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Abstract

Endoscopic medical imaging in complex curved intestinal structures are prone to uneven illumination,
low contrast and lack of texture information. These problems may lead to diagnostic challenges. This
paper described the first supervised deep learning based image fusion framework to enable the polyp
region highlight through a global image enhancement and a local region of interest (ROI) with paired
supervision. Firstly, we conducted a dual attention based network in global image enhancement. The
Detail Attention Maps was used to preserve more image details and the Luminance Attention Maps
was used to adjust the global illumination of the image. Secondly, we adopted the advanced polyp
segmentation network ACSNet to obtain the accurate mask image of lesion region in local ROI
acquisition. Finally, a new image fusion strategy was proposed to realize the local enhancement
effect of polyp image. Experimental results show that our method can highlight the local details
of the lesion area better and reach the optimal comprehensive performance with comparing with 16
traditional and state-of-the-art enhancement algorithms. And 8 doctors and 12 medical students were
asked to evaluate our method for assisting clinical diagnosis and treatment effectively. Furthermore,
the first paired image dataset LHI was constructed, which will be made available as an open source
to research communities.
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1. Introduction

Polyps within the colon are one of the leading causes of prevalent cancer. Endoscopy is a standard
visual diagnostic procedure for detecting intestinal polyps [I]. The intestinal polyp image directly
obtained by endoscope is prone to some problems, such as highlight reflection [2], insufficient lighting
covering the region of interest [3], and low contrast [4]. These problems will decrease the accuracy
of manual examination. Image enhancement can provide detailed edge and texture information for
clinical analysis. Therefore, the study of intestinal polyp image enhancement is very important to
help colonoscopists reduce the rate of misdiagnosis and missed diagnosis.

Conventional image enhancement methods, including histogram equalization-based methods:
CLAHE [5], BPDHE [6], and Retinex-based methods: MSR [7], NPE[S], SRIE [9], MF [10], LIME
[11], applied to low-light and non-uniform illumination intestinal polyp images are prone to have
problems such as over-enhancement of the brighter local areas, insufficient enhancement of lesion ar-
eas and unnatural enhancement results. In recent years, the method of deep learning has performed
well in the field of natural image enhancement [12], I3} 14} [I5]. Due to no public paired dataset
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for intestinal polyp image enhancement, that seriously affects the development of supervised learn-
ing in intestinal polyp image enhancement. Scholars at home and abroad have also tried to apply
unsupervised neural network framework to the task of endoscopic image enhancement [16, [17]. How-
ever, these learning methods are usually difficult to obtain high-quality image enhancement results.
Therefore, it is of great significance to construct paired intestinal polyp image enhancement dataset.

In this paper, we constructed the first paired intestinal polyp image dataset LHI, including 2108
low-quality and high-quality synthetic image pairs, to promote the research of methods relying on
paired images for training. And we proposed the supervised learning based image fusion framework to
enhance local lesion area for attracting doctor’s more attention on accurate polyp region. The method
was divided into three steps. In the first step, a new deep learning global image enhancement method,
called Encoder Dual Attention U-Net Network (EDAU-Net), was proposed to recover the structure
information that is difficult to observe in low-quality images. In order to preserve more image details
and adjust the global image illumination, Detail Attention Maps and Luminance Attention Maps
were added to the encoder part of the U-Net. In the second step, we used the advanced polyp
segmentation network ACSNet [I8] to obtain the ROI mask image of the polyp coverage lesion that
the doctor was interested in. In the third step, the global enhanced image and the ROI mask image
were fused by using the new fusion strategy to weaken the background area for achieving the local
enhancement effect of the lesion area.

The contributions of this work are summarized as follows:

1) We constructed the first synthetic paired low-quality /high-quality intestinal polyp images
dataset LHI, which can be downloaded at this link: https://drive.google.com/drive/folders/1Lo
7ctWolNgwNvkBXUcVMGUGYx6qF6Sbe?usp=sharing.

2) We proposed the first supervised learning based image fusion framework to enhance the detailed
information of the lesion area by fusing the global enhanced image and the ROI mask image.

3) We proposed a novel end-to-end global image enhancement network architecture EDAU-Net.
The Detail Attention Map was proposed and added to the encoder of the network to highlight
texture detail features. The Luminance Attention Map was introduced into the encoder of the
network to improve the global image illumination.

4) Our method outperformed sixteen traditional and state-of-the-art algorithms on new dataset,
and could obtain enhanced polyp images with superior quality.

The remainder of this paper is organized as follows. In Section 2, we introduce the related work
on image enhancement. The proposed polyp image enhancement method is described in Section 3.
We give the experiments and results in Section 4. And some issues need to be discussed in Section
5. Section 6 is the conclusion.

2. Related Work

2.1. Conventional Image Enhancement Methods

Currently, the most commonly used algorithms are methods based on Retinex theory and methods
based on histogram equalization.

Retinex theory: these methods are often used in endoscopic image enhancement. Okuhata et
al. [19] proposed a real-time image enhancement algorithm for gastroscopy. The algorithm combines
Single Scale Retinex (SSR) [20] theory with gamma correction to enhance the brightness and contrast
of endoscope image. Retinex focuses on local enhancement, which solves the problem of insufficient
brightness enhancement of local area of gastroscope image by global enhancement algorithm to a
certain extent. However, for gastroscope image with uneven illumination, it may lead to the prob-
lem of excessive image enhancement. In addition, Gamma correction improves image brightness by
expanding the low gray value region and compressing the high gray value region. Therefore, the



contrast enhancement effect of endoscope image is not obvious. Multi-Scale Retinex (MSR) [1] algo-
rithm can maintain the essential characteristics of the image in the enhancement process. However,
when MSR is used to enhance the endoscope image, it will over-enhance the highlight area, and
there will be color distortion, unclear texture and so on. Literature [21I] used the improved MSR
model to solve the problems of non-uniform illumination and color distortion of laparoscopic images.
However, the problems of over-enhancement of high brightness areas and edge blur still exist. At
present, many improved image enhancement algorithms based on Retinex theory have been published
[8, @, 10} 1T, 22], 23]. The common point of these methods is that they first accurately estimate the
illumination component of the image through manual design and parameter adjustment, and then
obtain the enhanced image directly or indirectly according to Retinex theory. Because these methods
depend on the illumination component, when they are used to process the brighter areas of the en-
doscope image with non-uniform illumination, there will be excessive enhancement, and the contrast
enhancement effect is not significant. Therefore, the defects of algorithms based on Retinex theory
also exist in this kind of methods.

Histogram equalization: these methods are widely used for contrast enhancement due to its
simplicity and effectiveness [24]. However, when it is used to enhance the endoscope image, there will
be some problems, such as detail losses, noise amplification, over-enhancement and so on [25]. Liter-
ature [5] proposed a contrast-limited adaptive histogram equalization (CLAHE) algorithm. CLAHE
uses threshold clipping histogram to prevent over-enhancement, but color distortion occurs when used
to enhance endoscopic images. Later, a series of improved algorithms for histogram equalization were
produced [6], 26], which can effectively enhance contrast while maintaining image brightness. How-
ever, they are only suitable for specific scenes with moderate brightness, and the effect of brightness
adjustment for low-illuminance images is not good. Literature [27] designed an endoscope image
enhancement method using histogram information. Firstly, the endoscope image was processed by
median filter to highlight the features of interest in the image, and then the histogram information
was corrected to improve the image contrast. Although this technology enhances the overall contrast
of the image, the endoscopic image requires excellent edge contrast and sufficient brightness.

Conventional image enhancement methods can enhance the natural image in a specific scene,
but their nonlinear expression ability is not strong, and cannot well solve the problems of uneven
illumination, low brightness and contrast, and lack of color in endoscopic images. Therefore, their
practical application value is limited. In recent years, the deep learning method has good effect and
high efficiency in image processing. Therefore, it is of great significance to apply the deep learning
method to endoscopic image enhancement.

2.2. Deep Learning-based Image Enhancement Methods

Recently, deep learning methods have become the mainstream methods in image enhancement
field, which are mainly consist of the supervised methods and unsupervised methods.

Supervised learning: at present, the research on the enhancement of uneven illumination,
weak illumination and low-contrast image based on deep learning methods focuses on natural im-
ages in atmospheric environment [I5, 28]. Most deep learning methods are fully supervised, and
these methods require the construction of pairs of low illumination image and clear image datasets.
Then, the mapping relationship between paired images is learned through various models to achieve
the purpose of image enhancement. LLNet [29] proposed a data training method to simulate low
illumination environment by using gamma check and artificially adding Gaussian noise, simulta-
neously enhance image brightness and reduce noise. Chen et al. [30] constructed a low exposure
image dataset generated according to the camera exposure time, and designed a fully convoluted
end-to-end network to achieve image enhancement under extreme low-light conditions. Inspired by
Retinex theory, Retinex-Net [I2] decomposes the low exposure image into illumination component
and reflection component, and then uses the enhancement network to enhance the image brightness.
This method can achieve the effect of improving the brightness of low exposure images, but it needs
to be improved in denoising. KinD [I3] has greatly improved compared with Retinex-Net in terms



of denoising and image enhancement effects. Although the above methods can achieve better results
compared with the traditional image enhancement methods, these methods need to be trained with
strictly aligned low/high quality images. For endoscopic images, due to the limitations of imaging
instruments and imaging environment, it is difficult to obtain the low quality image and high quality
image pair. Therefore, there are few reports on using supervised convolutional neural network to
enhance endoscopic images.

Unsupervised learning: in order to solve the problem that it is difficult to obtain paired image
training data, Jiang et al. [14] proposed for the first time to use unpaired low/normal brightness
images to train the image enhancement network EnlightenGAN. This training strategy eliminates
the dependence of deep learning method on paired training data. However, EnlightenGAN still
needs to directly learn the mapping relationship from low exposure image to normal image end-to-
end when there is a reference image. Therefore, reference images need to be selected carefully. Guo
et al. Proposed unsupervised learning methods Zero-DCE [31] and Zero-DCE++ [32]. By setting
a series of non-reference loss functions, the authors make the network end-to-end training without
any reference images. Although the above unsupervised learning method can be adapted to the lack
of datasets in the field of endoscopic image enhancement, this learning method is usually difficult to
obtain high-quality image enhancement results.

Although deep learning-based image enhancement methods have achieved remarkable results in
the field of natural images, a large number of paired datasets are difficult to obtain in the human
gastrointestinal internal environment. Therefore, it is necessary to construct the endoscope image
dataset. In this way, the deep learning network can be used to extract the endoscopic image features in
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Figure 1: Flow chart of our proposed image fusion framework for the ROI of intestinal polyp images.



the data set, so that the network can be applied to the endoscopic image enhancement in real scenes.
The existing deep learning-based image enhancement methods aim to achieve global enhancement.
Due to the particularity of the internal environment, existing natural image enhancement algorithms
are not completely suitable for intestinal polyp image.

3. Methods

In this section, we mainly introduce the image fusion framework for enhancing the local details
in the polyp lesion area. The flow chart of that is shown in Fig. which consists of three main
modules: Global image enhancement, ROI acquisition and Image fusion.

3.1. Dataset Production

At present, there is no dataset containing both low-quality and their corresponding high-quality
intestinal polyp images. It is very difficult or even impossible to capture low light images and normal
light images in the same moment of the scene in the intestine. Therefore, we constructed a synthetic
intestinal polyp dataset LHI, which includes low-quality images and their corresponding synthetic
high-quality image pairs.
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Figure 2: Pipeline of constructing the proposed dataset LHI. We selected the real intestinal polyp image and the
corresponding segmentation mask from the public dataset: Kvasir-SEG [33], ETIS-Larib Polyp DB [34] and CVC-
EndoSceneStill [35], and the exposure of real intestinal polyp images were reduced and non-uniform lighting effect
was added to generate low illumination non-uniform lighting low-quality image (Synthetic Input image). At the same
time, the real intestinal polyp image was enhanced by exposure correction, saturation adjustment and contrast/detail
amplification, so as to generate a high-quality reference image (Synthetic Ground Truth).

In this paper, 2108 real intestinal polyp images and corresponding segmentation mask (Ground
Truth) were collected from the open source medical imaging datasets Kvasir-SEG dataset [33], ETIS-
Larib Polyp DB [34] and CVC-EndoSceneStill [35] related to gastrointestinal. This ground truth
consists of a mask corresponding to the region covered by the polyp in the image. All these photos



were resized to 256x256 pixels. We recruited two experts majoring in digital media technology
in the university to use Adobe Lightroom to adjust the real intestinal polyp images. They had
received extensive training. The low-quality intestinal polyp images studied in this paper have the
characteristics of uneven illumination, low illumination, low contrast and lack of texture information.
In the collected dataset, all images were low contrast and lack texture information, while 775 images
were well illuminated. In order to improve the availability of dataset images, it was necessary
to change the illumination of well-illuminated images. one of the experts first fully analyzed the
characteristics of a large number of real clinical low-quality polyp images, then carefully checked
each collected image. The well-illuminance images were edited by Lightroom to reduce the exposure
and add non-uniform lighting effect for obtain low-quality image (Synthetic Input image). Another
expert manually retouched each collected image to obtain a high-quality reference image (Synthetic
Ground Truth). In order to ensure the validity of the data set, we require the Synthetic Input image
to be visually similar to the real clinical polyp image, and the Synthetic Ground Truth to achieve a
visually pleasing effect for the doctor. Therefore, all Synthetic Input images and Synthetic Ground
Truth in the dataset were subjectively evaluated by medical college volunteers on the same monitor.
If Synthetic Input image is not similar to real clinical polyp image, the corresponding expert would
be required to reprocess the image until the volunteers are satisfied. For Synthetic Ground Truth
image sequences that did not produce satisfactory output, experts would be required to retouch the
image to select the best output for each image. See Fig. [ for the process of generating composite
image pairs. Finally, we randomly divided the images in the dataset into two subsets: 1489 images
for training and 619 images for testing.

3.2. Global Image Enhancement

In order to globally enhance the detail, contrast, and color of intestinal polyp images for more
accurate ROI acquisition and Image fusion, we proposed EDAU-Net by improving the U-Net [36]
with excellent feature extraction ability. Firstly, to address the problem of detail information loss
when images are enhanced by U-Net, we proposed a new Detail Attention Map. And we added it
to the encoding stage of the U-Net for highlighting detail features and reducing the loss of some
details in the process of down-sampling and up-sampling of U-Net. Secondly, in order to better
compensate for the influence of non-uniform illumination of the image by point light sources in the
curved intestine, we introduced the Luminance Attention Map [14] in the encoding stage of the U-Net
to improve the global image illumination. Thus, we achieved the effect of both effectively enhancing
the local darker areas and avoiding the generation of overexposure of the local brighter areas. The
network structure of EDAU-Net model is shown in Fig.

As shown in Fig. EDAU-Net consists of four parts: input, encoder dual attention, decoder,
and output. The network input is the feature map with 4 channels and size of 256x256 obtained
by concatenating a 3 channels RGB low-quality image and a single-channel Luminance Attention
Map. The encoder dual attention and decoder modules consist of 8 down-sampling layers and 8 up-
sampling layers respectively. In the encoding dual attention stage, the 8 down-sampling convolution
layers use the filter of the size of 4x4 and the Leaky LeRU activation function to extract multi-scale
features from the input image. The number of output layers is 64, 128, 256, 512, 512, 512, 512,
and 512 respectively. The Luminance Attention Map is multiplied by the feature map output in
the down-sampling process, and has the same size as the corresponding feature map. The Detail
Attention Map is spliced with the feature map output in the down-sampling process, and has the
same size as the corresponding feature map. In the decoding stage, the size of the filter used by the
first 7 up-sampling convolution layers is 4x4 and the Leaky LeRU activation function is adopted.
The last deconvolution layer uses the Tanh activation function to produce the globally enhanced
image with more complete details. The number of output layers is 512, 512, 512, 512, 256, 128,
64, and 3 respectively. The network output is a globally enhanced image 3 channels and the size of
256x256. The network parameters of EDAU-Net are shown in Table 1.
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Figure 3: Network structure of EDAU-Net model.

3.2.1. Detail Attention Map

In the process of down-sampling and up-sampling of U-Net, it is inevitable that the image will
lose details. Canny [37] is not easily disturbed by noise, and can obtain fine and accurate edge
images. We added the Detail Attention Maps obtained by Canny, that is, the edge image, to the
encoding structure for enhancing the network’s ability to learn detail information. In the encoder,
the Detail Attention Map is concatenated with the feature map after Leaky ReLU and participates
in the training of the model. The Detail Attention Map is calculated as follows.

Di = fup(Di-1)
D, :fMp(Icanny) 1=2,3,4,5,6,7,8 (1)

Icanny = fcanny(-[low)

where Ij,,, is the original low-quality image. fcanny indicates the image is processed using the Canny.
farp means Max-pooling is used for the edge image. D;, ..., Dg constitute the Detail Attention Maps.
As shown in Fig. [3] we spliced the Detail Attention Map to the feature map after Leaky ReLU of the
corresponding size in the encoder for training, so the Detail Attention Maps needs to be consistent
with the size of the corresponding convolution layer feature map. The acquisition of the detailed edge



Table 1: The specific parameter settings of EDAU-Net. Concat represents Concatenation, Conv represents convolution,
and Deconv represents deconvolution.

Module No. Input size Operation Output size Filter size  Filter number Stride Padding

Input 1 ?222222 Concat  4*256*256 — — — —
1 4%256%256  Conv  64*128*128 4%4 64 2 1

2 65%128%128 Conv  128%64*64 4%4 128 2 1

3 120%64%64  Conv  256%32%32 4%4 256 2 1
EI]SCS;H 4 257*32%32  Conv  512%16*16 4%4 512 2 1
Attention5  513%16*16  Conv 512%8*8 4%4 512 2 1
513*8*8  Conv 512%4%4 4%4 512 2 1

7 513%4*4  Conv 512%2%2 4%4 512 2 1

8  513%2*2  Conv 512%1*1 4%4 512 2 1

8  513%1*1  Deconv  512%2*%2 4%4 512 2 1

7 1024%2*2  Deconv  512%4%4 4%4 512 2 1

6  1024*4*4 Deconv  512*8*8 4%4 512 2 1
Decoder 5 1024*8*8  Deconv  512*16*16 4*4 512 2 1
4 1024*16*16 Deconv  256*32*32 4%4 256 2 1

3 512%32%32  Deconv 1286464 4%4 128 2 1

2 256%64*64 Deconv  64*128%128 4%4 64 2 1

1 128%128*128 Deconv  3*256*256 4%4 3 2 1

Output 1 — — 3*256*256 — — -

image of the corresponding size (i.e. Dy, ..., Dg) is shown in Fig. 4| We used Max-pooling to process
the edge image to achieve the effect that the size of the edge image decreases with the number of
down-sampling increases while retaining the main information of the image.

3.2.2. Luminance Attention Map

Intestinal endoscopic images have problems of uneven illumination and insufficient illumination.
The self-regularized attention map proposed in literature [14] can effectively adjust the image illumi-
nation. We introduce it into the encoder of our proposed network called Luminance Attention Map
to make the network pays more attention to low illumination areas and avoid over-enhancement of
high brightness areas. The generation process of Luminance Attention Map is shown in Fig. [5| We
convert the low-quality image I;,,, in RGB color space to a single-channel gray image I, normalize
it to [0, 1], and then use 1 — I, (element-wise difference) as our Luminance Attention Map. As shown
in Fig. [3) we used low-quality image and Luminance Attention Map as input, rather than just the
low-quality image directly into the network. The motivation is that the Luminance Attention Map



Low-quality image /;,,

Max-pooling Max-pooling Max-pooling | Max-pooling
G4 =04

A7 N 1616 '
e 11
DD
I8 7 ®

D, D, 6
Max-pooling Max-pooling Max-pooling Max-pooling

Figure 4: The Detail Attention Map down-sampling process.

provides more priori information for the network. Then, the Luminance Attention Maps is multiplied
by the feature map output in the down-sampling process, and has the same size as the corresponding
feature maps. We also used Max-pooling to change size of the Luminance Attention Maps for keeping
the same size of the corresponding convolution feature maps.
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Figure 5: Detailed generation process of Luminance Attention Map.

3.2.8. Loss function

In order to train the network parameters, we used four loss functions: mean abs error loss(L),
mean square error loss(Lg), structural similarity loss (Ls¢rycture) and perceptual loss (L perceptual) t0
characterize the difference between the predicted image and Ground Truth. The overall loss function
for training EDAU-Net was written as:

L,EDAUfNet = )\lLl + )\2L2 + )\SLStructure + )\4LPerceptual (2)

where A1, A2, A3, and Ay denote the weight value for each loss term, respectively. We set their values
to A1=1, \o=1000, A\3=1, and A4=1. The details of the four loss functions are given below.

Mean abs error loss and mean square error loss. L loss is widely used in the field of image
enhancement. It can reconstruct the clear edge of the image. However, it cannot effectively capture
the high-frequency information of the image, resulting in the overall prediction image is too smooth
and the visual experience is general. Although Lo loss can better reconstruct the high-frequency
information of the image, it has the disadvantage of producing artifacts. Therefore, in order to



better obtain the high-frequency and low-frequency information of the image without producing
artifacts, we introduce Lq loss and Loy loss at the same time. The loss function of L and Lo can be
expressed as:

L= E(Ieajgt) [HIgt - Ie||1] (3)

Ly = B(Le, Iy) [ gt — Ie]l,) (4)

where I. and I, are the enhanced image output by EDAU-Net and the corresponding Ground Truth
respectively.

Structural similarity loss. The structural similarity of images is also an important index to
measure the quality of image enhancement. While obtaining the global information, the network
also learns the structure information through the convolution of feature maps of multiple sizes.
Therefore, we use the MultiScale Structual Similarity (MS-SSIM) [38] quality evaluation method
as the loss function to maintain the image structure information and avoid ambiguity. Finally, the
structural similarity loss function of Lg¢rycture 1S defined as follows:

Lstructure =1 — Z(Igta Ie)%m HC(Igta Ie)?iS(IghIe)?i (5)

where [, ¢, and s roughly represent the luminance, contrast and structure, respectively. ¢ is the pixel
coordinate. m is the total number of pixels. «, 3, and 6 are parameters to adjusting the importance
of the three components [, ¢, and s. To simplify parameter selection, we usually set a = =60 = 1.

Perceptual loss. In order to make the generated image by EDAU-Net have more detail infor-
mation, this paper introduces perceptual loss Lperceptuar- We use the feature map generated by the
VGG-16 network pre-trained on the ImageNet [39] dataset to calculate the perceptual loss, so as to
measure the global difference between the enhanced image I. and the corresponding Ground Truth.
Lperceptual is defined as follows:

¢ W H
1
LPe'rceptual = m Z Z Z ||(I)(Ie)a,b,c - (I)(Igt)a,b,c” (6)

a=1b=1c=1

where C';, W, H are the channel, height and width of the feature map respectively.

3.8. ROI Acquisition

In order to locate the ROI in the image to the doctor, we needed to segment and highlight
the polyps region for attracting his attention. We used the advanced intestinal polyp segmentation
network ACSNet [I8] to obtain the segmentation results of polyp position. The segmentation mask
of polyp image locates the region of interest to the doctor, which is defined as ROI. Very cleverly,
our dataset LHI not only has synthetic image pairs that can be used for image enhancement model
training and testing, but also has the segmentation mask of polyp that can be used for image
segmentation model training and testing. ACSNet has high accuracy in polyp boundary location,
specially is very robust to some complex situations (such as polyp region sizes and image brightness
changes). ACSNet was trained and tested on the dataset LHI. The accuracy of ACSNet on the testing
set was very high (98.15%), and the false positive rate was very low (1.1%). This shows that the
use of ACSNet for the aided diagnosis of colorectal polyps can effectively detect polyps and reduce
the rate of misdiagnosis. In the ROI acquisition module, the ACSNet network input is the globally
enhanced image predicted by EDAU-Net, and the network output is a single channel mask image. In
addition, we can judge whether the input image contains polyps according to whether there are white
areas in the mask image. We used ACSNet to predict mask images of 300 intestinal endoscopy images
with and without polyps collected from a Grade-A tertiary hospital in Zhengzhou city and invited
doctors to evaluate whether polyps can be accurately determined. The feedback results show that
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ACSNet can effectively distinguish between polyp-free images and polyp images, and can perform
accurate polyp segmentation for polyp images. Therefore, ACSNet is used to determine whether the
input image is to be globally enhanced or further locally enhanced. That is, if there is no polyp
in the image, image fusion will not be performed; if there is polyp in the image, the image fusion
operation in Section 3.4 will be performed.

3.4. Image Fusion

The proposed EDAU-Net can obtain images with good global enhancement effect. Through
ACSNet, the target area and the background area in the enhanced images can be segmented with
high accuracy. For highlighting the details of the target area, we proposed a new image fusion
strategy to weaken the background area. We used gamma correction to process the non-lesion area
to achieve the local enhancement effect of polyp image. The ROI image Iro; obtained by ACSNet
and the global enhanced image I, obtained by the proposed EDAU-Net are fused to obtain the final
enhanced image Iy;nq. The specific expression is as follows:

I
see + Fammalle) % (255 — Inor) (7)

where fyamma(le) is the image generated by gamma correction of I.. Considering the influence
of background area on doctors, gamma correction is used to eliminate the influence of disturbing
doctors’ background area details. Gamma correction is used to correct image brightness by non-
linear operation on the pixels of image I. [40]. ~ is the correction parameter, which can control the
degree of image stretching. When v=1, foamma(lc) is the true representation of the input image I..
If v <1, fgamma(Ile) will be brighter than I.. If v > 1, foamma(le) will be darker than I.. This
paper sets y= 2.5. Fig. [6] shows the comparison of effects before and after polyp image fusion. As
can be seen from Fig. @(b) and Fig. @(d), after polyp image fusion, the interval between the pixel
value distribution area in the background area and the pixel value distribution area in the polyp area
becomes larger, and the image contrast increases.

Ifinal = Ie X

I ROI

(@, (b) Histogram of (a) () I

final

(d'} Hiéfogr:im o:f (<) ;

Figure 6: Effect Comparison before and after image fusion strategy. (a) Global enhanced image; (b) Histogram corre-
sponding to global enhanced image; (c) Final local enhanced image after image fusion; (d) Histogram corresponding
to final local enhanced image.
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4. Experiments and Results

4.1. Experiments and Results of the Proposed EDAU-Net

We use Python programming language and pytorchl.5.0 as the deep learning framework to build,
train and test the network on an Inter(R) Xeon(R) E5-2620 CPU, 2.10GHz processor, 64GB RAM,
and a Nvidia Titan Xp GPU. We train our model using Adam optimizer, and set the initial value of
network learning rate to 0.0002. The batch size is set to 32, and the iteration number is 200.

In order to verify the effectiveness of the proposed EDAU-Net, we compare EDAU-Net with
seven most advanced image enhancement methods based on deep learning, namely RetinexNet [12],
MBLLEN [28], KinD [13], DeepUPE [15], Zero-DCE [31], Zero-DCE++ [32], EnlightenGAN [I4] and
nine traditional image enhancement methods, namely BPDHE [6], Dong [22], AGCWD [1], NPE [§],
SRIE [9], MF [I0], LIME [11], BIMEF [42], RRM [23]. We conduct qualitative and quantitative
analysis on the dataset LHI constructed in this paper.

4.1.1. Qualitative Evaluation

Due to the limitation of page space, we randomly selected two images of different scenes in the
testing set of our dataset LHI for display. The experimental results are shown in Fig. [7]and Fig. [§

Fig. [[a) is the original input image. According to Fig. [7}(a), the original image is a low exposure
image, and the polyp is located in the dark area. Fig. (b)—Fig. j) are the results of processing Fig.
a) by traditional image enhancement methods. Fig. m(k)-Fig. m(r) are the results of processing
Fig. a) by image enhancement methods based on deep learning. From Fig. we can see that
BPDHE causes some problems such as underexposure and poor color processing effect. The method
proposed by Dong et al. can improve the brightness of image, but it produces some artifacts when
the processing in reflective areas. So this method is not suitable for the intestinal polyp image. The
sharpness of intestinal polyp image is restored well by AGCWD and LIME, but AGCWD does not
significantly enhance the darker area and LIME over-enhances the lighter area, which leads to the
loss of image details. The enhancement effects of NPE and MF were not obvious. BIMEF has a
poor processing effect on image contrast and color, resulting in a slight color difference in the result
image. RRM and DeepUPE can better solve the problem of low brightness of the endoscopic image,
but the enhanced image has the problem of low contrast. Retinex-Net will have very obvious patches
in different colors and light transitions, and the visual effect is poor. MBLLEN causes excessive
color enhancement in the image. the sharpness of the image after KinD enhancement is good, the
overall brightness of the image is dark. The enhanced images of Zero-DCE and Zero-DCE++ appear
abnormal green or yellow. Although EnlightenGAN solves the color distortion problem of Zero-DCE
and Zero-DCE++, EnlightenGAN will produce obvious sawtooth noise distortion at the edge of the
light. In contrast, our proposed EDAU-Net has better visual effect, because it can well restore the
texture, detail and color of intestinal polyp image without producing artifacts.

Fig. [§ shows the enhancement effects of different enhancement methods on non-uniform illumi-
nation images. Due to the fluctuation of the intestine, the original image Fig. [§{(a) contains both
dark and bright areas. Fig. b)—Fig. j) are the results of processing Fig. a) by traditional
image enhancement methods. Fig. k)—Fig. (r) are the results of processing Fig. a) by image
enhancement methods based on deep learning. BPDHE still has no significant effect on non-uniform
illumination image enhancement. The method proposed by Dong et al. and LIME can enhance the
details of dark areas to a certain extent. However, LIME has the problem of over-enhancement, and
the method proposed by Dong et al. has black artifacts on the reflective edges. AGCWD can cause
over-enhancement of the brighter area and blurring of blood vessel edges, and the enhancement effect
of polyp in the dark area is not obvious. NPE, SRIE, MF and BIMEF have the phenomenon of loss
of vascular edge details and insufficient brightness enhancement in local areas. RRM not only leads
to the loss of image edge details, but also produces over-enhancement in the area where the polyp
with high brightness is located. Retinex-Net has obvious loss of details, and there is an undesirable
enhancement in some edge structures of the image, and it will produce obvious sawtooth noise dis-
tortion at the edge of the light. Although MBLLEN, KinD and EnlightenGAN produce good effects
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in contrast and detail enhancement, they cause color distortion. DeepUPE has no significant change
to the bright region and can significantly improve the brightness of the dark region, but the overall
image is blurry. Zero-DCE and Zero-DCE++ not only have serious color distortion, but also reduce
the visibility of the image. The proposed EDAU-Net can significantly enhance the darker areas of
the image, and still maintain richer texture details for the brighter areas of the original image. The
image contrast has also been significantly improved, and it is more consistent with the original color
of the object in the image.

4.1.2. Quantitative Evaluation

In order to effectively and objectively evaluate the proposed EDAU-Net, three full reference
image quality assessment indexes including Peak Signal-to-Noise Ratio(PSNR), Structural Similarity
Index Measurement(SSIM) [43] and Lightness Order Error(LOE), as well as three no-referenced
image quality assessment indexes including Naturalness Image Quality Evaluator(NIQE), Contrast
Improvement Index(CII) [44] and Average Gradient(AG) are selected to evaluate the results of the
experiment. It should be noted that LOE is also often used to measure the brightness order error
between the enhanced image and the original image. However, using the original image to compute
LOE is problematic. One should choose a reliable Ground Truth as a reference [I3]. Therefore,
LOE,.; used in this paper belongs to the full reference image quality index.

Table 2: SSIM, PSNR, LOE,..r, NIQE, CII, AG metrics of each algorithm on polyp images of the testing set LHI. |
means that the smaller the value of the corresponding objective index, the better the enhancement result. 1 means

that the larger the value of the corresponding objective index, the better the enhancement result.

Algorithm SSIMT  PSNRt LOE,.;] NIQE| CIIt AGYT
BPDHE [6] 0.7163 15.3104 1372.4284 4.8981 0.7755  4.2645
Dong [22] 0.8870 19.5481 1545.8305 5.3263 0.9475 5.6325
AGCWD [1] 0.8722 18.8017 1371.2160 4.6730 0.7470 4.1633
NPE [g] 0.8620 17.9272 1420.0461 4.6757 0.6802 4.0914
SRIE[9] 0.9051 20.3136 1332.7079 4.3695 0.7057 4.3086

MF [10] 0.8888  19.2371 1215.5981 4.6964 0.6482 4.3377
LIME [I1] 0.8998 19.2184 1308.0230 4.7895 0.6719 4.3346
BIMEF [42] 0.8831 20.1190 1259.5562 4.7423 0.6249 4.1973
RRM [23] 0.8913 18.6979 1553.4079 5.4251 0.7507 4.6677
RetinexNet [12] 0.8012  17.4408 1556.5680 5.0568 0.7838  5.3250
MBLLEN [28] 0.8805 22.3009 969.4290  4.4759 1.5285 6.1699
KinD[13] 0.9141 21.4660 990.8599  4.9926 1.0236  5.9252
DeepUPE [15] 0.9162 22.8697 1139.5569 4.6340 0.6871 4.2341
Zero-DCE[31] 0.3344 13.1093 1549.5628 4.6223 0.5989 4.7106
Zero-DCE++ [32] 0.3193 13.6593 1577.3043 4.6836 0.6066  4.6728
EnlightenGAN [14] 0.9310 23.5917 1070.3859 4.3454 1.2368 5.7481
EDAU-Net 0.9628 26.9513 701.1326 4.3147 1.3927 6.2345

In order to make objective quantitative comparison, the average value of image quality assess-
ment indexes obtained after processing 619 test images of dataset LHI was calculated during the
experiment. The comparison results are shown in Table 2.

As can be seen from Table 2, except that the CII of the proposed EDAU-Net is lower than that
of MBLLEN, the average values of SSIM, PSNR, NIQE, AG and LOE,.; are better than other
algorithms. The PSNR and SSIM values of EDAU-Net are significantly higher than those of the
comparison algorithm, which shows that EDAU-Net has better effect in reducing image distortion
and restoring structure. In order to accurately and stably depict the discrete distribution of data,
we draw the LOE,.¢ values obtained from 619 test images processed by 17 different enhancement
methods into a box diagram, as shown in Fig. [9 It can be seen from Fig. [J that the average
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value of LOE, .y of EDAU-Net is the lowest, and the distance between the upper quartile and the
lower quartile is small, which shows that EDAU-Net can effectively adjust the image brightness
and maintain the image naturalness while obtaining a relatively stable LOE,; value. EDAU-Net
obtains the best NIQE value, indicating that the image enhancement result of EDAU-Net the overall
performance is more natural and more consistent with the subjective visual perception of human
eyes. The CII and AG values of EDAU-Net and MBLLEN are significantly higher than those of
other algorithms, which shows that EDAU-Net effectively improves the contrast and clarity of polyp
images. MBLLEN has the highest CII, indicating that MBLLEN effectively improves the contrast
of intestinal polyp images. However, high contrast itself may also affect the shadow removal of dark
areas in the image, so the SSIM value of MBLLEN is low, which directly affects the image quality
and adversely affects the clinical use. In addition, the large LOE,.; value of MBLLEN indicates
that the brightness order of the image is destroyed and the naturalness is maintained poorly. The
proposed EDAU-Net is superior to other algorithms in other five image quality indexes except that
the average value of CII is lower than MBLLEN, indicating that the comprehensive performance of
the enhanced image by EDAU-Net is the best.
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Figure 9: Box diagram of image quality assessment index LOE,.y.

4.2. Experiments and Results of Image Fusion

In order to highlight the details of the lesion region of interest, our proposed image fusion strategy
weakens the background region of the global enhanced image. Below, we use the objective evaluation
method and the subjective evaluation method of user study to analyze the results.

4.2.1. Objective Evaluation

Fig. displays the salient change before and after the enhancement of polyp images by our
proposed image fusion strategy. Fig. [10(e) is the ground truth for the polyps corresponding to
the original input images Fig. a). Fig. [10[d) shows the attention heat map obtained from the
original input image without enhancement. The redder the attention heat map, the more attention
the corresponding region has received from the observer. The bluer the attention heat map, the
less attention the corresponding region has received from the observer. It can be seen from the
observation that after the intestinal polyp image is locally enhanced by our proposed image fusion
strategy, people pay more attention to the lesion region. Therefore, the image fusion framework for
the ROI of internal polyp images proposed in this paper is expected to assist doctors in accurate
diagnosis.
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(a)Input (b) Saliency map of Input ()., (d) Saliency map of/ ; ,  (e) Original mask

Figure 10: Saliency map for example images.

Our proposed framework can locally enhance images with polyp. In fact, the EDAU-Net in the
proposed framework can be applied to images without polyp for global enhancement. We trained our
model with the intestinal polyp images in dataset LHI. To better evaluate the theoretical advantages
and practical application value of the proposed method, we selected 2000 images from the web public
dataset Kvasir [45] and 17 images from the actual Clinical dataset collected from a Grade-A tertiary
hospital in Zhengzhou city, Henan Province as the test images (images with and without polyps). The
actual Clinical dataset was collected by the high-definition colonoscope CF-H260AI from OLYMPUS
in Japan. CF-H260AI is the world’s most advanced digestive endoscopic diagnosis and treatment
equipment recommended by the World Health Organization and the International Gastroenterolog-
ical Association. Its electronic endoscope system contains image enhancement technology that can
enhance the quality of clinical images. We validated the image enhancement algorithm by directly
comparing the high-quality image obtained by CF-H260AI with the image obtained by the proposed
method. The test images included normal cecum images, normal pylorus images, pathological finding
images of polyps, and ulcerative colitis. We randomly selected 10 images without and with polyps
from 2017 test images and their experimental results to display in our paper. The comparison be-
tween the original endoscopic images and the enhanced images of the proposed method in Kvasir
dataset is shown in Fig. The comparison of the enhancement effect of other traditional tech-
niques BPDHE [6], Dong [22], AGCWD [41], NPE [8], SRIE [9], MF [10], LIME [I1], BIMEF [42],
RRM [23], Wang [46] and CF-H260AI with our method in the Clinical dataset is shown in Fig.
It can be seen that the proposed method can locally enhance the images with polyps to make the
polyps appear clearer and more prominent, and can also globally enhance the images without polyps
to make details of the intestinal lining clearer. More specifically, our method can more clearly see
the position of the appendiceal orifice on the normal cecum image, the area around the opening from
the stomach into the first part of the small bowel on the pylorus image, the ulceration and mucosal
bleeding on the ulcerative colitis image. This shows that our proposed framework can not only en-
hance polyp images, but it is also suitable for image enhancement tasks of some images w/o polyp
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(normal cecum images, normal pylorus images, and ulcerative colitis), with good generalizability. To
further verify the effectiveness of the proposed algorithm, we used two no-referenced image quality
assessment indexes, NIQE and AG to evaluate the image quality. These evaluation metrics are not
applicable for the locally enhanced images with polyps. Therefore, we only show the quantitative
comparison results of images w/o polyps in Fig. and Fig. It can be seen from the quantitative
comparison of the images, all NIQE and AG values of images obtained by our proposed method are
significantly better than those of the images obtained by Kvasir, CF-H260AI, and the traditional
technology, which shows that our method the overall performance is more natural and effectively
improves the clarity of images.

Kvasir(with palvp) Kvasir(w/o polyp)

NIQE=524 AG=4.34 NIQE=632 A(

Onginal
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Figure 11: Image enhancement results for images with and without polyp in Kvasir dataset.
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Figure 12: Image enhancement results for images with and without polyp in Clinical dataset from hospital.

For an endoscopic image with size 256 x256, we record the average running time of the proposed
method to process the actual Clinical dataset from a Grade-A tertiary hospital on CPU is 0.1018
seconds, and the average running time on GPU is 0.0289 seconds. That is to say, the proposed method
enhances about 8 images per second on the CPU and about 35 images per second on the GPU. The
speed of imaging with GPU mode meets the requirements of clinical 2D real-time imaging. We also
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invited three senior endoscopists from the hospital in Zhengzhou City, Henan Province to make a
subjective evaluation on the real-time performance of the proposed algorithm and the enhancement
results of Fig. [[2] The results show that the proposed method not only meets the clinical needs of
physicians in terms of processing speed but also outperforms the enhancement effect of CF-H260A1
and other traditional techniques. In addition, we trained ACSNet on a dataset containing both polyp
and non-polyp images to predict masks for 300 clinical images (143 without polyps and 157 with
polyps). However, these clinical images do not have corresponding segmentation masks (Ground
Truth). To address this problem, we invited three experienced endoscopists to use Labelme, an
open-source image annotation tool, to label and generate masks for these clinical images. All clinical
image masks were annotated on the same monitor indoors. The consensus results from two of the
doctors were used as Ground Truth, and we obtained a false positive rate of 0.19% for the predicted
images. Therefore, ACSNet can effectively distinguish between regions with and without polyps in
the images. That is to say, the enhancement method can accurately enhance the area covered by
polyps, and also has a good suppressive effect on the non-lesioned areas. This further validates the
usefulness of the proposed method for clinical diagnosis and treatment.

4.2.2. Human Subjective Evaluation

In order to subjectively evaluate the image fusion framework for the ROI of intestinal polyp
images, we conduct a user study to compare the performance of our method and 17 image enhance-
ment methods including BPDHE, the algorithm proposed by Dong et al., AGCWD, NPE, SRIE,
MF, LIME, BIMEF, RRM, RetinexNet, MBLLEN, KinD, DeepUPE, Zero-DCE, Zero-DCE++, En-
lightenGAN, and EDAU-Net.

Q1. Are the details of the lesion area clear? Q2. Will the lesion attract your attention?

EnlightenGAN

EDAU-Net
Q3.Whether it can be applied to clinical? Q4. Whether the image produces color distortion?

QOurs

MBLLEN MBLLEN

EnlightenGAN AU~Net EnlightenGAN EDAU-Net

Q5. Whether the bright area of the image is over enhanced?

Ours

EnlightenGAN EDAU-Net

Figure 13: Results of our user study.
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We consulted 8 colorectal surgeons with more than 3 years of clinical experience and 12 medical
students, and obtained their evaluation feedback on the enhancement results of 22 randomly selected
images from the synthetic dataset LHI. Five questions were designed in the investigation sheets (1.
Are the details of the lesion area clear? 2. Will the lesion attract your attention? 3. Whether it can
be applied to clinical? 4. Whether the image produces color distortion? 5. Whether the bright area
of the image is over enhanced?). We repeat the above for all 22 images.

The results of human user study are presented in Fig. which displays the five pie charts.
The distribution of satisfactory methods for different problems shows that our method obtains more
distribution proportion than other methods. Methods based on deep learning such as RetinexNet,
Zero-DCE and Zero-DCE++ have zero satisfaction distribution in all five questions. This is because
they cause color distortion and over-enhancement, that seriously affects people’s observation of the
details of intestinal polyp images. As can be seen from Q1, Q4 and Q5, the distribution proportion of
EDAU-Net enhancement results and ROT local enhancement results proposed in this paper are higher
than other comparison methods. Obviously, the effect of EDAU-Net and image fusion framework
for the ROI of intestinal polyp images proposed by us is superior to other methods in terms of
enhancing details of lesion area, avoiding color distortion and over-enhancing brighter areas. By
observing Q2, it can be seen that the distribution proportion of the proposed local enhancement
framework for the ROI of intestinal polyp images is far exceeds that of EDAU-Net, which shows that
the proposed image fusion framework for the ROI of intestinal polyp images can effectively attract
people’s attention to polyp ROI. This conclusion is also consistent with the analysis of our Objective
evaluation. Furthermore, according to Q3’s feedback, compared with the global enhancement method
EDAU-Net, the image fusion framework for the ROI proposed by us is more favored by doctors and
has medical clinic value. Therefore, it is necessary to perform image fusion after EDAU-Net to obtain
the local enhancement result of intestinal polyp images.

5. Discussion

In the present work, we have proposed a new polyp image quality enhancement framework based
on the region of interest with paired supervision to simultaneously realize two different tasks: global
detail enhancement and local detail enhancement. To preserve more image details and adjust the
global image illumination, we proposed a supervised global image enhancement network EDAU-Net.
We also proposed a new fusion strategy to achieve the local enhancement effect of the region covered
by the polyp in the image.

From the results of the comparison with traditional image enhancement techniques and recent
image enhancement methods based on deep learning, as shown in Table 2, we can conclude that deep
learning-based methods are more important than traditional image enhancement method for endo-
scope image enhancement. Although MBLLEN, KinD and EnlightenGAN have achieved remarkable
image enhancement results. All full reference image quality indexes values of EDAU-Net are signif-
icantly better than those of the comparison algorithm. In addition, compared to previous studies,
e.g. Ref. [0 14, [46], the proposed method can locally enhance and weaken specific information in the
images with polyps. As shown in Fig. selectively enhancing the polyps on the surface of the in-
testinal lumen. From both a qualitative and a quantitative point of view, the results obtained by our
proposed framework are satisfactory in the two different tasks. Human subjective evaluation from
colorectal surgeons and medical students further solidifies the advantage of the proposed framework.
Although extensive experiments have been performed to validate the effectiveness of our proposed
framework, some issues still exist that need to be further discussed.

5.1. The reason for using the enhanced image as input to ACSNet

The ROI acquisition module was implemented by feeding globally enhanced images into ACSNet.
To further investigate the mechanisms and rationales behind our proposed framework, we present a
brief analysis to prove that using the enhanced image as input to ACSNet could obtain the polyp
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region more accurately. Although ACSNet has shown excellent performance in polyp segmentation
tasks, the visual complexity associated with images such as low contrast and uneven illumination can
hamper the optimal performance of deep convolutional neural networks based methods [47]. In order
to obtain ROI images more accurately, we conducted two experiments, one was to train ACSNet with
the Synthetic input image in dataset LHI, and the other was to train ACSNet with the enhanced
Synthetic input image I, by EDAU-Net. Fig. shows the comparison results between the different
ROI and Ground Truth by using two different types of image input ACSNet, the unenhanced image
and the enhanced image. It reveals that the ACSNet model trained with enhanced image dataset
by EDAU-Net could detect the polyp region more accurately than trained with unenhanced image
dataset. The explanation of this accuracy enhancement is that the proposed EDAU-Net reduces
artifacts near the polyp, which causes the polyp segmentation borders obtained by ACSNet to come
closer to that of the Ground Truth. Therefore, it is necessary to perform global image enhancement
for intestinal polyp images before ACSNet training to achieve ROI acquisition.

e[
-
A Ts

Figure 14: Visual comparison of ROI output from ACSNet. Row 1~4 display the without enhanced Syn input images,
ROI images obtained by inputting without enhanced Syn input images into ACSNet, ROI images obtained by inputting
the enhanced image output from EDAU-Net into ACSNet, and Original masks (Ground Truth), respectively.

5.2. Discussion of the contribution of each component in the EDAU-Net

In order to prove the effectiveness of each component in the EDAU-Net model, we performed a
series of ablation studies to analyze EDAU-Net and compared it with the following network structures:
1) Without Detail Attention Maps, only the U-Net based model composed of Luminance Attention
Maps is introduced; 2) Without Luminance Attention Maps, only the U-Net based model composed of
Detail Attention Maps is added; 3) The EDAU-Net model of Detail Attention Maps and Luminance
Attention Maps is added on the basis of U-Net. For the above models, the same parameters as
EDAU-Net are used for training on the synthetic dataset LHI for fair comparison. The qualitative
and quantitative results are shown in Fig. and Table 3.
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Figure 15: Qualitative comparison of models with different structures on synthetic polyp images. (a) Input; (b)
Without Detail Attention Maps; (¢) Without Luminance Attention Maps; (d) EDAU-Net; (e) Ground Truth.

Table 3: Quantitative comparison of models with different structures on polyp images of dataset LHI.

Model SSIM{ PSNRT LOE,.;, NIQE] CIIf AGT

(b) Without Detail Attention Maps 0.9570 26.2328 760.4334 4.3207 1.2181 6.1689
(c) Without Luminance Attention Maps | 0.9609 26.7480 740.7765 4.3380 1.3671 6.2128
(d) EDAU-Net 0.9628 26.9513 701.1326 4.3147 1.3927 6.2345

By observing Fig. it can be seen that Fig. d) has clearer texture and detail information
than Fig. b), which shows that Detail Attention Maps can improve the clarity of the image.
Comparing Fig. ¢) with Fig. d)7 it can be seen that the overall brightness of Fig. ¢) is more
uneven, which shows that Luminance Attention Maps has a better adjustment effect on the non-
uniform illumination of the original image Fig. a). In addition, the edge of the highlighted area
in Fig. ¢) produces a lot of noise, which shows that Luminance Attention Maps can also suppress
noise generation. It can be seen from Table 3 that the values of CII and AG have been optimized
to varying degrees after adding Detail Attention Maps. All evaluation criteria have been optimized
after adding Luminance Attention Maps, especially PSNR and LOE,.;. Therefore, the quantitative
results in Table 3 are also consistent with the qualitative results in Fig. The attention map is
helpful to extract the image features of intestinal polyps.

5.8. Discussion of the contribution of each loss function

In addition, we analyze the contributions of the Ly loss, Lo loss, Lstructure 108s, and L perceptual
loss. More specifically, the w/o L means that only the Lo, Lsiructure a0d Lperceptual are taken to
train the EDAU-Net, the w/o Ly means that only the L1, Lstructure and Lperceptual are adopted to
constrain the EDAU-Net, the w/0 Lgyrycture Presents that only the Ly, Lo and Lpercepiual are taken
to train the EDAU-Net, and the w/0 Lperceptuar means that the term of Lpeycepruar is discarded in
the total loss. The results of different combinations of loss functions are shown in Table 4.

Table 4: Quantitative comparison of models with different loss functions on polyp images of dataset LHI. “w/0” means
without. Bold means the best results.

Model SSIMT PSNR{ LOE,.;| NIQE] CIIf AG?T
w/o Ly 0.9621 26.0192 707.6696 4.3100 1.3758 6.2218
w/o Lo 0.9570 26.1741 761.5694 4.3636 1.1865 6.1470

w/0 Lstructure 0.9627 26.9418 705.0991 4.3657 1.3730 6.2323
W/0 Lperceptuat | 0.9619 26.8982 708.2144 4.3531 1.3881 6.2274
EDAU-Net 0.9628 26.9513 701.1326 4.3147 1.3927 6.2345
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As illustrated in Table 4, L1 urges EDAU-Net to learn the global similarity between the predicted
image and the target image and suppresses the network to generate noise. Ly can significantly improve
the overall performance of images. Lgtrycture €ncourages the network to learn the global similarity
between the predicted image and the target image and makes the results look natural. Lperceptuat
improved all quantitative evaluation indexes. It is worth noting that the value of PSNR increased
by 0.0531 and the values of LOE,.; and NIQE decreased by 7.0818 and 0.0366 respectively, with
Lperceptual compared to without Lperceptuar- This proves that Lperceptuqr has certain advantages
in noise removal, brightness enhancement, and natural visual effects maintenance of polyp images,
and Lperceptual €ncourages the generated images to have similar content as the target images. The
results show that the quality of enhancement is improving by combining the above loss functions
reasonably.

5.4. Discussion of the loss weights setting

In this part, we discuss the effect of A1, A2, A3 and A4 on the performance. Here we performed some
ablation experiments to explore the performance of each parameter by setting different combinations
of loss weights and running over 150 iterations on EDAU-Net. It is understandable that such an
approach is time-consuming and not efficient. However, the nature of the problem does not permit
the derivation of a direct relation of those parameters with the enhancement technique. We find
that even though these hyperparameters need fine-tuning carefully, their settings do follow certain
principles. The weighted coefficient Ay of Lo loss in fact controls the high-frequency information
between an enhanced image and its Ground Truth image. When Ay is large, the comprehensive
performance of the image can be significantly improved. Thus As should be large enough to ensure
the correspondence of the enhanced high-frequency information. For L loss, too large a value of
A1 often leads to low contrast and sharpness in the whole image. An excessively large A3 value also
leads to low contrast. In addition, too large A4 usually causes the enhanced image to deviate from
the brightness order of the original image. After extensive experiments, we concluded that when the
values of the parameters A1, A2, A3, and A4 are equal to 1, 1000, 1, and 1 respectively, the achieved
result is more similar to the reference image and the objectively evaluation metrics can get better
value, which means that the proposed method can achieve wonderful performance. Therefore, the
parameters A1, Ao, Az, and A4 are finally set as to 1, 1000, 1, and 1 through testing results.

5.5. Limitations

Although the proposed framework shows the generalizability in challenging polyp image datasets,
some limitations of our method still exist. In a few exceptional cases, our method cannot accurately
distinguish polyps from background of the polyp images and perform targeted enhancement of lesion
regions. For example, inappropriate bowel preparation (with a large amount of fluid and feces)
may lead to more error prone polyp segmentation. In fact, even experienced colonoscopists may
disagree on the polyp boundary segmentation of such challenging images. Fortunately, ACSNet in
our proposed framework is replaceable. With the development of deep learning, the segmentation
accuracy of the polyp segmentation algorithm is constantly optimized. It is an important research
direction in the future for us to accurately segment polyp images obtained under improper bowel
preparation.

When ACSNet was trained on a dataset containing both polyp and non-polyp images, the false
positive rate tested on clinical images with and without polyps was 0.19%. This is because ACSNet
may produce false positive results for non-polyp images that are close to the polyp characteristic
region. According to the doctors’ feedback, the proposed method can significantly reduce the diag-
nostic workload and effectively meet clinical needs. The false positives in non-polyp images will not
lead to unnecessary and potentially dangerous surgery, as computer images are only a tool for assist-
ing medical decisions. In practical applications, doctors can switch between local and global image
enhancement effects of the proposed algorithm at their discretion, and perform further confirmations
as needed.

23



6. Conclusion

In this paper, an intestinal polyp image dataset LHI composed of paired low-quality images and
high-quality images was constructed for the first time. LHI solves the problem of the lack of paired
intestinal polyp image enhancement datasets, contributes to the development of deep learning in the
field of intestinal polyp image enhancement, and is of great significance for improving the quality
of polyp images. We proposed the EDAU-Net model by introducing Detail Attention Maps and
the Luminance Attention Maps. EDAU-Net can effectively eliminate non-uniform luminance and
improve image texture and detail information. EDAU-Net is compared with the classic algorithm
and the latest algorithm on the dataset LHI. The results show that the proposed EDAU-Net has
the best comprehensive performance. By weakening the background region to highlight the details
of the region of interest, we proposed a new image fusion strategy that can help doctors quickly and
clearly observe the texture and details of the lesion region. Compared with the traditional image
enhancement methods and the state-of-the-art deep learning methods, the proposed has better local
enhancement effect and has certain clinical practicability. In the future work, we will improve the
algorithm for the further research on 3D reconstruction of the lesion region.
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