Noname manuscript No.
(will be inserted by the editor)

Self-supervised learning for fine-grained monocular 3D face reconstruction
in the wild

Dongjin Huang! .- Yongsheng Shi' . Jinhua Liu! - Wen
Tang?

Received: date / Accepted: date

Abstract Reconstructing 3D face from monocular images is a challenging computer vision task, due to the
limitations of traditional 3DMM (3D Morphable Model) and the lack of high-fidelity 3D facial scanning data. To
solve this issue, we propose a novel coarse-to-fine self-supervised learning framework for reconstructing fine-grained
3D faces from monocular images in the wild. In the coarse stage, face parameters extracted from a single image
are used to reconstruct a coarse 3D face through a 3DMM. In the refinement stage, we design a wavelet transform
perception model to extract facial details in different frequency domains from an input image. Furthermore, we
propose a depth displacement module based on the wavelet transform perception model to generate a refined
displacement map from the unwrapped UV textures of the input image and rendered coarse face, which can
be used to synthesize detailed 3D face geometry. Moreover, we propose a novel albedo map module based on
the wavelet transform perception model to capture high-frequency texture information and generate a detailed
albedo map consistent with face illumination. The detailed face geometry and albedo map are used to reconstruct
a fine-grained 3D face without any labeled data. We have conducted extensive experiments that demonstrate
the superiority of our method over existing state-of-the-art approaches for 3D face reconstruction on four public
datasets including CelebA, LS3D, LFW, and NoW benchmark. The experimental results indicate that our method
achieved higher accuracy and robustness, particularly of under the challenging conditions such as occlusion, large
poses, and varying illuminations.
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1 Introduction

The 3DMM [I] has enabled the use of 3D face reconstruction methods various applications such as face recognition
[2, 3], face editing [4], and face animating [5] [6]. In recent years, deep learning methods have become increasingly
popular for 3D face reconstruction using images [7]. These methods offer significant advantages over traditional
3DMM models by improving the quality of reconstruction under varying image conditions [8], @].

Previous methods [I0HI4] to generate smooth 3D faces through linear parameters regressed by using CNN in
the prior 3D face models, since detailed representations of face geometry and texture were lost in latent facial
coefficients. Some methods have been proposed to restore detailed face geometry using supervised [15H22] or self-
supervised learning [23H26]. Supervised learning methods utilize insufficient ground-truth 3D facial scanned or
synthesized training data, which is costly and time-consuming to collect a large number of high-quality 3D face
data (unrestricted illumination, expression and pose). Consequently, these methods regress facial parameters of
statistical face model through finite linear geometry space, which extracts only low-frequency 3D mesh information.
This generates overly smoothed 3D reconstructions that lack fine facial details. Self-supervised methods use face
images in-the-wild without any labeled data extensively in order to improve the effectiveness and expressiveness
of 3D face reconstructions. This is done by minimizing the pixel-wise errors between the input image and the
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rendered image by re-projecting the generated 3D face into the 2D space. Although these methods can reconstruct
high-fidelity facial geometry and texture information, they are prone to generate magnanimous redundancy and
noise, making it difficult to generate 3D faces with rich details that are close to the input.

In this paper, we propose a novel self-supervised learning framework for reconstructing high-fidelity 3D faces
from monocular images taken in real-world environments, using a coarse-to-fine scheme. For the coarse stage,
we train a regressor using monocular images without ground-truth data, and predict latent representations of
the 3DMM model, which include shape, expression, albedo, pose, and illumination coefficients. The latent facial
parameters are calculated by increasing the similarity between the rendered image and input image. It is robust for
the facial images of occlusion, large pose, and illumination variations. Although the coarse model can accurately
construct 3D faces, the resulting geometry and texture are smooth and lack details and wrinkles that change with
expression. Therefore, in the fine stage, in order to obtain more abundant facial details, we first use the wavelet
transform to extract high-frequency, medium-frequency, and low-frequency features from the input facial images.
We then design a depth displacement module based on the wavelet transform perception model to synthesize
refined displacement maps without ground-truth displacement labels, using the unwrapped images from the input
and rendered images in the coarse stage. The detailed depth displacement map can be used to reconstruct 3D face
geometry with expression-dependent details. Furthermore, we propose a novel albedo module of an encoder-decoder
structure based on the wavelet transform perception model to generate detailed albedo map that can be used for
restoring high-quality facial texture with details. And the resulting faces have consistent illumination with the
input images. Our extensive qualitative and quantitative experiments demonstrate the superiority of our method
in reconstructing high-fidelity 3D faces with rich details. Our method outperforms other comparative methods
on different datasets and achieves state-of-the-art reconstructions with accurate 3D geometry and high-quality
texture from a single face image.

The main contributions of this work are summarized as follows:

e For the limitations of traditional 3DMM and the lack of high-fidelity 3D facial data, we propose a novel coarse-
to-fine 3D face reconstruction framework using self-supervised learning, where a 3D face generated from a
single image in the wild is gradually refined at different reconstruction stages.

e To extract rich details, we design a wavelet transform perception model that can effectively obtain facial
features in different frequency domains from input images.

e To reconstruct fine-grained 3D face geometry, a depth displacement module based on the wavelet transform
perception model is proposed to robustly generate detailed depth displacement map. The detailed depth dis-
placement map can be used to synthesize 3D face geometry with expression-dependent wrinkles in the fine
stage.

e We propose a novel albedo module based on the wavelet transform perception model to generate detailed
albedo map that can be used for recovering high-fidelity 3D textures with rich details.

2 Related work

Generally, 3D face reconstruction methods are divided into traditional-based methods and deep learning-based
methods. Traditional-based 3D face reconstruction methods [27] are easy to generate 3D faces with artifacts,
and they are difficult to reconstruct accurate faces from facial images on in-the-wild. In recent decades, 3D face
reconstruction methods based on deep learning have made great progress and attracted much attention. This
section reviews the works related to our methods in brief, including supervised reconstruction, self-supervised
reconstruction and fine-grained reconstruction.

Supervised reconstruction: Many methods [28-37] perform monocular 3D face reconstruction using 3SDMM
parameters regressed from paired training data. During the training process, they utilize loss function to minimize
the difference between the outputs and ground-truth data. Guo et al. [2§] train a unified 3D facial model on
different sources from ground-truth 3D scanned data, RGB-D and in-the-wild images. Although this facial model
has a powerful ability to generate 3D faces, it comes at great cost to collect and process training data. SADRNet
[29] directly regresses 3D geometry from the AFLW2000-3D [30] and the Florence 3D faces [31] to alleviate the
limitation of 3DMM, which is capable of handling occluded faces, but only suitable for a set of carefully selected
face images. Multi-view images of a person captured under different conditions together with a small number of
labeled 3DMM parameters have been used as ground-truth to train a 3D reconstruction model with an proposed
encoder-decoder framework [36]. This model can robustly reconstruct 3D faces for a specific-person, but it is
not applicable to other people due to the insufficient training data. To solve the problem of monocular 3D face
reconstruction when the distance between face and camera is close, PerspNet [37] is proposed to simultaneously
reconstruct a 3D face and estimate 6DoF (6 Degrees of Freedom) face pose by using PnP. Moreover, a large-scale 3D
dataset with ground-truth 3D face mesh and corresponding 6DoF pose annotations are collected for the PerspNet
training. The above supervised-based 3D face reconstruction approaches are trained requiring ground-truth 3D
scans, synthesized data or facial parameters by fitting prior 3SDMM.
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Self-supervised reconstruction: Self-supervised 3D face reconstruction methods make the use of readily
available images in-the-wild or synthetic image data without any labels. A non-linear 3D face deformation model
has been trained as an improved version of the linear 3DMM via a large number of real-world facial images [38].
This non-linear model has greater capability for representing varied 3D shapes, albedo, and illumination models
than the optimization-based linear 3DMM. However, faces generated by this method [38] are not realistic, and
the skin colour differs greatly from the input images. NeRF (Neural Radiance Field) [39] [40] also has significantly
improved representations of 3D scenes through self-supervised learning, and uses volume rendering to map the
latent codes extracted from multi-view images to realistic images. Based on ray casting for volume rendering,
NeRF method is high computational cost. RingNet [41] and 3DFFA_V2 [42] can robustly reconstruct 3D face
geometries without texture from a single face image in challenge conditions in-the-wild, such as occluded and large
poses. MGCNet [43] method improves the realism of reconstructed 3D faces with high-fidelity from a single image
by exploiting a new view synthesis algorithm based on occlusion perception. However, its reconstruction results
degenerates quickly for large expressions, varied lighting conditions, and head poses. While these self-supervised
reconstruction methods do not require paired data, it is difficult for them to generate detailed 3D faces such as
wrinkles with expression and high-frequency textures. In this paper, we propose a novel pipeline of fine-grained
reconstruction to recover the 3D faces with rich details from the coarse-bench, using a self-supervised learning.

Fine-grained reconstruction: More recently, for many computer generated imaging, such as digital games,
movies post-productions and VR/AR applications, fine-grained 3D face reconstructions are essential. FaceScape
[18] builds a large-scale 3D faces with rich details to train a detailed 3D face model, which is capable of generating
highly realistic 3D face geometries from a single face images under laboratory conditions. FaceVerse [21] uses a
hybrid data set of RGB-D images and detailed 3D head scans to learn a fine-grained facial model via a novel
coarse-to-fine scheme. This model can recover facial geometry details and appearances based on a conditional
StyleGAN network. Deng et al. [I7] proposed a fine-scale pipeline to transfer facial wrinkles from the source 3D
face to the target 3D faces through a supervised learning. The above supervised learning methods for fine-grained
reconstruction, although are capable of reconstructing fine-grained 3D faces under laboratory controlled conditions,
can generate unrealistic facial expressions and noise. This is because, when complex face images in the wild are used
as input, the limitations of training data sets and the distribution of the collected training data with ground-truth
that does not consistent with the face images in-the-wild, leading to degenerated reconstruction results.

Self-supervised learning methods for fine-grained reconstruction with displacement map [16}, [19] [23H25] are able
to capture facial details using monocular face images in the wild, which greatly extended the application domain
capabilities of 3D face reconstructions. In essence, these methods predict the displacement map with high-frequency
information from facial images, and combine the information with the coarse-scale 3D shape to generate the fine-
grained face. DECA [23] and EMOCA [24] utilize the loss formulations of shape-consistency and detail-consistency
to generate 3D facial wrinkles with the change of expressions. However, these methods struggle to reconstruct
high-fidelity 3D faces with rich details, as the detail parameters extracted by the detail encoding network only
contain a small amount of facial structural information. Moreover, they are unable to generate photo-realistic
textures, since the UV albedo map contains fewer texture details. The method [25] also uses displacement maps
predicted by the image-to-image translation network to capture facial details without any 2D-3D data as ground
truth. However, it lacks robustness under challenging conditions and is prone to generate 3D faces with scratches.

In this paper, we propose a novel self-supervised learning for fine-grained 3D face reconstruction based on
coarse-to-fine framework. To reconstruct fine-grained 3D faces, we first utilize the haar-based wavelet transform
to extract facial high-frequency features from the input images. Moreover, we propose a novel depth displacement
module and an albedo module based on the wavelet transform perceptual model to generate a displacement map
and albedo map with rich details from the unwrapped image of the input as well as the rendered coarse image in
the UV space. Our proposed approach is robust and accurate for facial images in the wild, even under challenging
conditions such as self-occlusions, varying lighting conditions, and extreme poses.

3 Proposed method

We propose a novel fine-grained 3D face reconstruction approach of coarse-to-fine structure from monocular images
on in-the-wild. We will explain the specific pipelines of each module in the framework as follows.

3.1 Overview

Given a single facial image, our goal is to reconstruct corresponding fine-grained 3D faces with high-fidelity. To do
so, we propose a novel multi-stage 3D face reconstruction architecture by using self-supervised learning, in which
the generated face is gradually refined at different stages as depicted in Fig.

Our framework consists of two pipelines: coarse stage and fine-grained stage. In the coarse reconstruction stage,
we adopt 3DMM regression model based on VGG-Face network [44] named R-Net to regress facial coefficients of
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Fig. 1. The overview of the proposed framework for coarse-to-fine 3D face reconstruction: the black pipeline
block is Coarse Reconstruction Stage; the red pipeline block is Fine-grained Reconstruction Stage.

shape, expression, albedo, pose, and illumination from input images. Albedo map and face geometry are generated
with the prior 3DMM model from the albedo parameters and the facial expression and shape parameters, respec-
tively. The coarse 3D faces are reconstructed using differentiable rendering without any ground-truth labels. For
the fine-grained reconstruction pipeline, we propose a separate albedo module and a depth displacement module
based on wavelet transform perception model to recover facial details so that we can effectively reduce the limit
of the 3DMM model that can only reconstruct smooth 3D faces. Firstly, we exploit a wavelet transform to extract
the facial detailed features in different frequency domains from the input images. The high-frequency features
and smooth albedo maps as inputs are sent to the albedo module to predict high-quality albedo maps. Then, the
inputs and rendered coarse images are unwrapped into UV space in this coarse stage. Furthermore, the depth
displacement module is designed to predict depth displacement maps with details from these unwrapped images
and high-frequency features extracted by wavelet transform from input images. At the same time, the 3D face
geometry with rich details and wrinkles that are changing with expressions can be generated from the detailed
displacement maps. Finally, the fine-grained face images are rendered by given the high-quality albedo maps and
the 3D face geometry.

3.2 3DMM Model

We use a CNN-based regressor R-Net to regress the facial coefficients of 3DMM model with self-supervised learning.
The 3DMM model utilizes the shape, expression and albedo parameters to generate the 3D face shape and the
albedo. A differentiable renderer is then used for rendering the 3D shape and the albedo to a 2D face image through
the parameters of the illumination and the face pose.

3D Face Model: We take a 3DMM as a surrogate 3D face model to represent the 3D face with the facial
identity, expression and albedo PCA bases. Given the parameters of the facial identity, expression and albedo, the
3D facial shape and albedo are represented as follows:

S=5 (avﬁ | S,Bid,Bemp) = 5+Bida+BemPﬁ (1)
T=T(5|T,B) =T+ B (2)

where S € R3" and T € R®*V represent the average 3D face shape and albedo, respectively. B;q € R3*Y xlel
Bezp € R3V*I8l and B, € R3*N*I%] indicate PCA bases of the facial identity, expression and albedo, respectively.
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a € R‘O‘l, ﬁ_e ]Bl’Bl and § € R!®! refer to the corresponding parameter vectors of the identity, expression and albedo.
We utilize S, T, B;q and B; are built from the BFM [45], and the expression bases Bezp from FaceWarehouse [46).
As a result, the 3D face can be formulated as follows:

S=S5 + Biga + Beacp/B:} (3)

M:{S’T}:{ T =T+ Bis

As in Eq. (3), the 3DMM model finally outputs a 3D face Mesh containing a set of vertices (N = 53215).

Camera Model: Since the training data used is from face images in-the-wild, we use the perceptual camera
model to project 3D geometry into 2D image space with a fixed scale factor. The face pose parameters p = {R, T’}
can be represented by a rotation matrix R € SO (3) and a translation vectors ¢t € R®. 3D vertices are projected
into the 2D space as:

v=[](fRM; +t) (4)

where M; € R? indicates the vertex position in the 3D face Mesh M. I € R?*3 performs the orthogonal operation
as the 3D-2D projection. And v is the projected 2D vertex.

Illumination Model: For shadow shading, assuming Lambertian is used for distant light sources and facial
surfaces, and SH (Spherical Harmonics) is used for the environmental illumination model [47]. The shade image

can be calculated as:
B2

C(y|ti,ng) =t0 Z%@b(m) (5)

b=1

where we utilize b = 3 SH bands representing the scene illumination [23]. v € R?7 denotes the illumination
parameters for RGB face images. t; represents the skin texture in albedo T'. n; is normal which is built from the
3D face geometry M. &, € R® — R is SH basis formulation, and ® represents the operation of the Hadamard
product.

Differentiable rendering: Once the facial parameters are given for identity «, expression 3, albedo ¢,
pose p and illumination v, we can generate a 2D face image I, by the differentiable rendering [34] as I, =
R (M (a,,9),p,C (7)), where R represents the rendering operation.

In this paper, we utilize the R-Net regressor to regress these facial parameter vectors {«, 8,9, p, v} € R%22 of
which 80 is for the face identity, 29 for expression, 80 for albedo, 6 for pose and 27 for illumination by modifying the
last fully connection layer from an input image. This regressor is named R-Net for monocular face reconstruction.
We describe how to train the R-Net in the following section.

3.3 Coarse reconstruction

In the coarse reconstruction stage, we train a coarse 3D face reconstruction model from a single image in-the-wild
with a self-supervised learning. We adopt R-Net based on VGG-Face [44] to encode a face image to the 3DMM
coefficients {a, 8,8, p,7} € R???, which can be used to synthesize a coarse face image via differentiable rendering
as shown in Fig. [I] R-Net is trained using the following loss functions by minimizing the disparity between the
input image and the rendered image.

Leoarse = )\pho‘cph,o + )‘lmk‘clmk + )\id'cid + ['reg (6)

where Lyho, Limk, Lia and Lreg are the representations for the photometric loss, landmark loss, perceptual identity
loss, and regularization term loss, respectively. Coefficients Apno, Aimk, Aig denote the weights of these loss terms
and are set to constants. The details are shown as follows.

Photometric loss: We adopt this photometric loss to enhance the pixel-level of the rendered image to be
similar to the input image. This loss is expressed as:

1

Lpho = =7
? Z(i,j)eM V(i,7)

> VG, 5) * (TG, 5) = Tr(i, )], (7)

(i,j)EM

where M represents the index of an image pixel. I and Ir are the input facial image and the rendered facial image.
V is a facial mask obtained by the method [42]. Its value is 1 in the face skin area, and 0 elsewhere.

Landmark loss: Landmark loss measures the error between the 68 landmarks of the input face image and the
re-projected 2D locations of 68 key points in the 3D geometry. It can effectively align the pose and expression of
3D faces. The 2D landmarks are detected by the common 3D face alignment method [48]. This loss is defined as:

1 & 2
Limk = NZ‘
i=1

(8)

R
qi — 4; ‘
2
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where ¢; and ¢f* are the i-th landmark location of the input face image and the rendered face image, respectively.
N = 68 represents the number of face landmarks.

Perceptual identity loss: Recently, perceptual identity loss performs the effectiveness for 3D face recon-
struction |23} 24], which measures the identity similarity between the input and the reconstructed images. Inspired
by this, we utilize a pre-trained face recognition network VGG-Face [44] to compute the perceptual identity loss.
This perceptual identity loss is computed as:

Lig = ||(I) — D(Ir)|l5 (9)

where @(I) and §(Ir) represent features extracted by the VGG-Face in the input facial image and the reconstructed
facial image.

Regularization: We propose a regularization term for the shape, expression and albedo parameters of human
face. It prevents these values from being too large, otherwise the reconstructed 3D geometry and textures will be
distorted. This regularization term loss is expressed as:

Lreg = Aa la|* + Ag 1B1* + X5 6] (10)

where Ao, Ag and A5 denotes the weights of these regularization terms.

3.4 Fine-grained reconstruction

The albedos and shapes generated at the coarse stage are constrained by the prior 3DMM model and can only
obtain low-frequency components of the skin texture and the geometry. Our goal is to generate high-quality albedo
maps with detailed shapes. Therefore, we propose an novel albedo module and a depth displacement module based
on the wavelet transform perception, respectively, to generate high-quality albedo maps and depth displacement
maps with rich details.

3.4.1 Wawvelet transform

Wavelet transform is widely used in image processing to decompose images into different frequency domains.
Currently, existing 3D face reconstruction methods do not use it. In this paper, we first introduce a Haar-based
wavelet transform to perform low-pass and high-pass filtering from the horizontal and vertical directions, which
contains four kernels: {LL", LH", HL" HH™}. Where, the low-pass filter LT = %[1,1] is to extract low-

frequency signals on the smooth surface. The high-pass filter HZ = %[—1, 1] is to capture high-frequency signals
in the horizontal, vertical, and diagonal directions of a face image. The first-order Haar-based wavelet transform
to decompose different frequency components is illustrated in the Fig. [2l Where, (a) denotes input images; (b) LL
represents the low-frequency information of the inputs; (¢) LH indicates low-frequency information in the horizontal
direction and high-frequency information in the vertical direction; (d) HL denotes high-frequency information in the
horizontal direction and low-frequency information in the vertical direction; and (e) HH indicates high-frequency
in the diagonal directions.

(2) Input B LL (9LH (4 HL () HH

Fig. 2. The demonstration of wavelet transformation.

We can observe that the LL frequency component is close to the input image and contains noise such as back-
ground areas except for the face. Almost all facial structural details are stored in the high-frequency components.
Therefore, in this paper, we ignore the low-frequency information of LL and adopt the high-frequency components
of LH, HL., and HH to capture rich details of face images.
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3.4.2 Albedo module

To alleviate the limitations of the prior 3DMM in generating high-fidelity textures with rich details, we propose a
novel albedo module with an encoder-decoder structure based on the wavelet transform perception encoder. The
bottom wavelet transform perception encoder is used to extract high-frequency texture features and feed them
to the top decoder of the albedo module (see Fig. . Specifically, we adopt haar-based transform decompose the
input image into different frequency components. Given the smooth albedo map and the high-frequency features
of LH, HL., and HH, the bottom encoder branch based on wavelet transform perception is used to extract detailed
information, and the encoder-decoder branch of the albedo module is dedicated to synthesizing the high-fidelity
albedo map by using self-supervised learning. The detailed albedo map can be used to generate facial textures
with rich details and realistic expressions, while maintaining the skin color consistent with the input image.
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Fig. 3. Architecture of proposed albedo module.

3.4.3 Depth displacement module

To generate fine-grained 3D geometry with rich wrinkles that change with expression, we propose a novel depth
displacement module based on the wavelet transform perception with two parallel encoder-decoder branches, as
depicted in Fig. [ Firstly, we unwrap the input image and the rendered face image in this coarse stage into UV
space. Then, we obtain the increment image by pixel-level subtraction of these two unwrapped images. We use the
bottom encoder-decoder branch to extract depth displacement features from the increment image. Then, we utilize
the upper wavelet transform perception-based encoder-decoder branch to generate a depth displacement map with
rich details from the high-frequency features of LH, HL, and HH of the input face image. Fine-grained 3D face
geometry with structural details can be reconstructed via the depth displacement map. Finally, photo-realistic face
images can be rendered from high-quality albedo maps and detailed 3D face geometry.

3.4.4 Loss functions

In the pipeline of fine-grained 3D face reconstruction, we utilize in-the-wild facial images to train the albedo module
and the depth displacement module with self-supervised learning by minimizing the following loss functions:

/:'fine = )\pho/-:pho + Aidﬁid + )\albcalb + >\smo£smo (11)

The advantage of the loss function is that it is robust to reduce artifacts and distortions in the reconstruction
process. Where, L,n, and L;q represent the photometric loss and the perceptual identity loss in this coarse
reconstruction stage, respectively. L4, and Lsmo represent the albedo loss and the smoothness loss, respectively.

Aphos Aids Aaly and Asmo denote the weights of these loss terms and are set to constants. Details for the albedo
loss and the smoothness loss are shown as follows.
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Fig. 4. Architecture of proposed displacement map module.

Albedo loss: L is the consistency regularization term used to prevent baking residual shadows in the
detailed albedos, and to avoid the illumination model unable to recover the lighting correctly. This albedo loss is
expressed as:

Loy =

~ 2
A—AH2 (12)

where A represents the detailed albedo map. A represents the smooth albedo map generated by the coarse recon-
struction.

Smoothness loss: The smoothness loss measures the similarity of the neighboring pixel-wise on both the nor-
mal map and the depth displacement map [25]. Furthermore, the smoothness loss effectively reduces the influence
of some face images in the case of occlusions. This smoothness loss is defined as:

Lomo= Y > walAn(i) — An(j)|5 + wa | Ad(i) — Ad(5)]|3 (13)
i€Vuv jEN (3)

where An(i) denotes distance of the i-th pixel between the coarse normal map (i.e., the vertex normals are
calculated by the coarse 3D face model) and the refined normal map generated from the displacement map. Ad(%)
represents distance of the i—th pixel distance between the original depth map obtained by the coarse reconstruction
and the detailed depth map generated from the displacement map. The Vyy are vertices in the UV space and
N (i) are the neighbors of the i-th vertex with radius 1. wy, and wq are the weights of these two loss terms.

4 Experimental results
4.1 Implementation details

We use publicly available CelebA [49] dataset in-the-wild to train our model. Before training, the face detection
method [48] is used to detect and align these images. The size of input images is cropped to 300 x 300. Finally,
we collect 191k face images, in which we randomly divide 181k as training and the remaining 10k as testing. To
effectively verify the generalization of our model, we also evaluate our method on the LS3D [48], LFW [50], and
NoW [41] datasets. We also follow the same protocol of [48] to extract over 5k and 12k face images from LS3D
and LFW, respectively.

We train our 3D face reconstruction model separately in two stages. In the coarse reconstruction stage, we
initialize all weights randomly and train the face regression model R-Net based on VGG-Face [44]. We adopt
Adam optimizer with the batch size of 16, learning rate of le - 5, and 250000 iterations. Furthermore, we set
weight parameters Appo = 1.0, Aimir = 0.5, Ajg = 0.8 in Eq. (6), and Ao = 3.0, Ag = 10.0, A\s = 1.0 in Eq. (10). For
the fine-grained reconstruction stage, the trained face regression model R-Net is freezed, while the albedo module
and the depth displacement module are trained with the same CelebA [49] dataset as the coarse stage. We adopt
Adam optimizer with batch size of 12, learning rate of 5e¢ - 5, and 200000 iterations. Moreover, we set weight
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parameters Apno = 1.0, A\jg = 0.8, Agip = 1.0, Asmo = 1.0 in Eq. (11), and wn = 0.001, wg = 0.001 in Eq. (13). Our
method is implemented in TensorFlow, using the differentiable rasterizer from 3D mesh renderer [34] to render on
NVIDIA TITAN Xp GPU.

4.2 Results

To evaluate our method, we firstly compare the reconstruction results produced by the coarse and the fine-grained
models under the challenging conditions in-the-wild for occlusion, large pose and different lighting (as shown in Fig,.
. As can be seen that the fine-grained 3D face reconstruction model can recover more facial structural information
such as wrinkles that change with expression, and can generate more realistic facial expressions of individuals
compared with that of the coarse 3D face reconstruction model. Our method can reconstruct high-fidelity facial
shapes and textures from occluded facial images such as glasses, hat, hands or other objects. For some face images
with large poses, our method has the capability of generating 3D faces with fine details and synthesizing vivid
expressions that are consistent with the input images. Furthermore, our model can also generate highly realistic
textures from the face images under different lighting conditions, while maintaining the same illumination as
the input images. We further evaluate the stability and generalization of our method by comparing it with the
state-of-the-art 3D face reconstruction methods in terms of quantitative and qualitative analysis.
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Fig. 5. Reconstruction results of our method for coarse model and fine-grained model on the challenging
conditions of occlusion, large pose, and different lighting. (a) Input facial images, (b) Geometry of coarse 3D
faces, (c)Texture of coarse 3D faces, (d) Geometry of fine-grained 3D faces, and (e) Texture of fine-grained 3D
faces.
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4.3 Evaluation on the coarse reconstruction
4.3.1 Qualitative evaluation

For the coarse 3D face reconstruction, we qualitatively compare our method with state-of-the-art coarse 3D face
reconstruction methods, namely RingNet [41], Deep3DFace [22], 3DDFA_V2 [42], MGCNet [43], Chen et al. [25]
(coarse), DECA [23] (coarse) and EMOCA [24] (coarse) on the test dataset of CelebA [49], and the LS3D [48] and
LFW [50] datasets.

We firstly compare our 3D face reconstruction results for geometry with RingNet [4I], Deep3DFace [22],
3DDFA_V2 [42], MGCNet [43], Chen et al. [25], DECA [23] and EMOCA [24] on the test dataset of CelebA [49],
and the LS3D [48] and LFW [50] datasets in Fig. [f} Our method can reconstruct more accurate face geometries
with detailed information such as nasolabial folds. Although RingNet [41], DECA [23] and EMOCA [24] are able
to reconstruct more complete head shape, the faces generated by these methods are too smooth and lack realism
compared to the input images. The quality of reconstructed 3D geometries by [25] is closer to ours. However, our
method is able to reconstruct better mouth shape and more natural facial expressions (as shown in rows 2 and 4).

Since RingNet [41] and 3DDFA_V2 [42] cannot render 3D faces to 2D images, we further compare our 3D
face reconstruction results for skin texture with Deep3DFace [22], MGCNet [43], Chen et al. [25], DECA [23]
and EMOCA [24] on the test dataset of CelebA [49], and the LS3D [48] and LFW [50] datasets in Fig. [7} Skin
textures and expressions of the faces reconstructed by DECA [23] and EMOCA [24] are far from that of the input
images, since the FLAME lacks an appearance model. Compared with Deep3DFace [22] and MGCNet [43], [25]
can generate more fidelity face images with slightly more details. In general, our method can reconstruct faces
with specific characteristics, and the expression is more vivid and realistic.

Input RingNet [41] Deep3DFace [22] 3DDFA_V2[42] MGCNet[43] Chenetal. [25] DECA [23] EMOCA [24] Ours

Fig. 6. Comparison of results of the coarse 3D face reconstruction methods on the test dataset of CelebA [49],
and the LS3D [48] and LFW [50] datasets.

4.3.2 Quantitative evaluation

We provide quantitative evaluation on the test dataset of CelebA [49], and the LS3D [48] and LFW [50] datasets on
in-the-wild images. After detection and alignment with the face detection method [48], we collect 5572 and 12967
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Fig. 7. Comparison results of the coarse 3D face reconstruction methods on the test dataset of CelebA [49], and
the LS3D [48] and LFW [50] datasets.

images from the LS3D [48] and LFW [50] datasets, respectively. We compare our 3D face reconstruction model
with Deep3DFace [22], MGCNet [43], Chen et al. [25] (coarse), DECA [23] (coarse) and EMOCA [24] (coarse) by
evaluating the similarity between our rendered results and input images in terms of PSNR, SSIM and RMSE, duo
to RingNet [41] and 3DDFA_V2 [42] cannot generate 2D face image with texture.

Table 1: Quantitative evaluation for the 3D face reconstruction methods on the test dataset of CelebA [49].

Methods PSNR 1 | SSIM 1 | RMSE |
Deep3DFace [22] 23.561 0.821 18.466
MGCNet [43] 23.762 0.831 17.709
Tran et al. [38] 19.009 0.779 28.988
Chen et al. [25](Coarse) 25.611 0.861 13.976
Chen et al. (Detail) 25.720 0.867 13.689
DECA (Coarse) 21.641 0.783 22.629
DECA [23](Detail) 21.643 0.780 22.626
EMOCA [24](Coarse) 21.139 0.768 23.833
EMOCA [24] (Detail) 21.147 0.766 23813
Ours(Coarse) 25.794 0.863 13.705
Ours(Fine-grained) 25.982 0.874 13.329

In the Table 1, excepting that the SSIM score calculated by the Chen et al. [25] method on the test dataset of
CelebA [49] is higher, the PSNR value calculated by our method is better, which is 9.48%, 8.55%, 35.69%, 0.71%,
19.19% and 22.02% higher than that of other state-of-the-art methods. Moreover, the RMSE value obtained by
our method is the lowest, which is 25.78%, 22.61%, 52.72%, 1.94%, 39.44% and 42.50% less compared to these
methods Deep3DFace [22], MGCNet [43], Chen et al. [25] (coarse), DECA [23] (coarse) and EMOCA [24] (coarse),
respectively. We also quantitatively evaluate the 3D face reconstruction results on the LS3D [48] dataset, as
shown in Table 2. Our method achieved lower reconstruction results, since the LS3D [48] dataset contains many
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Table 2: Quantitative evaluation for the 3D face reconstruction methods on the LS3D [48] dataset.

Methods PSNR 1 | SSIM 1 | RMSE |
Deep3DFace [22] 22.491 0.803 21.184
MGCNet [43] 22.787 0.815 20.095
Tran et al. [38] 19.038 0.772 29.335
Chen et al. [25](Coarse) 23.821 0.840 17.427
Chen ot al. P5](Detail) | 24.055 0.841 16.848
DECA [23](Coarse) 20.382 0.767 26.303
DECA [23](Detail) 20.391 0.764 26.278
EMOCA [24](Coarse) 19.993 0.755 27.349
EMOCA [24] (Detail) 20.022 0.752 27.269
Ours(Coarse) 24.263 0.846 16.639
Ours(Fine-grained) 24.486 0.854 16.145

challenging face images such as occlusions, large poses and different lighting conditions. However, our model still
implemented state-of-the-art evaluation results compared to other methods. The PSNR obtained by our method
is 7.88%, 6.48%, 27.45%, 1.86%, 10.04% and 21.36% higher than Deep3DFace [22], MGCNet [43], Chen et al.
[25] (coarse), DECA [23] (coarse) and EMOCA [24] (coarse), respectively. The SSIM calculated by our method
is 5.35%, 3.80%, 9.58%, 0.71%, 10.30% and 12.05% higher than the state-of-the-art methods, respectively. And
our method achieves 21.45%, 17.20%, 43.28%, 4.52%, 36.74% and 39.16% lower RMSE than Deep3DFace [22],
MGCNet [43], Chen et al. [25] (coarse), DECA [23] (coarse) and EMOCA [24] (coarse), respectively. Furthermore,
we achieve quantitative evaluation on the LFW [50] dataset as depicted in Table 3. The results outperform the
evaluation results on the test dataset of CelebA [49] and the LS3D [48] dataset, due to the LEFW [50] dataset
contains less challenging face images. Compared with other methods, our method obtained the highest PSNR and
SSIM, and achieved the lowest RMSE. This further demonstrates that our coarse 3D face reconstruction method
based on the self-supervised learning is robust and stable for in-the-wild face images.

Input Facescape [18] Chenetal.[25] DECA[23] EMOCA [24] Ours

Fig. 8. Comparison results of the fine-grained 3D face reconstruction methods on the test dataset of CelebA
[49], and the LS3D [48] and LFW [50] datasets.
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4.4 Evaluation on fine-grained reconstruction
4.4.1 Qualitative evaluation
For the detailed 3D face reconstruction, we qualitatively compare our method with the existing state-of-the-art

fine-grained 3D face reconstruction methods, namely Tran et al. [38], Facescape [I8], Chen et al. [25], DECA [23]
and EMOCA [24] on the test dataset of CelebA [49], and the LS3D [48] and LFW [50] datasets.

Input  Tranetal [38] Chenetal. [25] DECA[23] EMOCA [24] Ours

Fig. 9. Comparison results of the fine-grained 3D face reconstruction methods on the test dataset of CelebA

[49], and the LS3D [48] and LFW [50] datasets.

We first compare our 3D face reconstruction results for geometry with Facescape [I8], Chen et al. [25], DECA
[23] and EMOCA [24] on the test dataset of CelebA [49], and the LS3D [48] and LFW [50] datasets in Fig.
Unlike other methods, Facescape [18] is trained by using detailed 3D face scans as ground-truth. Therefore, the
faces reconstructed by it from in-the-wild face images are prone to distortion. The face shapes generated by DECA
[23] and EMOCA [24] is very similar. Although they are able to reconstruct a complete head structure with slight
details, these reconstructed faces lost a lot of structural details. Chen et al. [25] can reconstruct high-quality
faces with rich details, but it will generate a lot of noise such as scratches. Compared to these detailed 3D face
reconstruction methods, our method is able to generate fine-grained faces that are more vivid and easily recognized
by human eyes.

In Fig. [9] we show the rendering results of Tran et al. [38], Chen et al. [25], DECA [23], EMOCA [24] and
our method for the reconstructed 3D faces on the test dataset of CelebA [49], and the LS3D [48] and LFW [50]
datasets. The faces reconstructed by DECA [23] and EMOCA [24] are similar to puppets, since they cannot
accurately generate facial expression and reconstructed mouth area is distorted (as shown in rows 1, 5 and 6).
The textures generated by DECA and EMOCA are not realistic, since the albedo maps they generated do not
contain texture details. Although Tran et al. [38] can accurately reconstruct the face images with wrinkles, the
skin color generated by it is obviously distorted compared with the input images. Chen et al. [25] has the ability
to reconstruct high-fidelity 3D faces with high-realistic texture, but it is not robust and prone to generate a lot
of noise. Overall, our method is able to generate face images that closely approximate the input images, and can
restore rich details that vary with expression, such as forehead wrinkles, nasolabial folds, details of eyes and mouth,
etc.
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Input Shading Normal Shading Normal Shading Normal Shading Normal Shading
Tran et al. [38] Chen et al. [25] DECA [23] EMOCA [24] QOurs

Fig. 10. Comparison results of the fine-grained 3D face reconstruction methods for normal and shading on the
test dataset of CelebA [49], and the LS3D [48] and LFW [50] datasets.

Furthermore, we also represent the reconstruction results of normal and lighting from Tran et al. [38], Chen
et al. [25], DECA [23], EMOCA [24] and our method on the test dataset of CelebA [49], and the LS3D [4§] and
LFW [50] datasets. In Fig. we can see that both DECA [23] and EMOCA [24] cannot accurately capture
lighting conditions, and their reconstructed shading images are too dark. Furthermore, the normal maps generated
by DECA [23] and EMOCA [24] methods lose too much geometric details, so they are difficult to reconstruct
personalized 3D faces with high-fidelity as shown in Fig. |8 and Fig. El In contrast to DECA [23] and EMOCA [24],
the shading images generated by Tran et al. [38] are too bright (The result of normal map is not open implemented. ).
Compared with Trans et al. [3§], DECA [23] and EMOCA [24], Chen et al. [25] can more accurately capture ambient
light and reconstruct more detailed face structure. But it generates a lot of noise such as scratches, which seriously
degrades the quality of reconstructed 3D faces as depicted in Fig. [§]and Fig. [J] Compared with these state-of-the-
art fine-grained 3D face reconstruction methods, our method can reconstruct better results of lighting and normal
maps from in-the-wild facial images under extremely challenging lighting conditions. Moreover, our method is able
to significantly recover better expression and wrinkles, especially around the chin, mouth and eyes, where the
details are incorrectly reconstructed by other methods.

4.4.2 Quantitative evaluation

To verify the robustness and stability of our fine-grained 3D face reconstruction model, we achieve quantitative
evaluation of Deep3DFace [22], MGCNet [43], Tran et al. [38], Chen et al. [25] (detail), DECA [23] (detail), EMOCA
[24] (detail) and our method on the test dataset of CelebA [49], and the LS3D [48] and LFW [50] datasets on
in-the-wild images.

We firstly display the evaluation results on the test dataset of CelebA [49] in Table 1. Our coarse 3D face
reconstruction model achieves significant results than other methods in terms of PSNR, SSIM and RMSE. However,
our fine-grained 3D face reconstruction model is better than the coarse reconstruction model, because it can
reconstruct more realistic 3D faces. The PSNR and SSIM obtained by our fine-grained 3D face reconstruction
model are 0.73% and 1.27% higher than those of the coarse reconstruction model, respectively. Furthermore, the
RMSE calculated by our fine-grained 3D face reconstruction model is the lowest, which is 2.74% less than that of
the coarse reconstruction model. We also represent the evaluation results on the LS3D [48] dataset in Table 2. Our
method is superior to other state-of-the-art methods. Our method calculates 8.87%, 7.46%, 28.62%, 1.79%, 20.08%
and 22.30% higher PSNR than Deep3DFace [22], MGCNet [43], Chen et al. [25], DECA [23] and EMOCA [24],
respectively. The SSIM obtained by our method is 6.35%, 4.78%, 10.62%, 1.55%, 11.78% and 13.56% higher than
the state-of-the-art methods, respectively. And our method achieves 23.78%, 19.66%, 44.96%, 4.17%, 38.56% and
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Table 3: Quantitative evaluation for the 3D face reconstruction methods on the LEW [50] dataset.

Methods PSNR 1 | SSIM t | RMSE |
Deep3DFace [22] 25.428 0.835 14.518
MGCNet [43] 25.160 0.847 14.816
Tran et al. [38] 19.723 0.786 26.623
Chen et al. [25](Coarse) 26.826 0.870 11.965
Chen et al. [25](Detail) 26.960 0.874 11.715
DECA [23](Coarse) 23.635 0.809 17.657
DECA [23](Detail) 23.662 0.806 17.606
EMOCA [24](Coarse) 22.969 0.794 19.000
EMOCA [24] (Detail) 23.043 0.793 18.849
Ours(Coarse) 27.091 0.871 11.616
Ours(Fine-grained) 27.301 0.882 11.285

40.79% lower RMSE than other comparative algorithms, respectively. Furthermore, we provide the reconstruction
results on the LFW [50] dataset. As demonstrated in Table 3, we can clearly observe that our method computes
higher PSRN and SSIM, and lower RMSE than those on the CelebA [49] and LS3D [48] datasets. Because, the LEFW
[50] dataset contains fewer face images under challenging conditions. However, our method still outperforms other
comparative methods. This fully demonstrates that our method can robustly and stably reconstruct fine-grained
3D faces from single face images on in-the-wild by using self-supervised learning.

Table 4: Reconstruction errors on the NoW [41] benchmark.

Methods Median (mm) | Mean (mm) | Std (mm)
Facescape [18] 3.92 11.04 16.80
3DDFA_V2 [42] 3.60 10.36 16.25

RingNet [A1] 1.36 171 144
Deep3DFace [22] 1.29 1.87 2.38
MGCNet 23] 1.43 1.99 2.42
Tran et al. [38] 1.48 2.07 2.47
Chen ot al. [25] 121 1.53 1.35
DECA [23] 1.22 1.55 1.34
EMOCA [24] 1.26 1.55 1.31
Ours 1.19 1.50 1.30
100
80
= 3DDFA V2 [42]
o —— RingNet [41]
L 401 —— Deep3DFace [22]
Ji —— MGCNet [43]
/ —— Tran et al. [38]
201 Chen et al. [25]
—— DECA [23]
EMOCA [24]
—— QOurs
0 T T T T T T T
0 1 2 3 4 5 6 7

Error [mm]
Fig. 11. Cumulative errors on the NoW [4I] benchmark.
To further validate the performance of our proposed approach, we quantitatively compare with these state-of-

the-art reconstruction methods including Facescape [18], 3DDFA _V2 [42], RingNet [41], Deep3DFace [22], MGCNet
[43], Tran et al. [38], Chen et al. [25], DECA [23], and EMOCA [24] on the NoW [41] benchmark. For a fair
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comparison to these methods, we first use the method [22] to crop the face images in the NoW validation set to a
size of 256 x 256, and further perform a rigid alignment based on the scan-to-mesh distance between the ground
truth scan, and the reconstructed 3D mesh. As shown in Table 4 and the cumulative error plot in Fig. our
approach achieves state-of-the-art results on the NoW benchmark, providing the lowest reconstruction errors for
the mean, median, and standard deviation.

4.5 Ablation study

To evaluation the effectiveness of our fine-grained 3D face reconstruction method, we achieve ablation experiments
for the wavelet transform perception model, the depth displacement module and the albedo module. As shown
in Table 5, the 3D face reconstruction model is trained without the wavelet transform perception model, the
depth displacement module and the albedo module is greatly degrading the quality of reconstructed 3D faces.
Our model significantly improves the ability of reconstructing high-fidelity 3D faces with high-frequency details by
jointly combining them. As expected, combing these full modules, our method obtains the best results, and can
reconstruct more accurate and realistic 3D face from monocular face image in-the-wild.

Table 5: Ablation experiments of 3D face reconstruction model.

Method
Wavelet Transform | Depth Displacement Albedo Module PSNR 1| SSIM 1 | RMSE |
Perception Model Module
X X X 25.794 0.863 13.705
X v v 25.805 0.869 13.606
v X v 25.827 0.870 13.573
v v v 25.982 0.874 13.329

Fig. [12[ shows the visual results of the ablation experiments. Specifically, (a) represents the input image; (b)
indicates the reconstructed results by removing the wavelet transform perception model, depth displacement mod-
ule, and the albedo module; (c) shows the reconstructed results without the wavelet transform perception model;
(d) indicates the reconstructed results without the depth displacement module; (e) represents the reconstructed
results with the full models. As shown in the enlarged views of Fig. (b), the generated texture and normal im-
ages are smooth and unrealistic due to the limitation of the 3DMM model. When removing the wavelet transform
perception model or depth displacement module, the reconstructed 3D face loses some details, and the generated
expressions are inconsistent with the input image, as shown in Fig. (c) and Fig. (d). With the full models,
we can clearly observe that our approach can reconstruct a high-fidelity 3D face with rich details, vivid expression,
and high-realistic textures, as shown in Fig. [12] (e).
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(b) ~ (c) - (d) . (e)

Fig. 12. The comparative and ablation results of the 3D face reconstruction model. Left: Input image. Top:
Reconstructed texture images. Bottom: Reconstructed normal images.

5 Conclusion

In this paper, we propose a fine-grained 3D face reconstruction framework with a novel coarse-to-fine scheme
which recovers detailed facial geometries and textures from monocular images in-the-wild by using self-supervised
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learning. Firstly, we use a face regression network R-Net to regress 3DMM parameters and reconstruct coarse
3D faces by using prior 3DMM model in the coarse pipeline. A novel fine pipeline is designed that consists of a
wavelet transform perception model, the albedo module and the depth displacement module, which further gener-
ates fine-grained 3D faces with expression-dependent and wrinkles. Extensive experiments show that our method
has the ability to reconstruct high-fidelity face geometries and textures with rich details, and demonstrates a
significantly improved results compared with the state-of-the-art reconstruction methods on different in-the-wild
datasets, both in terms of qualitative and quantitative evaluations. In the future, we want to learn a dynamic-based
face model that can reconstruct animated 3D face with fine details vary with expression from single images or video.
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