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Abstract
Aim  This study aimed to investigate the differences in metabolism and ventilation between women before, during, and after 
menopause during rest and to varying steady-state exercise intensities.
Method  74 female participants (18–60 years; premenopausal [PRE], perimenopausal [PERI], and postmenopausal [POST]) 
completed four laboratory visits; one maximal exercise test, resting data collection, and body composition assessment fol-
lowed by three steady-state submaximal exercise tests at 40% (low), 60% (moderate), and 80% (high) VȮ2peak in a randomised 
order with subgroup analysis for hormonal contraceptive or hormone therapy use.
Results  There was an effect of menopause stage on exercise energy expenditure but no interaction effect with intensity. There 
were no differences substrate utilisation, or ventilation across any of the exercise intensities. Subgroup analysis revealed that 
HT and HC use did not impact EE, substrate oxidation, or ventilation.
Conclusions  Menopause stage is influential upon exercise energy expenditure but more research in perimenopause is 
required to confirm the effect, future studies should explore the broader implications of the menopausal transition on exer-
cise physiology.
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Introduction

During the menopause transition, fat gain can increase 
two-to-fourfold (Greendale et al. 2019), particularly intra-
abdominal fat (Toth et al. 2000), and lean body mass can 
also decrease (Davis et al. 2012; Greendale et al. 2019). 
These changes stabilise in postmenopause (Greendale et al. 
2019). Increases in body fat may result from reductions in 
resting and exercise energy expenditure (EE) as a result of 
declining oestrogen and progesterone (Lovejoy et al. 2008; 
Abildgaard et al. 2013; Melanson et al. 2015) in addition to 
the effects of ageing (Müller et al. 2002). Crucially, reduc-
tions in EE can result in an increased number of risk factors, 
including increased waist circumference, elevated triglycer-
ides, elevated fasting glucose, and elevated blood pressure 
(Pu et al. 2017), which may contribute to increased risk of 
cardiovascular disease and type 2 diabetes (Marlatt et al. 
2022).

Oestrogen supplementation has been demonstrated to 
increase reliance on fat oxidation (FATox) in males (Hama-
deh et al. 2005) and in rats (Kendrick et al. 1987). This is 
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suggested to be due to increased plasma free fatty acid avail-
ability, increased muscle triacylglycerol content (Hamadeh 
et al. 2005), increased skeletal muscle uptake of glucose and 
suppression of gluconeogenesis limiting blood glucose avail-
ability (Oosthuyse et al. 2022), and delayed onset of glyco-
gen oxidation (Kendrick et al. 1987). Acute fluctuations in 
sex hormones throughout the menstrual cycle have not been 
consistently demonstrated to alter substrate oxidation at rest 
or in submaximal exercise (Horton et al. 2002; Williams 
et al. 2023) nor the ability to efficiently shift between fuel 
sources in response to changing energy demands, termed 
metabolic flexibility (Olenick et al. 2023). However, the 
size of the ratio of oestrogen to progesterone (Hackney et al. 
2022; Oosthuyse et al. 2022), as well as diet composition or 
fasted state prior to exercise (Oosthuyse et al. 2022), may 
explain this inconsistency.

Whilst the pattern of shifting from FATox to carbohy-
drate oxidation (CHOox) with increasing exercise duration 
remains in postmenopausal females (Johnson et al. 2002), it 
is suggested that metabolic flexibility decreases in perimen-
opause and remains this way in postmenopause (Lovejoy 
et al. 2008; Gould et al. 2022), which may lead to impaired 
energy homeostasis (Muoio 2014). Menopause is suggested 
to decrease the hormonally driven reliance on fat (Isacco 
et al. 2012), such that during low-intensity exercise, post-
menopausal females have evidenced a lower FATox than 
premenopausal and perimenopausal females (Melanson et al. 
2015; Gould et al. 2022) demonstrating a reduced metabolic 
efficiency. Additionally, an inability to oxidise fat has been 
labelled as an important contributor to obesity and type 2 
diabetes (Achten and Jeukendrup 2004), subsequently iden-
tifying this point of shift towards lesser FATox and altered 
EE during menopause may enable intervention to reduce 
visceral fat mass and retain metabolic flexibility (Gould et al. 
2022).

Similarly, ventilation may also be hormonally regulated, 
specifically by progesterone, a ventilatory stimulant (Behan 
and Kinkead 2011). Resting minute ventilation (V ̇E) has 
been demonstrated to be elevated in the luteal phase of the 
menstrual cycle (Dombovy et al. 1987; Das 1998; Slatkovska 
et al. 2006; MacNutt et al. 2012), resulting from increased 
concentrations of progesterone in this phase compared to 
the follicular phase (León-Velarde et al. 2001). Hence, in 
the absence of progesterone, ventilation may decrease. Cur-
rent studies on resting and peak V ̇E report no differences 
between the premenopause and postmenopause (Mercuro 
et al. 2006; Preston et al. 2009; Rael et al. 2021); however, 
ventilation in submaximal exercise is unexplored.

Study of the physiological response to steady-state exer-
cise during various stages of the female lifecycle, with con-
siderations for the interlinked cardiopulmonary and meta-
bolic physiology, will enable a greater understanding of the 
impact of sex hormone declines on females in midlife. It 

is hypothesised that postmenopausal females will exhibit 
lower EE, FATox, and V ̇E compared to premenopausal and 
perimenopausal females due to chronically low levels of sex 
hormones oestrogen and progesterone. For the first time, this 
study aimed to examine the effect of perimenopause and 
postmenopause on ventilatory and metabolic responses at 
varying steady-state exercise intensities.

Method

Participants

An a priori power calculation for a repeated between factors 
analysis of variance (ANOVA), based on an effect size of 
0.40 for respiratory quotient (RQ) from Gould et al. (2022), 
determined that a total of 69 participants would be statisti-
cally powered to 95% (G*Power 3.1.9.7, Heinrich-Heine-
Universität Düsseldorf; Faul et al. 2007). Power calculation 
details are available in supplementary materials. Account-
ing for a drop out of approximately 20%, 80 female partici-
pants (reproductive, perimenopausal, postmenopausal) were 
recruited to take part in this study aiming for 26 in each 
group. Six participants did not complete testing: three due to 
time constraints, one due to change in hormonal contracep-
tive, one due to uptake of metabolism-affecting drug, and 
one became irregularly menstruating during study process. 
Therefore, 74 participants completed the study (Fig. 1).

Fig. 1   Participant flow throughout the study
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Menopause status of each individual was defined as fol-
lows (Harlow et al. 2012; Sarri et al. 2015; Ambikairajah 
et al. 2022):

Premenopause (PRE): between the ages of 18 and 45 with 
menstrual regularity as defined by a cycle of 21–35 days, 
or not symptomatic if using hormonal contraceptive.
Perimenopause (PERI): persistent > 7 days difference in 
length of consecutive cycles or interval of amenorrhea 
of > 60 days and/or vasomotor, musculoskeletal or mood 
symptoms if using hormonal contraceptive or hormone 
therapy.
Postmenopause (POST): the period after 12 consecutive 
months of amenorrhea.

Procedures

On attendance to the laboratory, Participants provided 
informed consent and were screened for normotensive 
blood pressure. Participants undertook four visits to the 
laboratory. Each participant was required to perform one 
maximal exercise test, and three submaximal exercise tests 
in a randomised counterbalanced order. Upon arrival to 
the initial study visit, participants completed a body com-
position assessment, and then had a resting supine venous 
blood sample taken followed by a 10-min resting energy 
expenditure assessment seated. Finally, a maximal exer-
cise assessment was conducted. In subsequent visits, body 
composition was assessed followed by the required steady-
state exercise test.

Naturally menstruating premenopausal and perimenopau-
sal participants completed screening and all exercise testing 
in the early-to-midfollicular phase within 7 days of starting 
a menstrual bleed; to more closely align with the low oestra-
diol state in postmenopause. Based on recommendations from 
Schmalenberger et al. (2021) on study of the menstrual cycle, 
studying between day 1 and day 7 ensures that even partici-
pants with shorter cycles (21 days) are studied prior to ovula-
tion. This ensures all participants are in the early-to-midfolli-
cular phase of their menstrual cycle.

Therefore, experimental sessions were completed at least 
1 month apart. Those who were using hormonal contracep-
tive, were perimenopausal and had not had a bleed for over 
60 days, or were postmenopausal were tested at their earli-
est convenience. For these participants, experimental ses-
sions were at least 1 week apart. Participants attended at the 
same part of the day to account for diurnal variability, either 
morning, afternoon, or evening. Participants were advised 
not to exercise in the 48 h prior to maximal exercise proto-
col and in the 24 h prior to each steady-state exercise visit. 
Participants were also advised to eat over 2 h before the test.

Anthropometrics

Participants then had measurements of anthropometrics 
taken by stadiometer (217, SECA, Hamburg, Germany) 
and body mass scales (803, SECA, Hamburg, Germany) 
followed by body composition measurement using bioel-
ectrical impedance scales (InBody770, InBody Ltd, Seoul, 
South Korea).

Blood hormone measurements

Laid supine, a 6 mL venous blood sample was collected 
into an EDTA vacutainer, which was centrifuged for 10 min 
at 300 rpm at 4 °C, and the plasma removed into duplicate 
1.5 mL Eppendorfs. The plasma was stored at -80 °C and 
tested within a maximum of 12 months. The plasma sam-
ples were assessed using Enzyme Linked Immunosorbent 
Assays (ELISA) (Human Estradiol ELISA Kit, ABCAM, 
Cambridge, UK; Human Progesterone ELISA Kit, ABCAM, 
Cambridge, UK) and analysed via plate reader (ELX800 
Microplate reader, BioTek, Vermont, United States). Min-
imum detectable  plasma concentrations  were 8.68  pg 
mL−1 for oestradiol and 0.05 ng mL−1 for progesterone. 
Intra-assay coefficient of variation was 23.7% for oestradiol 
and 14.9% for progesterone.

Resting energy expenditure

Following this 5 minutes in supine position, participants 
had seated resting data collected for 10 min wearing a mask 
connected to a metabolic cart (K5, COSMED, Rome, Italy) 
measuring expired gases.

Maximal exercise test

Participants completed the maximal exercise test (V̇O2peak) on 
a cycle ergometer (Lode Excalibur Sport, Lode BV, Gronin-
gen, The Netherlands). The test began with a 3-min period of 
cycling increasing up to 50 Watts (W) for the warm-up after 
which power output continually increased until the participant 
could no longer continue despite strong verbal encouragement. 
Adapted from the protocol by Pollock et al. (2018), whereby 
the rate of increase was 1 W every 3–5 s, participants cycled 
at a self-selected cadence over 70 rpm and, dependent on self-
reported activity level in a screening questionnaire, resistance 
was increased by one W every 5 s (for high activity level) or 
7 s (for moderate activity level). Pollock et al. (2018) devised 
this protocol in masters’ athletes, and therefore, this decreased 
rate of increase was required on the involvement of below elite 
populations and determined based on pilot testing. Directly 
before the maximal test, a fingertip blood sample was taken 
for a resting lactate measurement (Biosen C-Line, EKF diag-
nostics, Barleben, Germany) and a final lactate measurement 
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immediately after completion of the test. A rating of perceived 
exertion was given every 2 min.

Submaximal exercise tests

The submaximal tests consisted of 30 min at 40%, 60%, or 
80% of V ̇O2peak (McCole et al. 1999; Johnson et al. 2002) to 
mimic ecologically valid doses of cardiovascular exercise, 
i.e., exercise intensities and dosages that reflect real-world 
physical activity practises (Dalleck et al. 2009; Hansen et al. 
2018). Participants cycled at a self-selected cadence and 
completed a warm-up of 2 min at 0 W at which point resist-
ance increased until the participant reached the prescribed 
V ̇O2 followed by 30 min at the determined intensity. Power 
output (W) was adjusted in 1–5 Watt increments as required 
to maintain intensity by continuous monitoring of V̇O2 to 
ensure the desired metabolic stimulus throughout the test 
(Teso et al. 2022).

For all exercise testing, expired gases were measured by 
metabolic cart (K5, COSMED, Rome, Italy) which was cali-
brated in line with the manufacturer’s instructions. Heart rate 
data were collected by chest heart rate monitor (Polar H10, 
Polar, Kempele, Finland). Variables extracted from expired 
gases included VȮ2, VĊO2, respiratory frequency (RF), VĖ, 
tidal volume (TV), and RQ.

Physical activity diary

After the first visit, participants were requested to fill out a 
3-week physical activity diary to confirm activity level by 
leisure time metabolic equivalent (METS) minutes per week 
utilising the METS compendium (Ainsworth et al. 2011) 
to assign value to exercise types. Leisure time METS were 
calculated as the MET for the activity multiplied by duration 
in minutes. Nine participants (three PRE, four PERI and two 
POST) failed to provide physical activity diaries.

Data analysis

EE, and CHOox and FATox rates were calculated using the 
following equations from Weir (1949) and Jeukendrup and 
Wallis (2005), respectively. Negative values were interpreted 
as zero. EE and FATox were also normalised to FFM.

Energy expenditure across all intensities:
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Fat oxidation across all intensities:

Carbohydrate oxidation at 40% V ̇O2 max:

Carbohydrate oxidation at 60% and 80% of V ̇O2 max:

Exercise intensity was calculated post hoc as a percent-
age of V ̇O2 reserve. V ̇O2reserve was calculated by deducted 
resting V ̇O2 from maximal V ̇O2. Then, percentage of V ̇O2 
reserve

Predicted V ̇O2max was calculated using the FRIEND 
equation (Myers et al. 2017)

All data are presented as mean and standard deviation 
(SD). Breath by breath data were smoothed over 15 s and 
were then averaged over five-minute intervals for all vari-
ables and then a mean for entire exercise bout calculated. 
V ̇O₂peak was defined as the highest smoothed 15-s oxygen 
uptake value obtained during the ramp maximal test. Due to 
17 participants terminating the 80%V ̇O2max condition early 
at 20 min and six participants terminating at 25 min, data are 
presented for 20 min of exercise at 80% V ̇O2peak.

Statistical analysis

All data were assessed for normality using Shapiro–Wilk 
test for normality. For demographic data, where data were 
normally distributed, one-way ANOVAs were utilised 
with a Tukey’s multiple comparisons test. Where data 
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VO2reserve(%) =
Sub maximal VO2 − Resting VO2

VO2 max−Resting VO2

× 100.

VO2max(ml kg min) = 79.9 − (0.39 × age)

− (13.7 × 1) − (0.127 × weight[lbs]).
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were non-normally distributed a Kruskal–Wallis test with 
Dunn’s multiple comparisons was used. Where data were 
normally distributed but with unequal variances identi-
fied by Bartlett’s test, a Welch’s ANOVA was used in 
place with Dunnett’s T3 multiple comparisons test. For 
exercise data, a two-way ANOVA (intensity x group) was 
utilised. Statistical analyses was conducted using Graph-
Pad Prism (Version 9.5.0, GraphPad Software, Boston, 
Massachusetts USA). Significance was indicated at a p 
value of < 0.05.

Results

All groups were significantly different in age (p > 0.001). 
The PRE group ranged from 18 to 45 years old, PERI 
41 to 56 years old, and POST 48 to 60 years old. POST 

had lower muscle mass and FFM than PRE (p = 0.001, 
p = 0.005, respectively) and PERI (p = 0.003, p = 0.006, 
respectively). POST also had a higher body fat percent-
age than PRE (p = 0.019). See Table 1. PERI evidenced a 
higher oestrogen than POST (p = 0.012).

Exercise intensity

There were no differences in exercise intensity between 
groups. There was a menopause stage effect (p < 0.001) 
but no interaction effect (p = 0.118) on %predicted VO2peak. 
Preliminary multiple comparisons suggested that intensity 
based on this metric was lower in PRE than PERI and POST 
in all conditions (p > 0.05) (Table 2).

Table 1   Mean and standard deviation for participant characteristics and for resting data averaged for 10 min

PRE premenopause, LPRE late premenopause, PERI perimenopause, POST postmenopause, BMI body mass index, V̇O2 volume of oxygen
*indicates significantly different to PRE, † indicates difference to PERI. ‡ indicates difference to POST

PRE (n = 35) PERI (n = 19) POST(n = 20) p

Age (years) 32 ± 7†‡ 47 ± 4*‡ 55 ± 3*†  < 0.001
Height (cm) 168.9 ± 6.0‡ 169.0 ± 5.4‡ 164.7 ± 4.2*† 0.015
Weight (kg) 69.0 ± 9.8 71.4 ± 10.1 69.0 ± 11.7 0.689
BMI (kg m−2) 24.1 ± 3.3 25.0 ± 3.4 25.5 ± 4.6 0.380
Body fat (%) 25.3 ± 8.2‡ 26.6 ± 6.3 31.4 ± 8.5* 0.024
Body fat mass (kg) 20.2 ± 7.1 19.4 ± 6.9 22.5 ± 10.2 0.447
Muscle mass (kg) 28.3 ± 2.9‡ 28.5 ± 3.0‡ 25.5 ± 1.9*† 0.001
Fat-free mass (kg) 50.7 ± 4.8‡ 51.2 ± 5.4‡ 46.5 ± 3.4*† 0.002
Oestradiol (pg ml) 29.1 ± 32.4 54.3 ± 65.5‡ 18.3 ± 21.9† 0.016
Progesterone (ng ml) 0.72 ± 0.75 1.04 ± 1.80 1.05 ± 2.3 0.074
Metabolic equivalent minutes per week 2676.9 ± 1121.3† 1935.9 ± 671.2* 2062.5 ± 1054.5 0.018
V̇O2peak (mL kg−1 min−1) 39.5 ± 7.9 37.2 ± 6.2 35.0 ± 6.4 0.081
Predicted V̇O2max (mL kg−1 min−1) 34.2 ± 7.7†‡ 27.8 ± 3.4* 25.3 ± 2.5*  < 0.001
Difference between measured V̇O2peak and predicted V̇O2max (%) 16% ± 20%†‡ 34% ± 18%* 38% ± 10%*  < 0.001
Difference between measured V̇O2peak and predicted V̇O2max (mL 

kg−1 min−1)
5.2 ± 6.77†‡ 9.4 ± 5.0* 9.6 ± 5.5* 0.012

Resting
V̇O2 (mL kg−1 min−1) 5.3 ± 1.3‡ 4.8 ± 1.1 4.5 ± 1.0* 0.048
Energy expenditure (kcal min−1) 1.7 ± 0.4 1.6 ± 0.3 1.5 ± 0.3* 0.003
Fat oxidation (g min−1) 0.10 ± 0.05 0.10 ± 0.05 0.10 ± 0.03 0.965
Carbohydrate oxidation (g min−1) 0.22 ± 0.13 0.19 ± 0.11 0.14 ± 0.07* 0.025
Respiratory frequency (1 min−1) 16.7 ± 2.0 16.0 ± 2.7 15.4 ± 2.5 0.111
Tidal volume (L) 0.7 ± 0.2 0.7 ± 0.2 0.6 ± 0.1 0.069
Minute ventilation (L min−1 11.0 ± 2.4 10.2 ± 2.0 9.0 ± 1.8* 0.001
Respiratory quotient 0.84 ± 0.06 0.83 ± 0.07 0.81 ± 0.05 0.142
Ventilatory equivalents (V̇E/V̇CO2) 32.5 ± 2.3 32.6 ± 3.3 32.6 ± 2.7 0.954
Ventilatory equivalents (V̇E/V̇O2) 27.4 ± 1.7 26.9 ± 2.2 26.3 ± 2.2 0.263
PETCO2 32.8 ± 1.7 33.5 ± 2.5 33.3 ± 2.5 0.450
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Metabolic and ventilatory responses

There were no differences across groups in any of the meta-
bolic variables. A significant main effect of hormonal status 
was observed for energy expenditure (p = 0.039), but with no 
significant interaction effect (p = 0.689). Exploratory pair-
wise comparisons demonstrate a lower energy expenditure 
in postmenopausal participants at 40% VO₂peak compared to 
premenopausal (p < 0.05) (Tables 3, 4).

Effect of hormone therapy and hormonal 
contraceptives

The hormone formulations of HT and HC users are availa-
ble in supplementary materials (S1). POST NM had lower 
oestrogen than POST HT, PERI NM, PERI HC, and PRE 
NM (p < 0.05). There were no significant differences evi-
denced in multiple comparisons between groups in body 
composition. PERI HC had lower MET minutes per week 
than PRE NM (p = 0.039).

PRE HC and PRE NM were significantly than PERI HC, 
PERI NM, POST HT, and POST NM (p > 0.001). PERI HC and 
PERI NM were younger than POST HT (p > 0.05) (Table 5).

Table 2   Mean and standard 
deviation for measures of 
exercise intensity across 30 
min of steady-state exercise at 
40%V̇O2peak and 60%V̇O2peak 
and 20 min at 80%V̇O2peak

PRE premenopause, LPRE late premenopause, PERI perimenopause, POST postmenopause, VO2R Vol-
ume of oxygen reserve,
*indicates significantly different to PRE, † indicates difference to PERI. ‡ indicates difference to POST. p 
indicates significance of one-way ANOVA

Intensity 
(%V̇O2)

Pre (n = 35) Peri (n = 19) Post (n = 20) p column effect p
intensity x 
condition

Power (W)
40% 37 ± 22 28 ± 14 32 ± 18 0.204 0.408
60% 80 ± 26 82 ± 25 76 ± 22
80% 118 ± 31 123 ± 23 107 ± 22
% V̇O2R (%)
40% 50 ± 7 50 ± 7 49 ± 8 0.724 0.365
60% 69 ± 5 69 ± 6 70 ± 5
80% 90 ± 6 92 ± 8 91 ± 5
% V̇O2peak (%)
40% 43 ± 6 43 ± 4 42 ± 5 0.255 0.375
60% 59 ± 4 59 ± 4 61 ± 3
80% 77 ± 4 80 ± 6 79 ± 4
V̇O2 (mL kg−1 min−1)
40% 16.3 ± 4.0 16.1 ± 2.9 14.7 ± 3.0 0.194 0.450
60% 23.4 ± 5.2 22.0 ± 3.7 21.3 ± 3.5
80% 30.5 ± 6.1 29.5 ± 4.9 27.7 ± 4.9
Rating of perceived exertion
40% 8 ± 1 8 ± 1 9 ± 2 0.476 0.563
60% 11 ± 2 11 ± 2 11 ± 2
80% 14 ± 2 14 ± 2 14 ± 2
Heart rate (b min−1)
40% 103 ± 14 98 ± 16 93 ± 14 0.017 0.570
60% 127 ± 20 118 ± 15 115 ± 17
80% 150 ± 22 140 ± 21 136 ± 21
% Predicted V̇O2max

40% 49 ± 8 58 ± 9 58 ± 9  < 0.001 0.118
60% 68 ± 13 80 ± 12 84 ± 12
80% 89 ± 15 106 ± 14 109 ± 15



European Journal of Applied Physiology	

Hormone therapies and hormonal contraceptives had 
no effect on metabolic or ventilatory responses to exercise 
(Table 6).

Discussion

In this study, participants were all studied during low endog-
enous hormone states to assess the impact of chronically 
lower hormones against acutely lower hormones of the 
menstrual cycle. Whilst the participants presented similar 
hormone profiles, postmenopause and perimenopause are 
characterised by a reduced chronic exposure to oestrogen 
compared to premenopausal females (Mumford et al. 2012). 
This study reveals no differences in substrate oxidation or 
ventilatory responses to exercise across the menopausal 
transition or induced by hormone therapy or hormonal con-
traceptive use. However, menopausal status does influence 
resting and submaximal exercise energy expenditure which 
is dissipated when normalised to fat-free mass.

Despite studying all groups in conditions where endog-
enous hormones would be at the lowest point, hormonal 

variation is possible. It is expected that oestrogen be lower 
in the postmenopause group compared to the premeno-
pause group; previous studies have reported oestrogen con-
centrations of 15.4 pg/ml in postmenopause and 97.0 pg/
ml in premenopause (Pasqualini et al. 2019) and 33.4 pg/
ml in the early follicular phase (Cramer et al. 2015). Early 
perimenopause can involve fluctuations of oestrogen up to 
higher levels than premenopause (Prior 1998) followed by a 
pronounced decline in oestrogen from 2 years prior to final 
menstrual bleed, this decline slows 2–6 years after final 
menstrual bleed, in postmenopause (Sowers et al. 2008). 
This high level of hormone variability was expected as men-
strual cycle control is significantly more difficult in peri-
menopause. The present study included a perimenopausal 
group to help understand not only the difference between 
pre- and postmenopause, but also the transition period. This 
group are not frequently investigated in tightly controlled 
physiological studies due to the high levels of intra- and 
inter- individual physiological fluctuations across this stage 
of life, highlighting shortcomings in research studies in the 
effects of menopause.

Table 3   Mean and standard 
deviation for energy 
expenditure, fat oxidation, and 
carbohydrate oxidation rates 
across 30 min of steady-state 
exercise at 40%V̇O2peak and 
60%V̇O2peak and 20 min at 
80%V̇O2peak

*indicates significance at an alpha level of 0.05

Intensity 
(%V̇O2peak)

Pre (n = 35) Peri (n = 19) Post (n = 20) p column effect p
intensity 
x condi-
tion

Energy expenditure (kcal min−1)
40% 5.6 ± 0.9 5.5 ± 0.7 4.9 ± 0.9
60% 7.8 ± 1.3 7.8 ± 1.0 7.2 ± 0.9 0.039 0.689
80% 10.4 ± 1.7 10.3 ± 1.3 9.4 ± 1.5
Fat oxidation (g min−1)
40% 0.24 ± 0.08 0.30 ± 0.10 0.21 ± 0.10 0.091 0.684
60% 0.24 ± 0.14 0.25 ± 0.12 0.21 ± 0.11
80% 0.13 ± 0.14 0.14 ± 0.15 0.09 ± 0.11
Carbohydrate oxidation (g min−1)
40% 0.83 ± 0.31 0.66 ± 0.21 0.75 ± 0.28 0.355 0.716
60% 1.37 ± 0.47 1.30 ± 0.36 1.30 ± 0.30
80% 2.43 ± 0.87 2.23 ± 0.42 2.19 ± 0.59
Respiratory quotient
40% 0.87 ± 0.05 0.85 ± 0.05 0.88 ± 0.06 0.289 0.756
60% 0.91 ± 0.06 0.91 ± 0.05 0.91 ± 0.04
80% 0.98 ± 0.07 0.97 ± 0.05 0.98 ± 0.05
Energy expenditure (kcal min−1 kgFFM)
40% 0.11 ± 0.02 0.11 ± 0.01 0.12 ± 0.02 0.901 0.743
60% 0.16 ± 0.03 0.15 ± 0.02 0.15 ± 0.02
80% 0.20 ± 0.04 0.20 ± 0.02 0.20 ± 0.03
Fat oxidation (g min−1 kgFFM)
40% 0.005 ± 0.002 0.006 ± 0.002 0.004 ± 0.002 0.358 0.761
60% 0.005 ± 0.003 0.005 ± 0.002 0.004 ± 0.002
80% 0.003 ± 0.003 0.003 ± 0.003 0.002 ± 0.002
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This work supports the conclusions that sex hormone 
concentrations have a significant effect on EE (Day et al. 
2005; Gavin et al. 2018) and that the menopausal transi-
tion may contribute to decreased EE (Lovejoy et al. 2008). 

Whilst it has recently been postulated that menopause has 
limited effect on resting EE aside from age (Karppinen et al. 
2023), postmenopausal participants, but not perimenopau-
sal participants, evidenced lower resting energy expenditure 

Table 4   Mean and standard 
deviation for ventilatory 
variables across 30 min 
of steady-state exercise at 
40%V̇O2peak and 60%V̇O2peak 
and 20 min at 80%V̇O2peak

Intensity 
(%V̇O2peak)

Pre (n = 35) Peri (n = 19) Post (n = 20) p column effect p
intensity 
x condi-
tion

Respiratory frequency (breaths min−1)
40% 24.4 ± 3.2 22.4 ± 3.2 21.8 ± 3.8 0.076 0.509
60% 27.5 ± 3.8 25.6 ± 3.2 26.2 ± 3.9
80% 32.8 ± 6.9 30.3 ± 4.6 31.7 ± 5.3
Tidal volume (L)
40% 1.2 ± 0.2 1.3 ± 0.2 1.2 ± 0.2 0.349 0.585
60% 1.6 ± 0.2 1.6 ± 0.2 1.5 ± 0.2
80% 1.9 ± 0.3 1.9 ± 0.2 1.8 ± 0.2
Minute ventilation (L min−1)
40% 29.8 ± 5.1 28.6 ± 3.9 26.3 ± 4.6 0.118 0.895
60% 42.3 ± 8.0 40.3 ± 6.1 38.6 ± 4.9
80% 60.9 ± 15.0 57.4 ± 9.5 55.9 ± 9.4
Ventilatory equivalents (V̇E/V̇CO2)
40% 28.5 ± 1.8 27.2 ± 6.4 28.4 ± 2.1 0.722 0.195
60% 27.9 ± 2.5 26.3 ± 6.0 27.9 ± 2.2
80% 38.7 ± 2.9 27.8 ± 2.8 29.3 ± 2.5
Ventilatory equivalents (V̇E/V̇O2)
40% 24.8 ± 1.8 23.0 ± 5.4 24.9 ± 2.0 0.210 0.081
60% 25.5 ± 2.7 23.8 ± 5.6 25.5 ± 2.3
80% 28.1 ± 3.8 26.9 ± 2.9 28.7 ± 3.2
PETCO2

40% 38.0 ± 2.3 38.2 ± 2.3 38.6 ± 2.6 0.469 0.082
60% 39.1 ± 2.8 39.8 ± 2.8 39.3 ± 2.8
80% 38.0 ± 3.5 39.3 ± 3.6 36.9 ± 2.7

Table 5   Mean and standard deviation for participant characteristics when divided based on HC and HT use

PRE HCa
n = 14

PRE NM b
n = 21

PERI HC c
n = 10

PERI NMd
n = 9

POST HT e
n = 11

POST NMf
n = 9

p value

Oestradiol (pg ml) 24.7 ± 27.6 32.0 ± 35.5f 49.1 ± 65.8f 60.0 ± 68.7f 29.9 ± 24.0f 4.01 ± 2.6bcde 0.002
Progesterone (ng ml) 0.5 ± 0.4 1.1 ± 1.7 1.1 ± 2.6 1.6 ± 2.9 1.0 ± 1.9 1.3 ± 3.3 0.147
Age (years) 31 ± 8cdef 33 ± 8cdef 48 ± 5abe 47 ± 5abe 55 ± 4abcd 55 ± 3ab  < 0.001
Height (cm) 168.0 ± 5.4 168.8 ± 6.5 170.0 ± 5.5 167.8 ± 5.4 166.0 ± 4.1 163.2 ± 4.1 0.041
Weight (kg) 66.9 ± 9.9 69.7 ± 9.8 71.0 ± 10.2 71.8 ± 10.5 69.4 ± 14.0 68.6 ± 8.9 0.667
BMI (kg m−2) 23.5 ± 3.7 24.4 ± 2.9 24.5 ± 2.9 25.6 ± 4.0 25.3 ± 5.8 25.7 ± 2.9 0.374
Body fat (%) 23.5 ± 9.8 26.5 ± 7.0 25.8 ± 6.9 27.5 ± 5.9 31.1 ± 10.4 31.9 ± 5.8 0.098
Body fat mass (kg) 16.7 ± 8.2 22.3 ± 5.7 19.0 ± 7.1 19.9 ± 7.0 22.5 ± 12.7 22.5 ± 6.7 0.262
Muscle mass (kg) 28.0 ± 1.8 28.28 ± 3.46 28.9 ± 2.9 28.1 ± 3.2 25.6 ± 2.0 25.3 ± 1.9 0.012
Fat-free mass (kg) 50.4 ± 3.0 51.0 ± 5.8 51.6 ± 5.6 50.8 ± 5.5 46.8 ± 3.5 46.1 ± 3.4 0.028
Metabolic equivalent min-

utes per week
2714 ± 889 3137 ± 1224c 1745 ± 609b 2346 ± 745 2275 ± 1341 1885 ± 719 0.031

V̇O2peak (mL kg−1 min−1) 39.7 ± 9.0 39.33 ± 7.3 36.65 ± 6.6 37.7 ± 6.0 34.0 ± 8.0 36.2 ± 3.9 0.352
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Table 6   Mean and standard deviation for metabolic and cardiorespiratory variables across 30 min of steady-state exercise at 40%V̇O2peak and 
60%V̇O2peak and 20 min at 80%V̇O2peak

PRE HC
n = 14

PRE NM
n = 21

PERI HC
n = 10

PERI NM
n = 9

POST HT
n = 11

POST NM
n = 9

p column effect p value
Intensity x group

Pulmonary
RF

40% 25.4 ± 2.4 23.8 ± 3.2 23.3 ± 3.4 21.4 ± 2.2 21.3 ± 3.5 22.4 ± 3.8 0.079 0.669
60% 27.9 ± 3.5 27.1 ± 3.8 36.7 ± 3.0 24.4 ± 1.3 25.2 ± 3.8 27.4 ± 3.2
80% 34.7 ± 7.2 31.6 ± 6.5 31.1 ± 5.3 29.3 ± 3.7 30.3 ± 5.6 33.3 ± 4.6

VT
40% 1.2 ± 0.1 1.3 ± 0.2 1.3 ± 0.1 1.4 ± 0.1 1.3 ± 0.2 1.2 ± 0.1 0.303 0.910
60% 1.5 ± 0.2 1.6 ± 0.2 1.6 ± 0.2 16 ± 0.2 1.5 ± 0.3 1.5 ± 9,1
80% 1.8 ± 0.2 1.9 ± 0.3 1.9 ± 0.2 2.0 ± 0.3 1.8 ± 0.3 1.7 ± 0.2

VE
40% 29.8 ± 4.9 29.7 ± 5.0 28.9 ± 4.5 28.3 ± 3.0 26.6 ± 4.6 26.0 ± 4.5 0.485 0.978
60% 42.1 ± 8.3 42.3 ± 7.7 41.1 ± 5.9 39.3 ± 5.8 37.8 ± 5.0 39.5 ± 4.5
80% 62.1 ± 15.7 60.0 ± 14.9 57.5 ± 9.6 57.3 ± 9.9 54.4 ± 9.8 57.7 ± 9.1

VE/VCO2
40% 29.0 ± 2.1 28.2 ± 1.4 28.6 ± 2.5 28.8 ± 1.8 28.4 ± 1.8 28.4 ± 2.6 0.360 0.576
60% 28.7 ± 2.1 27.3 ± 2.5 27.7 ± 2.6 27.7 ± 1.3 27.7 ± 1.9 28.1 ± 2.5
80% 29.8 ± 3.5 27.9 ± 2.1 28.0 ± 3.1 27.5 ± 2.6 29.5 ± 2.2 29.0 ± 2.9

VE/VO2
40% 25.1 ± 1.7 24.7 ± 1.7 24.4 ± 2.2 24.0 ± 1.3 25.3 ± 1.5 24.5 ± 2.3 0.503 0.940
60% 25.8 ± 2.3 25.3 ± 2.8 25.6 ± 2.3 24.5 ± 2.0 25.7 ± 2.3 25.3 ± 2.4
80% 28.9 ± 4.5 27.6 ± 3.3 27.1 ± 2.8 26.5 ± 3.1 28.9 ± 3.2 28.3 ± 3.4

PetCO2
40% 37.1 ± 2.7 38.6 ± 1.8 38.1 ± 2.7 38.2 ± 2.0 38.5 ± 2.5 38.6 ± 2.9 0.286 0.466
60% 38.0 ± 2.5 39.8 ± 2.9 39.9 ± 3.7 39.8 ± 1.3 39.5 ± 2.6 39.1 ± 3.0
80% 37.1 ± 4.3 39.3 ± 2.7 39.5 ± 4.3 40.3 ± 3.5 37.5 ± 2.6 37.9 ± 3.3

Intensity
HR

40% 103 ± 14 102 ± 15 96 ± 15 102 ± 18 91 ± 12 95 ± 15 0.072 0.612
60% 126 ± 21 128 ± 21 117 ± 16 118 ± 14 107 ± 22 119 ± 14
80% 152 ± 22 148 ± 22 142 ± 20 137 ± 22 130 ± 25 142 ± 13

RER
40% 0.86 ± 0.04 0.87 ± 0.05 0.85 ± 0.05 0.84 ± 0.05 0.89 ± 0.07 0.86 ± 0.04 0.243 0.858
60% 0.90 ± 0.06 0.91 ± 0.06 0.93 ± 0.05 0.88 ± 0.04 0.93 ± 0.05 0.90 ± 0.03
80% 0.96 ± 0.06 0.99 ± 0.07 0.97 ± 0.04 0.97 ± 0.07 0.98 ± 0.06 0.98 ± 0.05

VO2

40% 16.9 ± 2.2 16.6 ± 2.9 16.0 ± 2.6 16.2 ± 3.4 14.8 ± 3.6 14.7 ± 2.2 0.465 0.823
60% 23.8 ± 5.9 23.2 ± 4.6 21.9 ± 3.3 22.1 ± 4.4 20.7 ± 4.2 22.1 ± 2.4
80% 31.2 ± 7.2 30.0 ± 5.4 29.1 ± 4.9 29.9 ± 5.1 26.7 ± 6.1 28.8 ± 2.7

%VO2max

40% 43 ± 5 42 ± 6 44 ± 4 43 ± 5 44 ± 7 41 ± 5 0.521 0.621
60% 60 ± 4 59 ± 3 60 ± 3 58 ± 4 61 ± 4 61 ± 2
80% 78 ± 4 77 ± 3 80 ± 6 79 ± 5 79 ± 3 80 ± 4

%VO2reserve

40% 51 ± 7 49 ± 7 51 ± 7 50 ± 6 51 ± 8 46 ± 6 0.248 0.707
60% 70 ± 3 67 ± 5 69 ± 6 68 ± 6 71 ± 5 70 ± 4
80% 93 ± 6 88 ± 5 92 ± 10 91 ± 4 91 ± 5 91 ± 5

Metabolic
FATox
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than premenopausal participants. This suggests that age is 
not the primary driver, since the effect was not continuous 
across groups. These findings indicate that menopause stage 
influences energy expenditure during submaximal exercise, 
but this is not impacted by exercise intensity. Preliminary 
analysis using multiple comparisons suggested a lower 
energy expenditure at low intensities in postmenopause com-
pared to premenopause, in line with the findings of Abild-
gaard et al. (2013) at 50% V ̇O2peak, which may suggest an 
intensity-dependent effect; however, this should be inter-
preted cautiously given the absence of an interaction effect. 
Previously, an exercise intensity-dependent effect has been 
demonstrated in the role of oestrogen and progesterone on 
exercise metabolism, whereby at high intensities of the exer-
cise, the effect of hormones is negated due to the overriding 
cardiopulmonary and metabolic response to the increased 
energy demand (Hackney et al. 1994). All groups exhibited 
similar aerobic capacities; subsequently, our data imply that 
high physical fitness cannot mitigate EE declines despite 
previous reports (Duval et al. 2013; Gavin et al. 2018).

The reduced EE in postmenopause, however, can be 
attributed to deleterious changes in body composition. 
Whilst menopause may contribute to acceleration of age-
related increases in fat mass (Toth et al. 2000; Greendale 
et al. 2019) in this study, all groups had similar body fat 
mass (kg) and body mass (kg). Yet, the POST group had 
a higher body fat percentage than PRE, accompanied with 
lower muscle mass and FFM than the PRE and PERI groups. 
When normalised to FFM, differences in EE dissipated. 
Hence the characteristic changes in body composition of 
the menopausal transition, such as increased visceral fat and 
reduced lean body mass, may be bi-directionally related to 
reduced EE stimulated by menopause (Marlatt et al. 2022). 
Despite a meta-analysis of ten studies demonstrating that 
oestrogen supplementation with hormone therapy could 
increase resting daily EE by up to 222 kcals (Weidlinger 

et al. 2023), HT and HC had no effect on energy expenditure. 
This corroborates the hypothesis that temporal changes in 
sex hormones alone do not exert effect on EE, but the effects 
of chronic losses are related to changes in body composition 
over time.

Postmenopausal participants evidenced lower resting 
V ̇E than premenopausal participants without differences in 
VT and RF, similar to findings of MacNutt et al. (2012) 
and Slatkovska et al. (2006) in menstrual cycle differences, 
possibly relating to reduced overall sex hormone exposure 
and reduced metabolic demand. However, there were no 
differences in exercise ventilation. MacNutt et al. (2012) 
suggested that sex hormones may contribute to lowering 
of the ventilatory recruitment threshold which results in an 
increased ventilatory response to CO2 and higher resting VĖ. 
This has been evidenced in the luteal phase of the menstrual 
cycle compared to the follicular phase (Dombovy et al. 1987; 
Das 1998; MacNutt et al. 2012; Rattley et al. 2025). This is 
related primarily to progesterone which acts as a stimulant 
for respiration (Regensteiner et al. 1989; León-Velarde et al. 
2001). Whilst there have been no reported differences in 
ventilation at rest between premenopausal females in the 
early follicular phase and postmenopausal females (Mercuro 
et al. 2006; Preston et al. 2009; Rael et al. 2021), a blunted 
central respiratory chemoreflex to increase ventilation in 
response to increasing partial pressure of CO2 has been 
previously demonstrated in postmenopausal females at rest 
(Preston et al. 2009) and in ovariectomised rats (Marques 
et al. 2015). This was further elucidated by Davenport et al. 
(2012) in which active postmenopausal participants, but not 
sedentary participants, demonstrated this blunted ventila-
tory response to increasing CO2, which the authors relate 
to mechanical capacity and chemoreceptor sensitivity. This 
study did not evidence differences in minute ventilation 
across the female lifecycle at any exercise intensity, sug-
gesting that cardiopulmonary response to exercise overrides 

Table 6   (continued)

PRE HC
n = 14

PRE NM
n = 21

PERI HC
n = 10

PERI NM
n = 9

POST HT
n = 11

POST NM
n = 9

p column effect p value
Intensity x group

40% 0.24 ± 0.07 0.24 ± 0.08 0.29 ± 0.12 0.31 ± 0.09 0.18 ± 0.12 0.23 ± 0.08 0.090 0.884

60% 0.26 ± 0.16 0.23 ± 0.13 0.20 ± 0.11 0.30 ± 0.10 0.17 ± 0.11 0.25 ± 0.08

80% 0.16 ± 0.15 0.11 ± 0.13 0.12 ± 0.12 0.17 ± 0.18 0.09 ± 0.12 0.10 ± 0.11
CHOox

40% 0.79 ± 0.30 0.85 ± 0.31 0.69 ± 0.21 0.63 ± 0.22 0.81 ± 0.33 0.68 ± 0.18 0.541 0.851
60% 1.29 ± 0.48 1.43 ± 0.46 1.44 ± 0.36 1.15 ± 0.31 1.32 ± 0.33 1.22 ± 0.23
80% 2.27 ± 0.67 2.54 ± 0.98 2.28 ± 0.37 2.27 ± 0.56 2.13 ± 0.63 2.27 ± 0.55

EE
40% 5.46 ± 0.85 5.61 ± 0.92 5.49 ± 0.78 5.45 ± 0.62 4.91 ± 0.94 4.90 ± 0.77 0.217 0.758
60% 7.69 ± 1.44 7.90 ± 1.18 7.64 ± 1.03 7.55 ± 0.99 6.99 ± 1.03 7.35 ± 0.71
80% 10.22 ± 1.67 10.48 ± 1.68 10.25 ± 1.60 10.40 ± 1.10 9.10 ± 1.56 9.82 ± 1.26
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any hormonally regulated effect. However, it is important 
to note that all groups demonstrated similar progesterone 
concentrations, which may explain the lack of differences.

Limitations

This study did not employ dietary control outside of 
avoiding food consumption in the 2 h prior to the exercise 
tests. As conclusions are specific to their contexts, this 
study sought to investigate female participants in gen-
eral lifestyle conditions without dietary manipulations to 
enable greater generalisability of results. Comparisons 
were made between groups and not within groups, ensur-
ing that individual dietary consistency within participants 
was also not essential. However, the use of food diaries 
could have helped assess dietary differences between 
menopause groups and their potential influence on the 
results. Further, a previously validated protocol for rest-
ing energy expenditure was not employed and this should 
be considered in the interpretation of resting data. Addi-
tionally, continuous V ̇O2 monitoring allows study of con-
sistent metabolic intensity by modulating workload. How-
ever, in some cases, participants were unable to achieve 
this V ̇O2 consistently in high-intensity conditions, leading 
to an overall lower percentage of V ̇O2peak over the exer-
cise bout. This method should be employed with caution 
in high-intensity exercise conditions. This work is limited 
by the array of hormonal contraceptives utilised in the 
sample, limiting subgroup analysis of exogenous hormone 
effects. There are limitations of grouping different types 
of hormonal contraceptives together under an umbrella 
term; hence, further research should seek to elucidate the 
impact of hormonal contraceptives on resting and exercise 
metabolism with optimal controls in place (Flood et al. 
2024).

Conclusion

This study supports the conclusion that sex hormones exert 
an effect on exercise energy expenditure that may be exer-
cise-intensity dependent. However, there is a limited effect 
of menopause stage on substrate metabolism and ventilation 
likely as the increased physiological demand in response to 
exercise surpasses the hormone-regulated blunting of ven-
tilation and metabolism.
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