, retrieves images like horse. In

general, I observe that the wrongly retrieved candidates mostly have a closer

visual with the queried ones. This effect is more prominent in DomainNet

dataset, which may be due to the inter-class similarity of sketches between

different classes

Figure 5.5: Top 7 image retrieval examples given a query sketch. All the
examples correspond to a few-shot setting(20-shot). First two rows provides
a retrieval result from Sketchy Dataset and last two rows shows the result of
TU-Berlin Dataset.
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5.5 Summary

I extend my single source domain adaptation algorithm to the multi-source

scenarios. I estimate the means of the classes in the target domain in terms

of the multi-source domain datasets. I pick a dataset with six domains and

implement my multi-source domain adaptation method by choosing five do-

mains as the source and one domain as target. It can be noted that increasing

source domains, the improvement of retrieval performance converges around

4 source domains. This implies that the noise from different domains may be

accumulated and seriously deteriorate the retrieval performance. The exper-

iment also shows that my model can make use of different kinds of domains

if they share the same class and I can simply improve my retrieval result by

import new dataset.
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Chapter 6

Conclusion and Future Work

This chapter concludes the thesis by synthesizing my contributions to enhanc-

ing generalization in Sketch-Based Image Retrieval through domain adapta-

tion techniques. I reflect on the key findings, discuss limitations of the current

approaches, and outline promising directions for future research.

6.1 Conclusion

This thesis has addressed the fundamental challenge of enhancing general-

ization in Sketch-Based Image Retrieval (SBIR) systems through the devel-

opment of novel domain adaptation techniques. At its core, my work has

established a comprehensive framework for quantitatively assessing general-

ization capabilities of deep networks, particularly in the context of SBIR,

and has implemented this framework through innovative single-source and

multi-source domain adaptation approaches.

The research journey began with the development of an empirical gen-

eralization metric that assesses both classification accuracy and data diver-

sity handling capabilities—two critical factors for SBIR performance. Unlike

traditional theoretical approaches to generalization, my framework provides

a practical, quantifiable assessment method that offers reliable insights into

model selection for SBIR applications. By identifying optimal trade-off points

between model complexity, robustness, and generalization capacity, this met-

ric system enables more informed selection of foundation models for SBIR.
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Building upon this generalization framework, I introduced a single-source

domain adaptation approach for SBIR that effectively bridges the domain gap

between sketches and images. This method employs canonical correlation

analysis to identify a shared subspace where source and target domains are

maximally correlated, facilitating efficient knowledge transfer with minimal

labeled examples in the target domain. The integration of low-rank matrix

decomposition and sparse optimization techniques ensures computational ef-

ficiency while maintaining high adaptation fidelity—crucial considerations

for practical SBIR applications.

I further extended my approach to multi-source domain adaptation sce-

narios, addressing the more complex yet practically valuable case where mul-

tiple diverse source domains are available. This extension employs online dic-

tionary learning alongside canonical correlation analysis to effectively com-

bine information from multiple sources while filtering out domain-specific

noise. my experiments demonstrated that this approach significantly en-

hances SBIR performance across diverse domains, though with an observed

threshold beyond which the integration of additional sources yields dimin-

ishing returns.

Throughout this work, I maintained a balance between theoretical ad-

vancement and practical applicability, ensuring that my methods not only

contribute to the understanding of generalization but also provide imple-

mentable solutions for real-world SBIR systems. The domain adaptation al-

gorithms introduced in this thesis demonstrate a crucial equilibrium between

performance enhancement and computational efficiency, offering scalable so-

lutions that can be readily deployed in practical applications.

In sum, this thesis has established a comprehensive framework for enhanc-

ing generalization in SBIR through domain adaptation, providing both the

theoretical foundation for understanding generalization in this context and

practical methodologies for implementing effective cross-domain retrieval sys-

tems. The integration of traditional machine learning techniques with mod-

ern deep learning approaches has yielded robust solutions that advance the

state of the art in SBIR, particularly for scenarios with limited labeled data

in target domains.
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6.2 Limitations

Despite the advancements presented in this thesis, several limitations warrant

acknowledgment and provide motivation for future research:

6.2.1 Methodological Limitations

Linear Approximation Constraints: my domain adaptation approaches

primarily rely on linear approximations through canonical correlation anal-

ysis and low-rank matrix decomposition. While these methods offer com-

putational efficiency, they may not capture the full complexity of non-linear

relationships between sketches and images, potentially limiting performance

in highly complex scenarios.

Sensitivity to Feature Representation: The effectiveness of my meth-

ods depends significantly on the quality of the initial feature representations.

Poor feature extraction from either sketches or images can propagate through

the domain adaptation process, limiting overall retrieval performance regard-

less of adaptation quality.

Optimization Challenges: The non-convex nature of my optimization

objectives, particularly in the multi-source scenario, introduces sensitivity to

initialization and may lead to convergence to local optima rather than global

solutions.

6.2.2 Data and Evaluation Limitations

Dataset Biases: The benchmark datasets used for evaluation, while com-

prehensive, may not fully represent the diversity of real-world sketching styles

and image types. This potential mismatch between evaluation data and prac-

tical application scenarios could affect the generalizability of my findings.

Categorical Retrieval Focus: my evaluation primarily focuses on cat-

egorical retrieval (retrieving images from the same category as the query

sketch) rather than instance-level retrieval. This limitation restricts the as-

sessment of fine-grained matching capabilities that might be required in spe-

cific applications.
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Static Evaluation: my evaluation methodology utilizes pre-drawn sketches

rather than real-time sketches created in interactive settings. This approach

may not capture the temporal aspects and variability inherent in live sketch-

ing scenarios.

6.2.3 Application Limitations

Absence of Semantic Information: Unlike some contemporary approaches,

my methods do not incorporate textual or semantic information beyond vi-

sual features. This absence may limit performance in scenarios where visual

ambiguity could be resolved through semantic context.

Computational Requirements: Despite my efforts to ensure efficiency,

the matrix decomposition and correlation analysis procedures still require sig-

nificant computational resources for large-scale datasets, potentially limiting

applicability in resource-constrained environments.

Domain Coverage: my approach has been validated on a limited set of

visual domains. The generalizability to other modalities, such as 3D models,

videos, or other multimedia formats, remains unexplored and represents a

potential limitation in broader multimedia retrieval contexts.

6.3 Future Work

Building upon the foundations established in this thesis and addressing its

limitations, several promising directions for future research emerge:

Deepening Generalization Framework Analysis: The generaliza-

tion framework for SBIR could be further refined and explored through dif-

ferent network architectures or learning paradigms. Future research could

investigate how unsupervised or self-supervised learning approaches affect

generalization in SBIR contexts, potentially reducing reliance on labeled data

while maintaining retrieval performance.

Investigating Extreme Generalization Scenarios: A valuable di-

rection would be to rigorously test the limits of my DA-SBIR algorithms

and generalization metrics under extreme conditions. This includes scenar-

ios with extremely sparse data (e.g., single-shot learning), highly abstract
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or stylized sketches, or application to massive-scale datasets with millions of

images and thousands of categories.

Incorporating Semantic Information: While my current methods

focus exclusively on visual features, integrating semantic information could

significantly enhance retrieval performance. Future work could explore how

to effectively combine my domain adaptation approaches with text embed-

dings, attribute information, or knowledge graphs to create multimodal SBIR

systems with improved generalization capabilities.

Non-linear Domain Adaptation Approaches: Extending my current

linear approximation methods to non-linear domain adaptation techniques

could capture more complex relationships between domains. This might

involve integrating deep canonical correlation analysis or developing hybrid

approaches that combine the computational efficiency of my current methods

with the representational power of deep neural networks.

Dynamic and Interactive SBIR: Future research could explore the

temporal dimension of sketching by incorporating real-time, stroke-by-stroke

analysis into the retrieval process. This would address the static evaluation

limitation and enable more interactive SBIR systems that provide feedback

and refine results as sketches are being drawn.

Cross-Modal Retrieval Extension: The principles and techniques

developed in this thesis could be extended to other cross-modal retrieval

scenarios beyond sketch-to-image mapping. Potential applications include

sketch-to-3D model retrieval, sketch-to-video retrieval, or integration with

other input modalities like voice descriptions or text queries.

Adaptive Domain Weighting: For multi-source domain adaptation,

developing methods that dynamically weight the contribution of each source

domain based on its relevance to the target could further improve per-

formance. This approach would address the diminishing returns observed

when integrating multiple sources and could potentially enable more effec-

tive knowledge transfer from diverse domain collections.

User-Adaptive SBIR: A particularly promising direction is the devel-

opment of SBIR systems that adapt to individual users’ sketching styles

over time. Such personalized systems would combine my domain adaptation
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techniques with online learning approaches to continuously refine retrieval

performance based on user feedback and sketching patterns.

By pursuing these research directions, future work can address the cur-

rent limitations while expanding the capabilities and applications of SBIR

systems, ultimately bringing us closer to the goal of intuitive, robust, and

broadly applicable sketch-based visual search technologies.
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