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1   |   INTRODUCTION

As research on female exercise performance increases, 
there remains a gap in data availability for women in 

midlife (McNulty et al., 2024). There is a particular dearth 
of research utilizing maximal exercise assessment in-
stead of predictive assessments in women in midlife 
(Aragão et al., 2011; Bondarev et al., 2018). Increasing the 
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Abstract
Menopause may contribute to declining aerobic capacity alongside aging; whether 
this is related to declines in physical activity or alterations in physiology is un-
clear. This study examined the effect of menopause on maximal and submaxi-
mal cardiopulmonary variables in an incremental aerobic capacity assessment in 
active women. Sixty-nine women, aged between 18 and 60 years, categorized as 
premenopausal (PRE), late premenopausal (LPRE), perimenopausal (PERI), and 
postmenopausal (POST) completed a cycle ergometer ramp aerobic capacity test, 
body composition analysis, and blood hormone testing. Naturally menstruating 
women were tested in the early follicular phase of the menstrual cycle. One-way 
ANOVAs were utilized to analyze the effect of menopause phase on outcome 
variables. Participant groups had similar V̇O2peak, physical activity levels, and 
endogenous sex hormone profiles (p > 0.05), but POST had lower muscle mass 
than PRE, LPRE, and PERI (p < 0.05). There were no differences in maximal or 
submaximal cardiopulmonary variables (p > 0.05). Age and V̇O2peak were not cor-
related (r = −0.23, p = 0.06). Contrary to prior reports, maintenance of aerobic ca-
pacity is possible throughout midlife and menopause in women with high activity 
levels. Compared to premenopausal and late premenopausal women, perimeno-
pausal and postmenopausal women demonstrated minimal changes in maximal 
and submaximal cardiopulmonary variables.
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availability of high-quality data in women, inclusive of 
aerobic capacity assessment, to study performance deter-
minants in women in perimenopause and postmenopause 
is essential to address inequalities in sport and exercise 
science research (McNulty et al., 2024) and to encourage 
maintenance of physical activity through menopause. The 
maintenance of aerobic capacity throughout midlife has 
been associated with lower risk of premature mortality, 
cardiovascular disease events (Gabriel et  al.,  2023), hy-
pertension, and diabetes (Lee et al., 2021). Higher aerobic 
capacity in midlife is also associated with better emo-
tional, occupational, and overall quality of life (Flesaker 
et  al.,  2021) and higher physical activity levels slow de-
clines in muscle function (Bondarev et al., 2018) and im-
prove cardiometabolic and physical health in women in 
midlife (Hulteen et al., 2023). It is difficult to delineate the 
effect of menopause from the effect of age, especially as 
research in postmenopause centers on samples of women 
over 60 years old, which likely results in age effects present-
ing more prominently than menopause effects (Aragão 
et al., 2015; Lee et al., 2021). Previously, it has been high-
lighted that trained postmenopausal women have a lower 
aerobic capacity than trained premenopausal women as a 
result of age and sex hormone changes; however, the age 
of the sample was not reported (Rael et al., 2021). More 
research utilizing a postmenopausal sample under the 
age of 60 would permit comparisons utilizing a sample of 
women with chronically low sex hormones, while mini-
mizing the confounding effect of age.

Declines in aerobic capacity are related to increases 
in body fat mass and loss of skeletal muscle, which can 
occur with age (Aragão et al.,  2011; Zeiher et al.,  2019). 
This highlights menopause as a time of vulnerability due 
to associated alterations in body composition (Abildgaard 
et al., 2021; Lovejoy et al., 2008). Indeed, it has been noted 
that time since menopause is positively associated with 
declining aerobic capacity (Aragão et  al.,  2011; Mercuro 
et al., 2006), suggesting that increasing time spent in de-
ficiency of estrogen and progesterone is likely influential 
upon the magnitude of decline in aerobic capacity, inde-
pendent of age. While acute hormone changes such as 
those throughout the menstrual cycle have not been found 
to alter maximal oxygen uptake, respiratory exchange 
ratio, or respiratory frequency (Rael et al., 2021), there is 
evidence to suggest that aerobic capacity and cardiopul-
monary response to exercise are altered in postmenopause 
(Mercuro et al., 2006; Rael et al., 2021) A comparison of 
a sample of women throughout the adult lifecycle, inclu-
sive of perimenopause, is yet to be undertaken and debate 
surrounding the impact of menopause on aerobic capacity 
continues (Archiza et al., 2021).

There is evidence to suggest a decline in respiratory 
function in menopause (Triebner et  al.,  2017) which is 

likely to have a direct impact on aerobic capacity (Hassel 
et al., 2015). The decline in respiratory function in midlife 
appears to be attenuated by losses of fat mass and increases 
in muscle mass (Park et  al.,  2021) but, as noted, meno-
pause is often associated with the inverse; although these 
changes can be mitigated by physical activity (Bondarev 
et  al.,  2018; Juppi et  al.,  2020). Similarly, while declines 
in aerobic capacity are inevitable, the rate of age-related 
decline in aerobic capacity can be slowed by sport and lei-
sure time physical activity (Bahls et al., 2021).

Impairments in aerobic capacity across the menopause 
are thought to be related to reductions in estrogen that 
result in impaired mitochondrial function (Abildgaard 
et al., 2013; Pellegrino et al., 2022), respiration (Monferrer-
Marín et al., 2024), and efficiency (Zhao et al., 2021). This 
mitochondrial dysfunction is coupled with reductions in 
stroke volume (McCole et al., 1999) which cannot be com-
pensated for by heart rate due to age-related reductions in 
maximal heart rate (Fleg et al., 1995). A reduced oxygen 
supply contributes to limitations in the aerobic capacity of 
skeletal muscle (Hawkins & Wiswell, 2003). Additionally, 
both menopause and aging lead to a progressive decline 
in skeletal muscle mass, which reduces absolute O2 con-
sumption (Hawkins & Wiswell, 2003). Taken together, the 
reduced skeletal muscle mass coupled with reduced sup-
ply of oxygen due to haemodynamic limitations results in 
an inability to sustain high-intensity exercise and, there-
fore, reduced aerobic capacity (Bassett Jr & Howley, 2000; 
Cicoira et al., 2001; Hawkins et al., 2001).

The primary focus of this work was to compare max-
imal and submaximal determinants of aerobic capacity 
between populations of women at different stages of the 
menopause to evaluate whether menopause acts as an 
influential variable requiring consideration in aerobic ca-
pacity assessment. The secondary aim was to increase the 
accessibility of exercise response data in perimenopause 
and postmenopause. This study is the first to employ an 
active sample of women throughout the adult lifecycle in 
low endogenous sex hormone states to compare the ef-
fects of transiently lower estrogen in the menstrual cycle 
to chronically low estrogen of postmenopause, inclusive 
of an irregularly menstruating sample of perimenopausal 
women. This is important to establish because these differ-
ing hormonal profiles present a different overall exposure 
to estrogen and progesterone across a menstrual cycle.

2   |   METHODS

A convenience sample of 80 female participants (pre-
menopause, late premenopause, perimenopausal, and 
postmenopausal) volunteered to take part in this study 
by poster advertising. Participants were required to be 
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healthy as assessed by the criteria from Greig et al. (1994), 
exclusion criteria included myocardial infarction, car-
diac illness, thrombophlebitis, or pulmonary embolus in 
the last 10 years, any history of cerebrovascular disease, 
major systemic disease, osteoarthritis, or use of daily 
medication aside from hormonal therapies. Participants 
were excluded if they presented hormone levels outside 
expected ranges for the early follicular phase. Accepted 
hormone ranges for premenopausal, late premenopau-
sal, and perimenopausal participants were below 100 pg/
mL for oestradiol and below 1.4 ng/mL for progesterone 
(ABCAM, Cambridge, UK) in line with the early follicular 
phase or “low hormone phase”.

Eleven participants were excluded from analysis due to 
hormone levels outside of expected ranges; of these, nine 
were naturally menstruating and two using a hormonal 
intrauterine system (IUD). Postmenopausal women were 
not excluded based on hormone levels as there was no 

possibility of incorrect phase. Participants were not ex-
cluded for low oestradiol or progesterone measurements. 
This resulted in 69 eligible participants (Figure 1). A post 
hoc power calculation utilizing V̇O2 (mL·kg·min−1) at first 
ventilatory threshold provided an effect size (f = 0.93). 
With an alpha level of 0.05, the study was determined to 
be sufficiently powered to 0.99.

Participants were defined as “active” by self-report, 
and where possible, this was subsequently confirmed by 
physical activity diary with a minimum of 480 leisure time 
metabolic equivalents (MET). Leisure time MET minutes 
per week were calculated from diaries; moderate activ-
ity level was considered to be 480–720 MET minutes per 
week, while over 720 MET minutes per week was high 
(Huxley, 2015).

Menopause status of each individual was defined as 
(Ambikairajah et al., 2022; Harlow et al., 2012; National 
Institute for Health and Care Excellence (NICE), 2015):

F I G U R E  1   Participant flow throughout the study.
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1.	 Premenopausal (PRE): between the ages of 18 and 
34 years

2.	 Late premenopausal (LPRE): aged between 35 and 
45 years with menstrual regularity or not symptomatic 
if using hormonal contraceptive

3.	 Perimenopause (PERI): aged between 40 and 60 years 
with persistent >7 days difference in length of consecu-
tive cycles or interval of amenorrhea of >60 days and/
or vasomotor, musculoskeletal, or mood symptoms 
(NICE, 2019) if using hormonal contraceptive

4.	 Postmenopause (POST): aged between 45 and 60 years 
after 12 consecutive months of amenorrhea

Written informed consent was taken before ex-
perimentation. Ethical approval and study standards 
conformed to the seventh revision of the declara-
tion of Helsinki and were approved by Bournemouth 
University (19/06/2023). Participants could withdraw 
at any time. All participants were allocated a code to 
ensure anonymity; all data were collected under this 
code. Naturally menstruating women completed the ex-
perimental session within 7 days of starting a menstrual 
bleed to more closely align with the low oestradiol state 
in postmenopause. Those who were postmenopausal, 
using hormonal contraceptives, or had not had a bleed 
for over 60 days were tested at their earliest convenience. 
Participants were requested to refrain from consuming 
caffeine and food at least 2 h before each experimental 
session, and refrain from exercising in the 48 h before 
maximal exercise testing.

All included participants on PRE, LPRE, and PERI 
evidenced endogenous hormone levels indicative of 
the early follicular phase; hormonal therapy users were 
all included under their relevant menstrual categories. 
More research is required in hormonal contraceptive 
users to evaluate their effects on exercise performance 
(Flood et al., 2024); however, this was not the aim of the 
present study, which sought to evaluate a representative 
sample of the population. Detailed participant charac-
teristics based on exogenous hormone use are included 
in Tables S1 and S2.

2.1  |  Initial measurements

Prior to attending the laboratory, participants com-
pleted a health and demographic questionnaire to 
ensure their eligibility. On attendance at the labora-
tory initial assessment, a blood pressure measurement 
(OMRON M2+, Omron Corporation, Kyoto, Japan) was 
conducted to ensure participants presented as normo-
tensive. Participants then had measurements of anthro-
pometrics taken by stadiometer (217, SECA, Hamburg, 

Germany) and body mass scales (803, SECA, Hamburg, 
Germany) followed by body composition measure-
ment using bioelectrical impedance scales (InBody770, 
InBody Ltd., Seoul, South Korea).

2.2  |  Plasma measurement

All participants were tested for oestradiol and proges-
terone levels by venepuncture blood sample taken by a 
trained phlebotomist before performing the maximal ex-
ercise test. Blood samples were immediately centrifuged 
at 1500 rpm for 10 min at 4°C, after which 1.5 mL plasma 
samples were removed and stored in Eppendorff tubes at 
−80°C on the day of testing. Subsequently, plasma sam-
ples were tested in duplicate by colorimetric enzyme-
linked immunosorbent assay (ELISA) (ab108667, Human 
Estradiol ELISA Kit, ABCAM, Cambridge, UK; ab108670, 
Human Progesterone ELISA Kit, ABCAM, Cambridge, 
UK) and hormone concentration was determined via plate 
reader (ELX800 Microplate reader, BioTek, Vermont, 
United States). Minimum detectable plasma concentra-
tions were 8.68 pg mL−1 for oestradiol and 0.05 ng mL−1 
for progesterone. Intra-assay coefficient of variation was 
23.7% for oestradiol and 14.9% for progesterone.

2.3  |  Maximal exercise test

Participants completed an aerobic capacity (V̇O2peak) test 
on a cycle ergometer (Pollock et al., 2015). The test began 
with a 3-min period of cycling increasing up to 50 W for 
the warm-up, after which power output continually in-
creased; participants cycled at a self-selected cadence over 
70 rpm. Pollock et al. (2015) suggested a rate of increase of 
1–2 Watts every 3–5 s dependent on training status. Due 
to the involvement of nonelite populations and evidence 
from pilot testing, this was adapted to be 1 Watts every 
5–7 s dependent on self-reported activity level (7 s for mod-
erate, 5 s for high). Participants were instructed to indicate 
when they thought they were approximately 30 s from ex-
haustion. At this point, verbal encouragement increased. 
This continued until the participant could no longer con-
tinue despite strong verbal encouragement. The protocol 
duration was between 12 and 14 min long, with no signifi-
cant differences in test duration between groups (p = 0.08). 
Expired gases and heart rate were measured continuously 
throughout using a metabolic cart (K5, Cosmed, Firenze, 
Italy) and chest heart rate monitor (H10, Polar, Kempele, 
Finland). A fingertip lactate measurement was taken im-
mediately after the test (Biosen C-Line, EKF diagnostics, 
Barleben, Germany). A rating of perceived exertion was 
taken every 2 min during the test. Peak power output was 
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recorded following the test (Lode Ergometry Manager, 
LEM10, Groningen, The Netherlands). Attainment of 
primary and secondary criteria is available in Table S3. 
Following this, each participant also completed a three-
week activity diary to assess activity level. Twelve par-
ticipants (2 PRE, 5 LPRE, 3 PERI, and 2 POST) failed to 
provide activity diaries.

2.4  |  Data management

All expired gas and heart rate data were averaged to 15-s 
intervals for export and for analysis of HR-V̇O2 data. 
Data were averaged to 5-min time windows for analysis 
of cardiopulmonary variables including respiratory quo-
tient (RQ), respiratory frequency (RF), tidal volume (TV), 
minute ventilation (V̇E) and ventilatory equivalent for 
carbon dioxide (V̇E/V̇CO2) (COSMED Omnia, Version 
2.2, Cosmed, Firenze, Italy). V̇O2 (mL·min−1) was plot-
ted against CO2 (mL·min−1) and V̇E/V̇CO2 against V̇E/
V̇O2 for identification of ventilatory thresholds (VT1 and 
VT2); this was completed using automatic detection by 
COSMED Omnia software, then manually verified by two 
researchers (CR and MA). VT1 represents the exercise in-
tensity at which ventilation begins to increase dispropor-
tionately to oxygen uptake, while VT2 marks the intensity 
at which a further disproportionate rise in ventilation oc-
curs, corresponding to a shift toward predominantly an-
aerobic metabolism.

Predicted V̇O2peak was calculated using the FRIEND 
equation (Myers et al., 2017).

2.5  |  Statistical analysis

All data presented are mean and standard deviation (SD). 
Data were analyzed for normality using Shapiro–Wilk 
testing. A one-way analysis of variance (ANOVA) was 
employed for participant characteristics and maximum 
criterion variables with Tukey's multiple comparisons 
test. Where there was unequal variance as identified by 
Bartlett's test, a Welch's ANOVA was employed with 
Dunnett's T3 multiple comparisons test. One-way 
ANOVAs were utilized to analyze each ventilatory thresh-
old (VT1 and VT2) and maximum for menopause group 
differences (PRE, LPRE, PERI, and POST) for variables 
presented in Table 2. Where data were non-normally dis-
tributed, the Kruskal–Wallis test was employed. Pearson's 
correlation coefficient (r) was utilized for the relationship 
between variables (V̇O2, age) for the whole cohort and for 
defined groups. An r ≥ 0.4 was considered moderate, and 
r ≥ 0.7 was considered strong. Simple linear regression 
between variables was performed to assess the strength 

of the relationship (GraphPad Prism version 9.0.0 for 
MacOS, San Diego, California, USA). Individual HR and 
V̇O2 data throughout the test were collated to assess the 
relationship between HR and V̇O2, for which Pearson's 
correlation coefficient (r) was utilized.

In the PRE group, combined oral contraceptive users 
were retrospectively matched for age to participants from 
the naturally menstruating sample, and in the POST 
group, users of hormone therapy matched to those who 
did not use hormone therapy for subgroup analysis. 
Unpaired T-tests were utilized to analyze values at each 
ventilatory threshold (VT1 and VT2) and maximum, and 
exogenous hormone differences (exogenous hormone 
user, non-user) for key aerobic capacity and ventilatory 
variables (Table 3).

3   |   RESULTS

3.1  |  Participant characteristics

Age was significantly different between all groups 
(p < 0.05, Table 1). Body fat mass was higher in LPRE than 
PRE (p < 0.001) but there were no differences between 
the other groups. Muscle mass was lower in the POST 
group than in all other groups (p < 0.05); fat free mass was 
lower in POST than in LPRE (p = 0.02) and PERI (p = 0.02) 
groups. There were no differences in hormone measure-
ments and V̇O2peak.

3.2  |  Cardiopulmonary variables

Cardiopulmonary variables, RF, TV, V̇E, and RQ were 
the same for all groups at both ventilatory thresholds and 
maximum (Table 2). HR was higher in PRE than in POST 
at VT1 (p = 0.005) and VT2 (p < 0.001). HRmax was also 
higher in the PRE group compared to LPRE (p = 0.02), 
PERI (p = 0.01), and POST (p < 0.001) groups. End test lac-
tate was higher in the PRE group than the POST group 
(p = 0.01) and peak power was higher in LPRE than in 
POST (p = 0.02).

V̇O2peak (mL·kg−1·min−1) was not correlated with age 
for the whole sample (r = −0.23, R2 = 0.05, p = 0.06) or for 
any individual group (PRE: r = −0.13, R2 = 0.02, p = 0.62; 
LPRE: r = 0.07, R2 < 0.01, p = 0.85; PERI: r = −0.23, R2 = 0.05 
p = 0.43; POST: r = 0.22, R2 = 0.05, p = 0.33).

HR and V̇O2 were moderately positively correlated for 
the whole sample (r = 0.73, R2 = 0.54, p < 0.001) and all 
groups throughout the incremental exercise test (PRE: 
r = 0.77, R2 = 0.59, p < 0.001; LPRE: r = 0.69, R2 = 0.47, 
p < 0.001; PERI: r = 0.76, R2 = 0.59, p < 0.001; POST: 
r = 0.73, R2 = 0.53, p < 0.001).
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3.3  |  Impact of exogenous hormone use

As the PRE and POST groups contained females using ex-
ogenous hormonal contraceptives and therapies, respec-
tively, comparisons were made with age-matched females 
without exogenous hormone usage to determine whether 
these had any influence on the between-group compari-
sons above. VT2 occurred at a higher percentage of maxi-
mum HR in POST than in POST HRT (p = 0.04). There 
were no other differences in submaximal and maximal 
cardiopulmonary variables between women who used 
combined oral contraceptives and those who were natu-
rally menstruating, nor between those who did and did 
not use hormone therapy (Table 3).

4   |   DISCUSSION

This study offers insight into cardiorespiratory responses 
to maximal exercise in physically active females in pre-
menopause, late premenopause, perimenopause, and 
postmenopause with similar endogenous hormone pro-
files. Menopause appeared to have no effect on aerobic 
capacity (V̇O2peak) or submaximal ventilatory thresholds 
in this sample of active females across the adult lifecycle. 
There were no differences in cardiopulmonary variables 
within an aerobic capacity test, suggesting minimal im-
pact of age or chronically low hormone levels compared 
to acutely low hormone levels.

The rate of decline of aerobic capacity in women in 
mid-life is debated, but it is reported to range between 
0.8% and 1.6% per year (Hawkins & Wiswell,  2003; Loe 

et al., 2013), regardless of activity level. Notably, in data 
from Loe et al. (2013) this decline accelerates from a 4% de-
cline in V̇O2peak between age groups 30 and 39 (40.0 mL·k-
g−1·min−1) and 40 and 49 (38.4 mL·kg−1·min−1) to a 10% 
decline between 40 and 49 and 50 and 59 age groups 
(34.4 mL·kg−1·min−1). Hawkins and Wiswell  (2003) also 
suggested that it does not appear possible for women in 
midlife to slow this accelerated decline in V̇O2peak and that 
this inability to mitigate loss of aerobic capacity may be 
related to estrogen losses. In the present study, however, 
we show no decrease in V̇O2peak between premenopausal 
and postmenopausal women with comparable physical 
activity levels, implying that maintenance of aerobic ca-
pacity is possible through midlife. This is similar to reports 
that age-related declines in aerobic capacity can also be 
slowed by physical activity (Bahls et al., 2021) which may 
be linked to the benefits of physical activity on cardiovas-
cular health (Hellsten & Nyberg, 2015; Seals et al., 2019; 
Craighead et al., 2019).

The age reduction in V̇O2peak relies on two assumptions: 
declines in lean body mass and declines in maximum heart 
rate (HRmax) (Hawkins & Wiswell, 2003) linked to arterial 
stiffening and endothelial dysfunction (Seals et al., 2019). 
Declines in lean body mass cause a reduction in oxygen 
utilization by skeletal muscle and therefore lower V̇O2 at 
an absolute workload (Hawkins & Wiswell,  2003). This 
reduction in V̇O2 in postmenopause with similar abso-
lute workloads was not observed at ventilatory thresholds 
or maximum despite significantly lower muscle mass. 
However, maximum lactate was significantly lower in 
postmenopause compared to premenopause; this aligns 
with reports of lower lactate accumulation in women in 

T A B L E  1   Participant characteristics based on menopause status.

PRE (n = 18) LPRE (n = 16) PERI (n = 14) POST (n = 21) p

Age (years) 27.3 ± 4.0†,‡,§ 40.2 ± 3.6*,‡,§ 47.4 ± 4.3*,†,§ 55.0 ± 3.2*,†,‡ <0.001

Height (cm) 170.2 ± 5.2§ 167.9 ± 6.5 169.8 ± 5.7§ 164.9 ± 3.9*,‡ 0.013

Weight (kg) 67.0 ± 6.5 70.9 ± 11.7 72.0 ± 15.2 68.3 ± 10.0 0.540

BMI (kg•m−2) 23.2 ± 2.1 25.2 ± 4.0 19.9 ± 8.0 25.2 ± 4.7 0.315

Body fat (%) 24.1 ± 7.7 26.7 ± 8.7 26.8 ± 9.2 30.2 ± 10.4 0.180

Body fat mass (kg) 16.5 ± 6.5 25.3 ± 4.1* 19.9 ± 11.5 21.6 ± 9.8 0.013

Muscle mass (kg) 28.1 ± 2.5§ 28.6 ± 3.0§ 28.8 ± 3.8§ 25.6 ± 2.1*,†,‡ 0.002

Fat free mass (kg) 50.5 ± 4.2 51.5 ± 5.1§ 51.7 ± 6.5§ 44.3 ± 10.7*,†,‡ 0.006

Oestradiol (pg/mL) 26.3 ± 28.3 14.6 ± 7.4 24.7 ± 20.5 17.6 ± 21.6 0.326

Progesterone (ng/mL) 0.7 ± 0.4 0.4 ± 0.4 0.3 ± 0.3 1.0 ± 2.2 0.348

Menstrual cycle day 3 ± 1† 5 ± 2* 5 ± 1 NA 0.022

Metabolic equivalent minutes per 
week

2735 ± 1030 2354 ± 1230 1905 ± 792 2063 ± 1055 0.249

Note: p value indicates one way ANOVA significance, symbols indicate significance of multiple comparisons * difference to PRE, † difference to LPRE, and ‡ 
difference to PERI, § difference to POST. Bold values indicate significance at p < 0.05.
Abbreviations: BMI, body mass index; LPRE, late premenopause; PERI, perimenopause; POST, postmenopause; PRE, premenopause.
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T A B L E  2   Variables at ventilatory thresholds (VT1 and VT2) and at maximum for each menopause status.

PRE LPRE PERI POST p

VT1

V̇O2 (L·min−1) 1.42 ± 0.26 1.44 ± 0.39 1.38 ± 0.36 1.29 ± 0.28 0.481

V̇O2 (mL·kg−1·min−1) 21.5 ± 4.8 20.8 ± 6.1 19.7 ± 6.3 19.2 ± 4.3 0.558

Percentage of V̇O2peak (%) 55 ± 9 54 ± 12 55 ± 12 55 ± 8 0.986

Percentage of predicted V̇O2peak (%) 58 ± 12§ 64 ± 21 71 ± 20 75 ± 15* 0.02

HR (b·min−1) 123 ± 18§ 110 ± 19 112 ± 19 103 ± 16* 0.010

Percentage of HRmax (%) 67 ± 9 63 ± 10 65 ± 10 62 ± 9 0.479

RQ 0.88 ± 0.08 0.87 ± 0.09 0.86 ± 0.10 0.84 ± 0.08 0.221

RF (1/min) 26.0 ± 3.1 23.1 ± 4.8 22.7 ± 5.7 22.7 ± 5.4 0.127

TV (L) 1.4 ± 0.3 1.6 ± 0.3 1.5 ± 0.3 1.4 ± 0.3 0.239

V̇E (L·min−1) 36.1 ± 8.1 35.2 ± 7.7 33.8 ± 11.9 31.2 ± 8.7 0.108

V̇E/V̇CO2 27.4 ± 1.9 27.8 ± 2.6 26.9 ± 2.6 27.2 ± 2.5 0.777

Power (W) 80 ± 23 79 ± 30 77 ± 30 68 ± 18 0.453

Relative power (W·kg) 1.2 ± 0.4 1.1 ± 0.4 1.1 ± 0.5 1.0 ± 0.3 0.459

VT2

V̇O2 (L·min−1) 2.20 ± 0.37 2.23 ± 0.49 2.11 ± 0.44 1.94 ± 0.39 0.153

V̇O2 (mL·kg−1·min−1) 33.1 ± 5.6 32.3 ± 9.1 29.6 ± 6.0 29.1 ± 6.9 0.252

Percentage of V̇O2peak (%) 85 ± 5 83 ± 9 83 ± 9 82 ± 10 0.750

Percentage of predicted V̇O2peak (%) 90 ± 14§ 99 ± 31 108 ± 22 113 ± 22* 0.01

HR (b·min−1) 164 ± 15§ 150 ± 18 151 ± 17 140 ± 16* <0.001

Percentage of HRmax (%) 89 ± 7 87 ± 7 88 ± 8 85 ± 8 0.243

RQ 1.04 ± 0.03 1.02 ± 0.04 1.03 ± 0.04 1.01 ± 0.05 0.302

RF (1/min) 32.8 ± 5.2 30.0 ± 6.8 31.0 ± 6.0 31.3 ± 6.3 0.593

TV (L) 2.0 ± 0.3 2.1 ± 0.4 2.0 ± 0.4 1.9 ± 0.3 0.232

V̇E (L·min−1) 66.5 ± 14.1 63.1 ± 13.0 62.1 ± 16.6 58.2 ± 13.6 0.354

V̇E/V̇CO2 27.8 ± 2.6 27.0 ± 1.5 27.4 ± 2.8 28.4 ± 3.4 0.459

Power (W) 159 ± 23 152 ± 33 155 ± 34 146 ± 28 0.597

Relative power (W·kg) 2.4 ± 0.5 2.2 ± 0.6 2.2 ± 0.6 2.2 ± 0.6 0.629

MAX

V̇O2 (L·min−1) 2.60 ± 0.38 2.66 ± 0.41 2.52 ± 0.35 2.37 ± 0.39 0.108

V̇O2 (mL·kg−1·min−1) 38.0 ± 6.6 38.4 ± 7.9 35.6 ± 6.0 35.2 ± 6.3 0.224

Predicted V̇O2peak (mL·kg−1·min−1) 37 ± 2.1†,‡,§ 30.7 ± 3.0*,‡,§ 27.6 ± 3.8*,† 25.6 ± 2.8*,† <0.001

Percentage of predicted V̇O2peak (%) 106 ± 16†,‡,§ 118 ± 32* 130 ± 16* 137 ± 21* <0.001

HR (b·min−1) 184 ± 10†,‡,§ 172 ± 11* 171 ± 12* 165 ± 13* <0.001

RQ 1.15 ± 0.08 1.16 ± 0.07 1.15 ± 0.08 1.13 ± 0.07 0.823

RF (1/min) 41.6 ± 8.2 44.0 ± 5.1 42.0 ± 8.6 44.2 ± 6.5 0.703

TV (L) 2.2 ± 0.4 2.3 ± 0.4 2.2 ± 0.3 2.1 ± 0.3 0.150

V̇E (L·min−1) 94.6 ± 18.9 100.4 ± 14.0 91.9 ± 18.9 89.8 ± 14.8 0.144

V̇E/V̇CO2 30.8 ± 3.4 31.5 ± 2.4 30.6 ± 3.1 32.7 ± 3.8 0.230

Power (W) 204 ± 20 212 ± 23§ 209 ± 28 186 ± 31† 0.012

Relative power (W·kg) 3.1 ± 0.4 3.1 ± 0.6 3.0 ± 0.6 2.8 ± 0.6 0.324

Lactate (mmol·L−1) 9.3 ± 2.2§ 8.3 ± 2.6 7.3 ± 1.7 7.0 ± 2.2* 0.009

Note: p indicates significance of one-way ANOVA. Symbols indicate significant differences at p < 0.05; * indicates a difference to PRE, † a difference to LPRE, ‡ 
a difference to PERI, and § a difference to POST. Bold values indicate significance at p < 0.05.
Abbreviations: HR, heart rate; LPRE, late premenopause; MAX, maximum; PERI, perimenopause; POST, postmenopause; PRE, premenopause; RF, respiratory 
frequency; RQ, respiratory quotient; TV, tidal volume; V̇E, minute ventilation; V̇E/V̇CO2, ventilatory equivalent for carbon dioxide; VO2, volume of oxygen; VT, 
ventilatory threshold.
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mid-life due to age and sex (Bovens et al., 1993; Sargent & 
Scroop, 2007). This lower lactate accumulation may result 
from muscle mass losses and atrophy of type II muscle fi-
bers (Pogliaghi et al., 2023). Lower lactate accumulation 
in female participants has also been related to a reduced 
reliance on carbohydrate metabolism (Carter et al., 2001; 
Jacobs et al., 1983) rather than a higher rate of clearance 
(Bovens et al., 1993), but these factors are unlikely to in-
fluence maximal lactate.

The effects of declines in HRmax on V̇O2peak rely on 
the linearity of the HR and V̇O2 relationship (Vehrs 
et al., 2022). Variability exists in the HR-V̇O2 relationship, 
as a product of age, sex, or individual variability (Gastinger 
et al., 2010), which may result in inaccurate prescription of 
aerobic exercise (Vehrs et al., 2022). Therefore, it is essen-
tial to evaluate the linearity of this relationship throughout 
the menopausal transition and into postmenopause. Data 
presented here confirm that the HR and V̇O2 relationship 
remains linear through and after the menopausal transi-
tion. While there are sex differences in the linearity of this 
relationship (Fairbarn et al., 1994), with males evidencing 
a stronger relationship than females (Andrade et al., 2020; 
Loe et al., 2013), the current study corroborates that there 
are no differences in linearity between females under and 
over 50 years (Fairbarn et al., 1994). Maximum HR of the 
premenopause group was higher than all other groups, 
yet the previously reported accompanying difference in 
V̇O2peak (Mercuro et al., 2006) is not evident in this study. 
In contrast with previous reports, our sample did not ev-
idence correlations between V̇O2peak and age (Pollock 
et al., 2015). Therefore, declines in V̇O2peak through mid-
life up to 60 years old may not be as pronounced in females 
as previously reported, provided that high physical activ-
ity levels are maintained (Rael et al., 2021). In fact, alter-
native explanations for these accelerated declines should 
be explored, such as a decline in habitual physical activity 
on physical activity (Women In Sport, 2018).

In the current work, no differences between meno-
pause groups were evidenced in V̇E, TV, RF, or V̇E/V̇CO2. 
However, it is well reported that aging impacts pulmonary 
function, and therefore ventilation, by increases in expira-
tory flow limitation (McClaran et al., 1995, 1998). In ad-
dition, menopause has also been linked with declines in 
pulmonary function whereby forced vital capacity (FVC) 
reduces by up to −12.5 mL per year through the peri-
menopausal transition and postmenopause (Campbell 
et al., 2018; Triebner et al., 2017). Notably, previous evi-
dence suggests a positive correlation between oestradiol 
and TV across the menstrual cycle, implying that when 
oestradiol is low in menopause (da Silva et al., 2006), TV 
could be expected to decline, which, without compen-
sation with increasing respiratory frequency, would re-
sult in reduced V̇E. Constrictions on V̇E can result in an 

inability to ventilate sufficiently in response to stressors 
and subsequent fatigue (Babb,  2013). Differences in TV 
and V̇E have not been evidenced with menstrual cycle-
related fluctuations in hormones (da Silva et  al.,  2006) 
however, research availability is limited. If V̇E is limited 
in menopause, in addition to the effects of aging, then 
it can be expected that ventilatory efficiency may be re-
duced. Previous research studying menstrual cycle-related 
changes in V̇E/V̇O2 has, in some cases, lacked adequate 
control (Dombovy et al.,  1987) and was limited by sam-
ple size (Beidleman et  al.,  1999; Dombovy et  al.,  1987). 
Evidence exists of a higher V̇E and higher V̇E/V̇CO2 in the 
luteal phase compared to mid-follicular (Barba-Moreno 
et al., 2022; Beidleman et al., 1999), implying a reduced 
ventilatory efficiency in low hormone phases. This phe-
nomenon may need to be studied with a larger sample; 
however, in the case of menopause, it is suggested that 
differences would likely result from age-related changes 
(McConnell & Davies, 1992) independent from those ex-
erted by hormones (Davenport et al., 2012).

4.1  |  Experimental considerations

This work sought to investigate the changes in an aerobic 
capacity test induced by menopause in a representative 
sample of the female population and therefore increase 
data availability. Accurate categorization of participants 
as perimenopausal is difficult due to the lack of available 
blood hormone concentration normative data. This stems 
from the unpredictability of sex hormone concentrations 
in this phase, which is further complicated by significant 
day-to-day hormonal variability that challenges any con-
sistent classification. With increasing focus on the physi-
ological impact of perimenopause, it may be prudent to 
explore the expected hormonal concentrations associated 
with this life stage in order to support more precise catego-
rization as early and late perimenopause, currently rec-
ommended in the STRAW criteria (Harlow et al., 2012).

Use of age-stratified analysis, with larger samples than 
those employed in this study, could also yield additional 
insights into the effects of chronological aging on aero-
bic capacity in females through midlife, including how 
physical activity could mitigate declines. It should be ac-
knowledged that the women in this study may have al-
ways engaged in physical activity, such that an analysis of 
the role of lifelong physical activity and its involvement 
in mitigating changes in aerobic capacity could be war-
ranted. However, lifelong physical activity data was not 
collected in this cohort, and this is an area for further 
research. In the interest of a representative sample, this 
sample involved hormone therapy and hormonal contra-
ceptive users. Indeed, as noted, this work is limited by its 
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T A B L E  3   Variables at ventilatory thresholds and at maximum for users of combined oral contraceptives, naturally menstruating, 
postmenopause hormone therapy (HT) users, and postmenopausal women. p indicates significance of unpaired t-test.

Combined oral 
contraceptives (n = 5)

Naturally 
menstruating (n = 5) p

POST HT 
(n = 10)

POST 
(n = 10) p

VT1
V̇O2 (L·min−1) 1.35 ± 0.32 1.39 ± 0.24 0.800 1.25 ± 0.28 1.29 ± 0.27 0.767
V̇O2 (mL·kg−1·min−1) 19.7 ± 6.3 21.0 ± 4.4 0.692 18.6 ± 4.4 19.4 ± 4.2 0.661
Percentage of V̇O2peak (%) 55 ± 8 53 ± 10 0.736 57 ± 10 53 ± 7 0.314
Percentage predicted 
V̇O2peak (%)

58 ± 12 61 ± 14 0.712 73 ± 15 75 ± 15 0.940

HR (b·min) 118.3 ± 31.5 115.2 ± 13.4 0.825 102.8 ± 18.8 103.9 ± 14.2 0.885
Percentage of HRmax (%) 66 ± 14 64 ± 6 0.777 61 ± 11 64 ± 5 0.443
RQ 0.93 ± 0.07 0.87 ± 0.09 0.286 0.85 ± 0.09 0.82 ± 0.06 0.436
RF (1/min−1) 25.3 ± 2.9 23.1 ± 4.9 0.361 21.5 ± 6.0 24.2 ± 4.7 0.282
TV (L) 1.4 ± 0.2 1.5 ± 0.2 0.576 1.5 ± 0.3 1.3 ± 0.2 0.115
V̇E (L·min−1) 35.4 ± 6.8 33.9 ± 9.2 0.763 31.0 ± 10.2 30.7 ± 7.6 0.684
V̇E/V̇CO2 27.3 ± 2.6 27.1 ± 1.1 0.878 26.9 ± 2.0 27.3 ± 3.0 0.730
Power (W) 80 ± 23 77 ± 28 0.881 67 ± 20 70 ± 17 0.741
Relative power (W·kg) 1.1 ± 0.3 1.2 ± 0.4 0.905 1.0 ± 0.3 1.1 ± 0.3 0.681

VT2
V̇O2 (L·min−1) 2.0 ± 0.4 2.3 ± 0.4 0.235 1.8 ± 0.4 2.0 ± 0.3 0.168
V̇O2 (mL·kg−1·min−1) 28.7 ± 9.2 34.1 ± 7.4 0.283 26.6 ± 7.0 30.7 ± 6.2 0.186
Percentage of V̇O2peak (%) 80 ± 10 87 ± 7 0.387 80 ± 8 83 ± 11 0.494
Percentage predicted 
V̇O2peak (%)

85 ± 16 99 ± 19 0.195 105 ± 22 117 ± 18 0.261

HR (b·min−1) 157.7 ± 28.3 157.2 ± 17.0 0.971 136.8 ± 17.5 143.8 ± 14.8 0.346
Percentage of HRmax (%) 88 ± 9 85 ± 7 0.57 81 ± 7 88 ± 7 0.038
RQ 1.03 ± 0.04 1.05 ± 0.02 0.446 1.01 ± 0.06 1.02 ± 0.03 0.726
RF (1/min−1) 31.1 ± 4.6 33.4 ± 6.5 0.500 29.2 ± 7.2 33.7 ± 4.7 0.111
TV (L) 1.9 ± 0.4 2.0 ± 0.3 0.462 1.9 ± 0.4 1.8 ± 0.2 0.582
V̇E (L·min−1) 58.2 ± 15.3 66.2 ± 10.6 0.317 54.5 ± 15.6 61.0 ± 11.6 0.299
V̇E/V̇CO2 27.0 ± 2.5 27.3 ± 2.0 0.839 28.0 ± 3.3 28.5 ± 3.4 0.743
Power (W) 147 ± 23 153 ± 32 0.744 134 ± 34 156 ± 23 0.109
Relative power (W·kg) 2.2 ± 0.7 2.3 ± 0.6 0.668 2.0 ± 0.6 2.4 ± 0.6 0.148

MAX
V̇O2 (L·min−1) 2.43 ± 0.31 2.64 ± 0.30 0.253 2.22 ± 0.38 2.44 ± 0.31 0.187
V̇O2 (mL·kg−1·min−1) 35.5 ± 8.7 39.9 ± 6.2 0.329 33.0 ± 7.6 36.5 ± 3.8 0.203
Predicted V̇O2peak 
(mL·kg−1·min−1)

33.4 ± 5.9 34.5 ± 2.6 0.670 25.3 ± 3.1 26.1 ± 2.8 0.360

Percentage of predicted 
V̇O2peak (%)

106 ± 13 116 ± 18 0.284 130 ± 21 138 ± 15 0.335

HR (b·min−1) 178.8 ± 14.2 180.0 ± 8.1 0.865 167.6 ± 11.2 162.9 ± 14.6 0.429
RQ 1.17 ± 0.14 1.17 ± 0.07 0.980 1.13 ± 0.05 1.13 ± 0.09 0.999
RF (1/min−1) 43.3 ± 7.2 44.0 ± 6.9 0.878 43.4 ± 7.9 44.3 ± 5.6 0.763
TV (L) 2.1 ± 0.2 2.2 ± 0.3 0.391 2.1 ± 0.3 2.0 ± 0.3 0.671
V̇E (L·min−1) 90.4 ± 17.7 96.7 ± 8.0 0.443 88.5 ± 18.5 87.6 ± 14.2 0.903
V̇E/V̇CO2 31.0 ± 4.1 30.6 ± 3.6 0.874 33.5 ± 3.0 31.9 ± 3.2 0.264
Power (W) 201.3 ± 16.1 206.2 ± 25.4 0.702 180.4 ± 35.6 186.7 ± 23.0 0.644
Relative power (W·kg) 2.9 ± 0.7 3.1 ± 0.6 0.624 2.7 ± 0.8 2.8 ± 0.4 0.739
Lactate (mmol·L−1) 9.0 ± 2.5 8.9 ± 1.6 0.771 7.6 ± 2.0 6.4 ± 2.5 0.268

Note: Bold values indicate significance at p < 0.05.
Abbreviations: HR, heart rate; HT, hormone therapy; MAX, maximum; POST, postmenopause; RF, respiratory frequency; RQ, respiratory quotient; TV, tidal 
volume; V̇E, minute ventilation; V̇E/V̇CO2, ventilatory equivalent for carbon dioxide; V̇O2, volume of oxygen; VT, ventilatory threshold.
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sample size, leading to an inability to consider further sub-
group analysis by specific hormone therapy or contracep-
tive type (Flood et al., 2024), aside from the age-matched 
comparisons presented. Further research should focus 
on the impact of the use of hormonal contraceptive and 
hormone therapy and of endogenous and exogenous hor-
mone profiles on these variables.

5   |   CONCLUSION

In a physically active sample of female participants, meno-
pause and chronic changes in sex hormones have no effect 
on maximal oxygen uptake and submaximal ventilatory 
thresholds measured by incremental exercise testing. This 
suggests that aerobic capacity changes in menopause may 
relate to other factors such as reduction of physical activ-
ity. Much like conclusions from research in the menstrual 
cycle, menopause does not appear to influence cardiores-
piratory fitness nor the linearity of the HR-V̇O2 relation-
ship. The importance of maintaining or increasing aerobic 
activity through the menopause transition should be em-
phasized, and exercise prescription should not be adjusted 
based on menopausal status but instead individually tai-
lored with consideration for symptom burden.
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