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ABSTRACT Recent technological advances have provided the chance to conduct Virtual Reality (VR)
experiments with increased ecological validity, which in turn can elicit more naturalistic responses in
immersed users. However, many studies still prefer highly controlled setups and passive stimulation, often
due to the practical complexities in effectively associating cause (stimulus) to response in highly interactive
and dynamicVR experiences.Many of these studies also rely on subjective ratings from participants recorded
either after the experience (relying on memory) or during the experience (interrupting immersion). In this
paper, we advance this experimental protocol in a large-scale feasibility study by 1) investigating affective
changes in terms of valence and arousal ratings in various interactive 3D room-scale VR environments with
2) continuous valence and arousal self-ratings from a controller and 3) a novel wireless physiological facial
EMG and PPG sensor setup specifically designed to record affect, without relying on memory or interrupting
immersion. In this study, n=291 participants experienced neutral, positive and negative virtual environments
in ‘passive’ and ‘active’ conditions. Continuous self-ratings and physiological measures confirmed the
feasibility of detecting affective states in room-scale VR conditions. To our knowledge, this is the highest
n in a feasibility study in affect detection to date. Our study generated the most populated physiological
data library collected in VR, which also compares passive and active VR settings. This setup can provide a
solid experimental foundation for VR affective computing studies in more unconstrained, ecologically valid
environments.

INDEX TERMS Affective computing, facial expression, database, multimodal analysis, physiological
signals, technology and devices for affective computing, guidelines, three-dimensional graphics, virtual
reality.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessandro Floris .

I. INTRODUCTION
Commercially available Virtual Reality (VR) technolo-
gies can simulate far more immersive real-world scenar-
ios and interactions than traditional experimental affect
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manipulations. These simulated real-world scenarios can
elicit more intense emotional reactions in an experimentally
controlled setting [1]. Growing evidence has shown that par-
ticipants who experience higher levels of presence in VR tend
to interact in more naturalistic ways [2], [3], [4] and have
natural affective reactions to lifelike scenarios.

To achieve these affective responses in naturalistic VR
setups, three design factors must effectively integrate with
three essential aspects: the depth of presence, the immersive
impact, and the user’s holistic engagement with the mediated
experience [5]. These aspects are contingent upon the care-
fully designed VR technology’s inherent attributes alongside
the meticulous structuring of sensory-rich environments.

Recent VR technologies offer advanced, lightweight user
tracking methods combined with high-resolution audio and
graphical capabilities. This amalgamation holds the potential
to generate experiences with heightened ecological valid-
ity (a term linked to the content’s richness/vividness [6]).
These advances encourage the shifting support a shift away
from traditional, seated laboratory setups—often reliant on
distracting and cumbersome sensors—toward unobtrusive,
wearable technologies that enable more naturalistic explo-
ration and interaction. As such, sensor-enabled VR has
the capacity to become the ideal experimental tool for
behavioural and affective sciences.

Virtual environments (VE), were utilised in conjunction
with physiological response acquisition as a psychological
research tool in manifold applications, typically related to
stress/arousal induction or stress reduction/meditation (see
review by [7]). Recent examples have shown that VR can be
used in exposure therapy to induce relaxation and to reduce
anxiety [8], in pain research to distract users from painful
experiences (see review by [9]), and for stress reduction in
clinical contexts [10], [11]. VR scenarios were also used to
induce negative emotions and stress (negative arousal), for
example in public speaking scenarios [12] and by introducing
phobic elements into the VE [13]. More broadly, reported
presence levels are higher in stressful than neutral VE sce-
narios in the literatures [14] and [15].
These VR interventions greatly benefit from an effective

affect recognition system. Such a system could foster the
effectiveness of VR applications in phobia therapy [16], med-
itation and relaxation [3], [17], [18], training and exergames
( [19], [20], [21], [22]), spectrum disorders [23], [24], mental
health therapies [25], and aesthetic experiential research [26].
Affect typically consists of the instinctual fluctuations of

two main dimensions: valence and arousal (as conceptualised
in the Circumflex Model [27]). Arousal refers to the level of
physiological activation accompanying the emotional state,
ranging from calmness to intense excitement. On the other
hand, valence describes the quality of that activation, rang-
ing from negative to positive. Sensing approaches, such as
heartrate changes and skin conductance, can indicate affec-
tive variations and thus are common in psychophysiological
research. Recently, we have witnessed the integration of

such sensing methods within headset-induced VR studies [7].
However, physiological activation is only one way of infer-
ring affect:

Intense affective experiences often trigger facial muscle
activations [28], and movement patterns, like approach and
withdrawal, can be effectively tracked via integrated sen-
sors [29]. Recent works have demonstrated the potential of
camera-based facial tracking and voice cues for affect recog-
nition in multimedia experiences (e.g., [30]). This growing
interest in facial expression analysis is further reflected in the
announcements of recent commercial HMDs which include
built-in face tracking capable of estimating Facial Action
Units through computer vision and machine learning tech-
niques [31], [32]. Nonetheless, the integration of EMG in XR
research remains a valuable approach, particularly given its
widespread use as a ground truth in validating these more
indirect methods [33].
Notwithstanding VR’s transformative potential to study

naturalistic affective responses in room-scale, (inter)active,
immersive experiences, the technology is not fully developed
for experimental usage. For example, the VEs used to elicit
responses are often passive, two-dimensional, pre-recorded,
and in seated settings, restraining natural movements [34].
Additionally, arousal and valence levels explored in the

literature often skew towards negative and extreme values,
typically comparing high vs low arousing and negative versus
neutral [35], where the level of variation is limited. Ide-
ally, such exploration would benefit from standardising the
experimental paradigm using validated stimuli materials for
both affective dimensions in a balanced manner, for example,
by including negative and positive validated VEs and stimuli.

This study is designed to address these points by providing
further insights into the effects of room-scale VE-induced
affective modulation on physiological signals, self-reported
affect scores and memory. The concept of a dynamic inter-
active experience urges us to explore innovative methods for
examining affective responses to content. The new approach
involves (a) a practical sensor setup for freely walking set-
tings and (b) a re-examination of the conventional approach of
defining an experience as a solitary stimulus unit or breaking
it down solely along linear stimulus segments. Therefore,
we developed novel custom-designed sensing technology
designed to detect valence and arousal responses, interaction
tracking, and prototypic event-tracking solutions. The follow-
ing sections provide an overview of the study, its objectives
and methods.

II. STUDY OVERVIEW
The study had three key aims. Firstly, it compared the effects
of positive, neutral and negative VEs on affect elicitation
using subjective and electrophysiological data. Secondly, the
study investigated the feasibility of a custom wearable sensor
setup for affect detection on both dimensions (valence and
arousal) in room-scale VR settings during active exploration.
Lastly, it compared passive prerecorded walk-through VR
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FIGURE 1. Datasets selection flowchart.

settings and (inter)active dynamic walk-through VR settings
to shed light on the inherent differences of the two induc-
tion modes and their effects on subjective aspects of the
experience.

Four VEs were used from the AVEL library [34] com-
prising pre-validated 3D room-scale affective VEs, each with
individual event-stimuli. These included one baseline VE and
three affective VEs (a neutral, a positive, and a negative)
consisted of replicas of a physical office room. Each affective
VE was populated with 14 audiovisual stimuli (referred to as
‘events’) designed to evoke different ranges of valence and
arousal.

The active mode supported dynamic, room-scale explo-
ration, allowing users to freely walk, look around, and interact
naturally (users can look and move freely in various direc-
tions). In contrast, the passive mode limited interactivity and
movement (seated, linear experience). The passive mode user
was vicariously experiencing the same VEs, only this time
via recorded videos from the viewpoint of the user in the
active mode. In both modes, the Continuous Affect Self-
Rating (CASR) [36] tool was employed using the controller’s
trackpad, to register valence and arousal self-reported ratings
throughout the experience, by moving the thumb atop the
VR handheld-controller’s trackpad. This allowed continuous
VR experience and event-based analysis. Traditional single
post-VE affect ratings were also collected for comparison.
To effectively link stimuli to response, we developed a novel
user-gaze based interaction and event tracking system, along
with an event-marker system. These systems enabled us to
track the virtual objects that the user was looking at, thus
allowing for the analysis of physiological changes in relation
to context.

Data were recorded at the Science Museum in London
from a diverse population during a six-week period, where
museumvisitors were invited to participate. The present study
is presumed as the largest-scale VR study with physiological
sensors conducted up to date. For the continuous physio-
logical tracking, we used four identical sensor face masks
of the emteqVR prototype which were mounted onto an
HTC VIVE headset [37]. Each mask comprised of seven
facial electromyographic (EMG) and two photoplethysmo-
graphic (PPG) sensors. The interaction modes, active and
passive, were compared using subjective affective ratings,
facial EMG, physiological, and movement measures. Poten-
tial confounding variables as alexithymia and expressivity
were recorded with standardised questionnaires to control
for potential group differences. Note, affect intensity is also

known to influence cognition, including memory recognition
and recall, with notably emotional stimuli being observed as
more memorable [38], [39].

A. HYPOTHESES
H1: VE Comparison across groups using post-VE and con-
tinuous affective ratings, presence, and memory recognition
accuracy. It is predicted that:
H1a:VEs evoke the targeted valence and arousal ratings in

VR. These should be similar, albeit more intense, compared
to the values recorded for the validated virtual environments
in the online survey reported in [34] (manipulation check).
H1b: The expected valence and arousal ratings in VR are

affected by expressivity group (stronger ratings for affective
VEs for the more expressive group) and alexithymia group
(less strong ratings for affective VEs for the high alexithymia
group).

H1c: Positive and negative VEs result in interactive
VR experiences (active group) inducing enhanced presence
scores and memory recognition accuracy.
H2: Comparison between the active and passive group

using continuous affective ratings, presence scores and mem-
ory recognition accuracy. It is predicted that:

H2a: The active group elicits more extreme affective sub-
jective ratings compared to the passive group.

H2b: The active group elicits higher levels of presence and
memory recognition accuracy compared to the passive group.

H3: Feasibility of valence and arousal detection with phys-
iological sensors in active and passive VR. It is predicted that:

H3a: EMG sensors can reliably detect spontaneous affec-
tive changes in VR settings.

H3b: PPG sensor can reliably detect arousal changes inVR
settings.

H3c: Enhanced affective EMG and PPG responses are
expected in the active compared to the passive group, de-spite
the reduced signal-to-noise ratio.

H4: Feasibility of valence detection from movement. It is
predicted that:

H4a: People show approach behaviour for positive events
and withdrawal behaviour for negative events in the active
group.

III. METHODS
A. PARTICIPANTS
From an initial pool of 730 volunteers, participants were
screened for cardiovascular, medical, and psychological
conditions. Other exclusion criteria are described in the
Supplementary Material. After exclusions, 291 participants
with an age range of 18-35 years and good English fluency
were selected for data analysis (Fig.1). Most participants
had little to no experience with VR (81.44%). From those,
NA=139 participants were randomly allocated in the ‘Active’
group (76 females (54.7%); 63 males (45.3%), mean age =

25.22 ± 4.69 years), and NP=152 in the ‘Passive’ group
(87 females (46.1%), 64 males (42.1%), 1 transgender/non-
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FIGURE 2. 360-degree screenshots of the VEs: (1) Training CASR VE, (2) VR adaptation, nd (7) Negative VE.

FIGURE 3. Outline of the experimental protocol used for the VR study divided in steps (1-7). Step 1 included the introduction to the study, the
Participant Information Form (PAF), the consent form, a demographic questionnaire with screening questions and the allocations of participant IDs.
Participants were then divided into an active and a passive group. They were trained on how to use the CASR interface using the VIVE Controller
(Step2). Active group users were introduced to VR adaptation scene (Step 3). Both groups experienced the affective scenarios preceded by a baseline
recording session and followed by a short experience questionnaire (Step 4 & 5). Step 6 included a short recording of facial expressions of three
emotions. All participants were asked to complete questionnaire (Q2; Step 7) which included questions about their personality, as well as alexithymia
and expressivity scales.

binary individual (0.7%), mean age = 24.35 ± 4.51 years).
None of the participants were compensated for their time. The
studywas approved by the Bournemouth University Research
Ethics Committee (ID: 18848).

B. MATERIAL
Apparatus and instrumentation. For this study, four HTC
Vive HMDs and six EmteqVR interfaces were used in this
study (for further reference see progression of the sen-
sor setups, also known as ‘Faceteq’ [40], ‘emteqVR’ [37],
and ‘emteqPRO’ [41] implemented for different headsets).
The HTC Vive HMD was selected for its state-of-the-
art consumer-grade room-scale tracking, powerful PC-based
performance, and compatibility with the emteqVR EMG

system at the time of the study. The EmteqVR devices
collected multimodal electro-physiological data from seven
facial EMG sensors and PPG. They were connected via Blue-
tooth Low Energy (BLE) to custom applications provided by
Emteq Labs. Each participant’s data were recorded locally
on dedicated desktop computers. In addition, two external
webcams were positioned in the corners of the physical room
to monitor the participants’ movement, and two web-cameras
(1080p, 60 fps) were positioned on the wall to provide the
virtual camera feed (virtual mirror for enhanced presence
[42]; for complete stimuli overview see [34]). Furthermore,
six desktop computers (OS: Windows 10) and four tablets
(OS: Android) were required for the completion of forms
and questionnaires. The OBS software was used to record
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the VR and camera feed which were used for synchronisa-
tion and detection of movement artefacts. This architecture
allowed for independent and synchronized data collection
across multiple participants in parallel, all within the same
semi-controlled environment.
Questionnaires. wo questionnaires were used in this study.

The first questionnaire (Q1) was administered after each VE
presentation, included single-item ratings (ranged 1–9) for
valence, arousal, presence [43], motion sickness, enjoyment,
comfort (Post-VE ratings). These Post-VE ratings were col-
lected once per VE to capture overall impressions. In contrast,
continuous affect ratings (CASR) were gathered through-
out the experience, allowing us to examine in-experience
events and linking them to the continuous electrophysiolog-
ical responses recorded. Using both methods enabled us to
compare overall impressions with moment-to-moment expe-
riences, providing deeper insights into the effects of specific
events. The questionnaire also included a short memory
recognition task which included all events for each affective
VE (Neutral, Positive and Negative) (as in the AVEL library
[34]). The second questionnaire (Q2) was completed only
once at the end of the study. It consisted of a short demo-
graphic survey with questions about age, gender, immersive
technology experience, the Toronto Alexithymia Scale (TAS,
20 items) [44], and the Berkeley Expressivity Questionnaire
[45]. All questionnaires were designed using the Qualtrics
Software [46].
Virtual Environments (VE). Seven virtual environments

were used in total (Fig. 2). Four VEs were taken from the
AVEL library. These are: the ‘Baseline VE’ (4), the ‘Neutral
VE’ (5), the ‘Positive VE’ (6), and the ‘Negative VE’ (7) (see
description in [34]). In addition, three other VE scenes were
developed: the ‘training on CASR’ (1), a ‘VR adaptation VE’
(2), and a ‘home cinema’ VE (3). The ‘training CASR’ was
a simple VE with a screen where various short videos were
played, and instructions were given on how to self-rate using
the CASR tool with a wireless hand controller (Fig. 2.1). The
VR adaptation VE was designed to familiarize users with the
room-scale VR technologies and the movement boundaries.
It was used as practice space for training on CASR while
exploring the 3D space. The VE featured a 3D path that has
the exact same size as the VEs office-replicas (Fig. 2.2). The
home-cinema VE, for the passive mode, included a screen
for video presentation visible to the participant, and a control
user interface only visible to the experimenter (Fig. 2.3).
In all the virtual office-room versions, the dimensions of the
room and the point of entrance of the user were kept identi-
cal. Before running the main VR study, all affective virtual
environments were validated online using screen-recorded
videos [34]. An independent participant group rated each
scenario’s valence and arousal using standard scales.
This validation ensured the intended emotional tone of
each VE.
Physical Space. The study was conducted at the ‘Who

am I?’ gallery space within the Science Museum in London

(Fig. S2). For the active condition, the dimension of the VR
walkable area was 2.5m x 3m which included the desk where
the experimenter was sitting. This desk was successfully
masked in VR (as performed in previous studies [47]).

IV. EXPERIMENTAL PROCEDURE
The experiment consisted of seven steps in Fig. 3. All
participants were introduced to the study, donned the VR
headset with the EmteqVR mask, and completed the CASR
training. Participants were allocated randomly into groups
(‘Active’ and ‘Passive’). The Active group started with a
VR familiarisation exercise, in which instructions for con-
tinuous self-rating using the VR controller were given (x
axis for valence ratings and y axis for arousal ratings; see
Fig S2.1). Participants of the active group navigated the
room-scale environments using SteamVR’s walk-in-place
functionality, which simulates virtual walking by detect-
ing subtle in-place steps without requiring full physical
movement across the room. Both groups started with a base-
line recording of 2 minutes, followed by the randomised
presentation of the three affective VEs (neutral, positive
and negative VE). After each VE experience, participants
answered the ‘‘Q1’’ questionnaire. Afterwards, participants
performed three facial expressions with three repetitions
each, smiling, frowning (squeezing the eyebrows) and sur-
prised (raising the eyebrows) in high intensity (referred to as
‘expression recording’). Finally, they were asked to complete
the ‘‘Q2’’ questionnaire. The entire study had a duration of
approximately 40 minutes.

V. SIGNAL PRE-PROCESSING FOR DATA ANALYSIS
EMG. Data were processed with the Signal Processing tool-
box in MATLAB using a similar approach as in [36]. A notch
filter on 50 Hz and harmonics (from 100 to 450 Hz) was
applied on all signals (sampling rate: 1000 Hz) prior to other
pre-processing steps. Next, a Butterworth bandpass filter at
50–450 Hz (6th order) was applied in order to envelop the
most essential spectrum of f-EMG signal [48]. Baseline cor-
rection was applied by subtracting the mean value of the
signal per channel. Extreme outliers were removed using
a Hampel filter [49]. Post-filtering, the data were visually
inspected for malfunctions and low signal-to-noise ratio,
which in our case could be caused by interference with
movement artefacts or faulty fitting of the sensors. The first
1000 samples and last 1000 samples from each recording
were excluded from the processed signal, before segmenting
data into epochs. Next, the signals were normalised using the
min-max normalisation method (1), where x1–5 are obtained
from the four separate VE recordings and the expression
recording.

xnorm

=
x− min (x1, x2, x3, x4, x5)

(max (x1, x2, x3, x4, x5) − min (x1, x2, x3, x4, x5))
(1)
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FIGURE 4. Mean event-based CASR valence (left) and arousal
ratings(right) per group. SE Error bars.

FIGURE 5. Valence-Arousal coordinates for each event marker, grouped
by colour for each VE (negative:pink, positive:green, neutral:blue). The
event markers are divided in those derived from the Active (‘‘A’’) denoted
by a blue outline and the Passive group (‘‘P’’) denoted by orange outline.

TABLE 1. 3 X2 mixed anova on valence and arousal scores.

Next, an event-based epoching approach was employed.
Each participant encountered a sequence of audiovisual stim-
uli which were spatially distributed across the room-scale
virtual environment. Somewere visible throughout the explo-
ration (static) while others activated based on the participants
spatial location and duration within the VE (in active sce-
nario). The interaction and activation of those events (N=14)
were dynamically annotated in time, based on the behaviour
of the user within the VE. The event stimuli are described
in the AVEL dataset documentation [34]. Specifically, the
onset of the events taking place in each VE was tracked
using the custom-build interaction tracking solution with
millisecond accuracy. From this, an epoch was calculated
from an event’s onset (minus 250ms). The duration of each
epoch was variable and relative to the user’s interaction,

TABLE 2. 3 × 2 Mixed ANOVA on arousal and valence CASR scores.

with a minimum length of 10 seconds. On average the
participant interacted with 10 to 14 different events in each
VE, resulting into varied number of epochs per user. From
each epoch, the root mean square (RMS) value of the epoch
was computed per EMG channel. Then, VE averages were
calculated as the average across all epochs extracted from
each VE.
PPG. The PPG data from the EmteqVR interface (sam-

pling rate: 1000Hz)were filteredwith a Butterworth bandpass
filter (0.5 – 4Hz). Outliers were removed via Hampel filter.
The data were epoched in the same way as the EMG data
and inspected for artifacts manually. A strict dataset inclu-
sion protocol was applied based on visual inspection of each
user’s recordings (7 segments per participant).While baseline
segments were generally clean, noise or artifacts were often
present during the VE exploration. For inclusion in heart
rate and variability analysis, recordings needed to contain
at least 25–30 seconds of clean, continuous data. If such
segments could not be identified, or if the clean periods
did not overlapped with event annotations that dataset was
excluded from analysis. This process substantially reduced
the usable dataset (N=291 from 496; Fig. 1). Afterwards,
R-peaks were detected from which the features [50] of pulse
rate (beats-per-minute; BPM) were calculated. In addition,
the pulse-rate variability (PRV) was measured by calculating
root mean square of the successive differences (RMSSD),
and the standard deviation of the NN (R-R) intervals (SDNN)
using the ‘‘HRV tool’’ [50].-1
CASR. Data recorded from the CASR tool (from all

sessions and groups), were synchronised with the phys-
iological signals using the system timestamps. The data
were epoched along with the physiological signals while
considering an average human rating response-delay,
at 200ms [51], [52], [53]. Median valence and arousal
scores were calculated for each epoch from each partici-
pant, and the mean scores across epochs were calculated for
each VE.
User Movement. Data related to the user’s movement were

recorded within the Active VR group. The data recorded
within the Unity environment, corresponded to the user’s
normalised vector distance from active virtual events. The
custom-build event annotation via gaze tracking system, indi-
cated the interaction onset and off-set, during which the
vector distance (‘Dis’) was recorded. During analysis, the
meanDis per event was calculated and averaged across events
of the same VE, giving us three Dis scores per user. I.e. for
the positive, neutral and negative VE.
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FIGURE 6. Mean valence ratings per expressivity group for the Neutral
(NeuVE), Positive (PosVE), and Negative (NegVE) VEs. Error bars display
Standard Error (SE).

VI. RESULTS
A. VALENCE AND AROUSAL RATINGS
Valence and arousal ratings were analysed in several ways.
Firstly, we analysed it the traditional way by using post-VE
ratings (Q1) where participants were asked how they felt
about the overall experience. Secondly, we compared these
with the mean valence and arousal ratings from the CASR
method where participants rated continuously during the
experience. Similar ratings would validate CASR which
can be better suited to investigate changes over time dur-
ing dynamic environments and avoids reliance on memory.
Thirdly, we analysed valence and arousal levels of the specific
events displayed during the VEs which is only possible when
using CASRmethod. Finally, we investigated whether factors
such as expressivity and alexithymia do influence CASR
mean valence and arousal ratings.

B. POST-VE VALENCE AND AROUSAL RATINGS (Q1)
Figure 6 displays the mean valence and arousal ratings
reported after each VE experience and group (see for mean
scores and SD). The figure shows that all VE ratings followed
the expected pattern which was confirmed with mixed 3 × 2
ANOVAs with the within-participant factor VE (positive,
neutral, negative) and the between-participant factor Group
(passive vs. active group) conducted for the valence and
arousal Post-VE ratings, separately (Table 1).
Valence Ratings. The mixed ANOVA results revealed

a main effect of VE (see Table 1). Post-hoc paired
t-tests showed that valence ratings were significantly
higher (more positive) for positive than for neutral VEs
(t(290)=18.285, p<.001), for neutral than for negative VEs
(t(290)=8.674, p<.001) and for positive than for negative
VEs (t(290)=23.694, p<.001). Secondly, the main effect of
group was also significant, with the active group having
overall higher valence ratings across all VEs (5.19±0.92 vs
4.70±0.90). Importantly, the interaction between the factors
VE and group was also significant. This interaction was
caused by significantly higher (more positive) valence ratings
of the active group in the Positive VE compared to the passive
group (t(280.321)=6.943, p<.001). There were no group dif-
ferences for the neutral (t(289)=0.650, p=.516) and negative
VEs (t(270.001)=0.847, p=.398).
Arousal Ratings. The mixed ANOVA results revealed a

main effect of VE. Posthoc paired t-tests showed that arousal

FIGURE 7. Mean valence ratings per alexithymia group for the Neutral
(NeuVE), Positive (PosVE), and Negative (NegVE) VEs. Error bars display
Standard Error (SE).

ratings were significantly higher for positive than for neu-
tral VEs (t(290)=17.057, p<.001), and for negative than for
neutral VEs (t(290)=24.584, p<.001) and negative than for
positive VEs (t(290)=9.071, p<.001). Secondly, the main
effect of group was significant, with the active group having
overall higher arousal ratings across all VEs compared to the
passive group. The interaction between the factors VE and
group was not significant.

C. VALENCE AND AROUSAL CASR RATINGS PER VE
The CASR ratings were first averaged across events of each
VE, and they are displayed in Fig 4. The results from the
mixed 3 × 2 ANOVA are displayed in Table 2.
CASR Valence Ratings. The mixed ANOVA results

revealed a main effect of VE, meaning that valence ratings
were significantly higher (more positive) for positive then for
neutral VEs (t(289)=18.671, p<.001), for neutral than for
negative VEs (t(289)=14.255, p<.001) and for positive than
for negative VEs (Z=13.560, 28.127, p<.001). Secondly, the
main effect of group was significant, with the active group
having higher valence ratings across all VEs (5.26±1.85 vs
4.86±1.27). The interaction between the factors VE and
group was also significant, with post-hoc paired t-tests indi-
cating significant valence rating difference between all three
Vs (all t≥8.585, all p<.001). The groups only differed in
their valence ratings for the positive VEs (t(256.460)=7.423,
p<.001), not for neutral (t(272.263)=1.492, p =.131) and
negative VE (t(289)=.426, p =.670). These findings show
that the post-VE and the CASR valence ratings showed a
similar pattern of findings.
CASR Arousal Ratings. The mixed ANOVA results

revealed significant main effect of the VE category. Post-
hoc t-tests showed that arousal ratings were significantly
higher for positive and negative than for neutral VEs
(Both t(289)>=18.670, p<.001), but there was no differ-
ence between the positive and negative VEs (t(289)=2.163,
p=.093, not significant after Bonferroni correction), which
is different from the post-VE arousal ratings. Secondly, the
main effect of group was significant, meaning that the active
group had higher arousal ratings across all VEs compared
to the passive group (4.86±1.30 vs 4.39±1.41). Finally,
the interaction between the factors VE and group was sig-
nificant which is again different from the post-VE arousal
ratings. For the passive group, post-hoc t-tests revealed
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FIGURE 8. Presence scores for active and passive group. Errors bars are
representing standard errors (SE).

FIGURE 9. Memory Recognition Scores. The mean scores expressed in
percentages (%) (calculated across all events for each VE) showed overall
average score across VEs and Memory recognition (accuracy in
percentage) per group for each VE. Errors bars are representing standard
errors (SE).

significant arousal rating differences between all VEs (all
t’s(138)≥4.790, p’s<.001). In the active group, however,
arousal ratings were only higher for the positive compared
to the neutral VE (t(138) = 13.673, p<.001) and for the neg-
ative compared to the neutral VE (t(138)=11.613, p<.001).
Furthermore, independent post-hoc t-tests comparing both
groups for each VE separately. These showed that arousal
ratings were higher in the active compared to the passive
group for the positive VE (t(289)=5.261, p<.001) but not
for the neutral VE (t(289)=2.394, p=.050 and negative VE
(t(289)=0.391, p=.554). In summary, arousal ratings dif-
fered between the post-VE and CASR ratings which will be
addressed in the discussion.
CASR ratings per event. Figure 5 shows the mean valence

and arousal ratings for all events. The events per group are
clustered by outline colours: blue for the Active group (‘A’)
and orange for the passive group (‘P’). Figure 7 shows that
the event ratings follow the expected distribution within the
AV space as in AVEL library [34], with the exception of the
passive group ratings for the positive events (reduced valence
and arousal), which explains the positive valence rating dif-
ferences between the groups. As you can see in the figure the
affective ratings have generally higher arousal for affective
events than for neutral events resulting in the typical where
the so-called ‘V-shape curve’ within the cartesian space [55].

D. EXPRESSIVITY AND ALEXITHYMIA
Further, the effect of subjective factors of expressivity and
alexithymia level on self-reported scores on valence and
arousal ratings were analysed. The CASR ratings (instead of
the post-VE ratings) were used for this analysis.

FIGURE 10. EMG results (mean RMS) for the active group (top figure) and
passive group (bottom figure). VE: neutral (blue), positive (green) and
negative (pink). Error bars represent SE. Channels showed: Zygomaticus
Right/Left (Zygo.R/L), Frontalis (Fron.), Orbicularis (Orbi.), Corrugator
(Corr.). Significant pairwise comparisons signified with ∗ for p<.05, and
∗∗ for p<.01.

TABLE 3. 3 × 2 Mixed ANOVA on EMG channels.

Expressivity. Mixed ANOVAs with factors VE (positive,
vs negative vs neutral) and expressivity group (scores calcu-
lated based on [45] and divided in low vs high groups; cut off
= 80) were performed on valence and arousal CASR ratings,
separately. For the valence ratings, the ANOVA showed sig-
nificant main effect of VE, as expected (F(2,578)=.459.61,
p<.001). No significant main effect on expressivity group
was found (F(1,289)=.089, p=.765). However, there was a
significant interaction between both factors (F(2,578)=3.27,
p=.039). A subsequent planned independent t-test indicated
that valence ratings were less different between the posi-
tive and negative VE conditions for the low compared to
the high expressivity group (t(289)=2.21, p=.028), meaning
that the low expressivity group has less spread in valence
ratings (Fig 6). For the arousal ratings, again the ANOVA
showed significant main effects on VE (F(2,578)=.311,
p<.001). Also, no significant effects on expressivity group
were found (F(1,289)=.103, p=.103), and nor on the inter-
action both factors (F(2,578)=.311, p=.732). This analysis
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TABLE 4. 3 × 2 Mixed ANOVAs findings for the PPG features.

FIGURE 11. Mean rBPM, RMSSD, SDNN for each VE for the active and
passive groups. Significant effects at <.05. SE Error bas.

shows that low expressivity reduces the spread of affective
valence ratings. However, arousal ratings are not affected
by expressivity. Please note, the mean expressivity scores
for the ‘Active’ group (71.90±16.79) and ‘Passive’ group
(74.71±13.43) were not significantly different (t(289)=1.59,
p=.115).
Alexithymia. Mixed ANOVAs with factors VE (posi-

tive, vs negative vs neutral) and alexithymia group (low
vs high; cut off = 51) were performed on valence and
arousal CASR ratings, separately. For the valence ratings,
the ANOVA showed the previously reported main effect of
VE (F(2, 578)=460.42, p<.001)., More importantly, there
was no significant main effect of alexithymia group (F(1,
289)=.637, p=.426)) and no significant interaction both fac-
tors (F(2, 578)=.587, p=.556).For arousal ratings, a similar
picture emerged. Again, the ANOVA revealed the previously
reported main effect of VE (F(2, 578)=235.19, p<.001),
More importantly, there was no significant main effect of
alexithymia group (F(1,289)=.067, p=.796) and no sig-
nificant interaction both factors (F(2, 578)=.908, p=.401).
This means that alexithymia scores did not influence CASR
valence and arousal ratings (Fig. 7).
PRESENCE AND MEMORY RECOGNITION (Q1)
Presence.Mean presence self-rated scores were calculated

for each VE across participants of the two group (see Fig. 8).
A mixed 3 × 2 ANOVA with the factors VE category and
Group (active vs passive) showed that mean presence rat-
ings were significantly higher in the active compared to
the passive group (6.47±1.42 vs 4.54±2.00, F(1, 289) =

88.863, p<.001). There was also a significant effect of VE
(F(2,578) = 31.626, p<.001), showing that presence scores
were higher for the negative and positive VEs compared to
the neutral VE (Both Z(pos/neg vs neu) >=4.634, p′s<.001).
groups (45.93±12.99 for the neutral VE, 57.01±13.47 for
the positive VE, and 56.60 ±10.48 for the negative VE; See

FIGURE 12. Normalised distance averaged across stimuli for each VE:
Neutral, Positive, Negative. SE Error bars.

Fig. 9). The threeVEswere found to have significantly effects
on memory across all users(F(2,578)=115.8, p<.001). Post-
hoc comparisons revealed significant differences between the
positive and neutral VE, and between negative and neutral VE
(All t(290)>=11.21, p<.001). The related ANOVA revealed
a significant main effect of group on memory scores (F(1,
289)= 21.46, p<.001), meaning that the active group remem-
bered the events better (55.48% on average across VES) than
the passive group (50.93%). The interaction between VE cat-
egory and group was also significant (F(1.88, 543)= 22.363,
p<.001). Post-hoc t-tests showed higher memory scores in the
active group for the negative and positive VEs (all t(289)‘s
≥5.90, all p’s<.001) compared to the passive group. Interest-
ingly, significant correlations between memory recognition
and presence scores were also found for the negative and
positive VE (all r’s≥.156, all p‘s ≤.008), thus confirming
the effect of affective intensity on memory recognition and
presence. Notably, our results indicate emotional intensity in
VR enhances recognition memory, regardless of valence, and
is further enhanced in active immersive VR.

E. FACIAL EMG ANALYSIS
We analysed the mean RMS amplitudes for all f-EMG
channels separately by using mixed 3 × 2 ANOVAs with
the factors VE category (neutral, positive, negative) and
Group (active vs. passive group). Findings are shown in
Table 3.

In short, for all channels there was a significant main
effect of Group (all F’s ≥ 7.614; all p’s ≤.006) showing
that EMG activity was always higher in the active com-
pared to the passive group (see Fig. 10). In addition, there
was always a significant main effect of the VE category
(all F’s ≥ 5.940; all p’s ≤.003). Finally, there was also a
significant interaction between the factors VE category and
group (all F’s ≥ 5.443; all p’s ≤.006), with exception of the
findings for EMG channel 7. Here, the interaction was only
marginally significant (F(1.693, 484.124)= 2.901, p=.065)
but it showed a similar pattern as seen for all other channels.
Generally, EMG RMS amplitudes were more strongly modu-
lated by the VE category in the active compared to the passive
group.

See detailed description of the group post-hoc tests in the
Supplementary Materials.
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F. FACIAL PPG ANALYSIS
ANOVA analyses were conducted to determine whether
PPG features reflecting pulse rate (BPM minus baseline
BPM (rBPM)) and pulse rate variability measures (RMSSD,
SDNN), can dissociate between VE categories for the active
and passive group (see Fig. 11 and Table 4 ). For all features,
the main effect of Group was significant (all F’s ≥ 12.895;
all p’s <.001) meaning that higher values for the active
compared to the passive group.

The main effect of VE category was only significant for the
heart rate (rBPM; F(2, 572) = 19.706, p<.001). The interac-
tion between VE category and group was only significant for
the rBPM feature (F(2, 572) =3.774, p=.024), meaning that
the effect of VE category on rBPMwas stronger for the active
compared to the passive groups. This was further evaluated
when conducting Friedman and post-hoc tests for the active
and passive groups separately (see S2).

G. DISTANCE FROM EVENT STIMULUS IN ACTIVE
CONDITION
In the active group we computed an additional measure, the
distance (Dis) because participants of this group were able
to walk towards or away from an event in the virtual space.
The mean vector distance ‘Dis’ was calculated between the
normalised user’s position and the event stimulus’ position
during an event interaction. From those, the average Dis
across all events per VE was computed (see Fig. 12; neu-
tral VE: 0.16±0.06, positive VE:-0.28±1.59, negative VE:
0.12±0.64). Negative value denotes that the user moved
closer to an event (approach) and positive moving away from
the event (avoidance). ANOVA’s analysis showed that VE
category was significant (F(2,137)=8.61, p=.002). Post-hoc
tests revealed that the distance observed in the Positive VE
was significantly decreased compared to both the Neutral
VE (t(139)=3.26, p<.001) and Negative VE (t(137) = -2.83,
p=.003). The difference between the negative and neutral
VEs were not significant (t(137)=.78, p=.22). The results
suggest that participants moved towards the stimuli presented
in the Positive VE. The avoidance behaviour expected for
the Negative VE was not observed to a significant level
compared to the neutral VE, an observation that supports
further the use of control stimuli VEs (as the NeutralVE) for
such comparisons.

VII. DISCUSSION
Recent progress in VR technologies offers advanced immer-
sive capabilities for room-scale 3D interactive environments
while tracking the user’s behaviour. These environments have
the potential to evoke naturalistic behavioural and emotional
responses, which can be recorded in well-controlled scenar-
ios. Unfortunately, pre-validated affective VR environments
and measurements for experimental usage are scarce and
guidelines for robust experimental design are still underdevel-
oped [51]. The current study aims to further this development
by comparing the usage of different affective self-ratings

in conjunction with memory recognition tests, as well as
behavioural and physiological measures in an interactive
VR set up. This study developed several methodological
improvements, and it is an example for comprehensive
and robust feasibility testing of experimental VR designs,
which advances methods usage in the VR field, and con-
tributes towards the design of guidelines for experimental VR
designs.

Examples for our design innovations are, firstly, we used
an online validation of the scenarios before conduction the
VR study [34]. Secondly, throughout the VE experience a
continuous self-rating tool (CASR [36]) was used and com-
pared to the frequently used single-point post VE affective
rating scales. Thirdly, a custom gaze-based event detection
system was implemented to link user responses to contextual
information (events or objects) within the VR environment
during the interactive condition and trigger subsequent audio-
visual properties. Thus, when users looked at specific objects,
the system logged event annotations containing timestamps,
metadata about the object in focus, gaze coordinates, and
the duration of the viewing interaction. The event-stimuli
were activated by the user’s interaction and gaze, and
whose onset timestamps were recorded to allow for gran-
ular, event-based analysis (as seen in [34], [56]). Fourthly,
a multimodal continuous electrophysiological wearable sen-
sor setup was used in traditional seated VR settings but also
in the room-scale configuration, offering insights into their
applicability in mobile and interactive applications. Finally,
we recorded the effect of affect and presentation mode on
not only presence scores but also on cognition, i.e. memory
accuracy.

To this end a large-scale VR study was conducted at
the Science Museum in London with over 291 participants,
which, to the authors’ best knowledge, is one of the largest
interactive VR experiments with a broad diverse sample to
date. The semi-controlled museum setting introduced natural
variability that enhanced ecological validity, aligning with
recent efforts to move affective and physiological research
beyond traditional laboratory environments [57].
The purpose of this study was to explore the effects of

room-scale free-walking HMD-VR settings on users’ affec-
tive responses. Notably, this is the first study to explore the
affective impact of 3D fully immersive content in room-scale
and seated conditions using an amalgamation of subjec-
tive and sensing data. For this, the experiment compared
two distinct settings and modes of interaction: the ‘active
‘, naturalistic room-scale VR configuration, and the ‘pas-
sive’, seated, vicarious experience VR mode. The ‘active’
VR experience design was exploration-based (for the three
VE scenarios neutral, positive and negative) and, hence,
it was dynamic and personalized for each user, resulting
in a highly variable user journey within the virtual space.
Such ‘active’ experiences canmore closely simulate everyday
conditions [8], [58] and thus allow the study of naturalistic
behaviours. The usage of ‘active’ and ‘passive’ conditions
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allowed the investigation of the effect of interactive VR on
self-ratings and physiological measures, e.g. the quality and
sensitivity of physiological measures in interactive settings.

The affective VEs elicited affective responses which were
recorded and validated via different data sources: affect
self-ratings presence ratings, memory scores, as well as
physiological and movement measures (fig. 3). For the
physiological EMG and PPG measures, a novel, custom,
unobtrusive, wireless sensor-configuration was used to ascer-
tain the feasibility of detecting changes in both valence and
arousal from distinct signal features.

Using this very large dataset, we confirmed the feasibility
of the experimental design in both seated passive and interac-
tive room-scale VR conditions. We demonstrated that clear
differences between affective conditions can be measured
in by the passive and interactive conditions, and that the
enhanced level movements in the active condition did not
compromise the sensitivity of the signals despite slightly
lower signal quality. In fact, the active condition showed
clearly stronger affective ratings across multiple measures
than the passive condition. These findings were also reflected
in presence scores and memory accuracy, showing a clear
influence of affect on cognition.

We showed that continuous affective self-ratings can be
successfully implemented during the experiment (and not
afterwards, as often done in other studies ( [5])), and that
they are a valid alternative to post-VR ratings. These also
allow event–based analysis with CASR self-ratings as ground
truth. This can be better used in conjunction with continuous
physiological measures.

Physiological PPG and EMGmeasures were recorded with
wireless wearable sensors and showed clear group (active vs
passive group) and affective state effects, again showing that
they can be feasibly used in interactive conditions with even
stronger effects. These findings are discussed in more detail
below.

Affect induction differences between interactive
room-scale vs passive seated VR-mode on affective self-
ratings, expressivity and presence. As a reminder, affective
valence and arousal ratings were recorded in three ways to
compare their validity in the study. These were single-point
post-VE self-ratings, CASR VE-ratings and event-based rat-
ings. This comparison was conducted because CASR is better
suited for high-temporal-resolution analysis in conjunction
with continuous physiological signals than post-VE. Key
findings were as follows:

Firstly, findings from the analysed post-VE and CASR
self-ratings confirmed the ability of the three VEs and their
events to induce the predefined variations of valence and
arousal in VR, confirming our first hypothesis (H1a). Impor-
tantly, a clear dissociation between VEs, neutral, positive and
negative was reflected in the self-reported data from both
affective self-ratings (post-VE, and CASR). These effects
were also observed in the presence scores, indicating that

affect intensity is linked to presence (as [39], [59]) consistent
with H1c.

Secondly, the mode of interaction showed differences
between the two groups, in line with our second hypothe-
sis (H2b). The self-ratings reflected that the passive group
was less susceptible to the affective manipulations, reporting
overall lower arousal ratings than the active group (fig. 4,5)
reduced memory recognition [39] (fig. 8) and lower presence
scores (fig. 7). Overall, the interaction modes showed sig-
nificant effects on a person’s experience with VR content,
further supporting the use of active-VR interaction mode for
VR mood induction.

Thirdly, we have shown that participants with lower
expressivity (as measured with the expressivity question-
naire) showed less variation of affective self-ratings between
positive and negative VEs (supportingH1d). Arousal ratings,
however, were unaffected by expressivity. Alexithymia, mea-
sured separately, was also had no observable effect on either
self-rating type.

Importantly, the continuous affect self-rating (CASR)
method proved more sensitive than the single post-VE rat-
ings, revealing additional difference between the two groups.
Post-VE ratings across individuals showed that the negative
VE was rated as the more arousing than the positive VE
for both groups. This asymmetry was somewhat expected
as suggested by the evaluative space model [33] as neg-
ative stimuli generate higher arousal responses than the
equivalent positive ones [60], [61] due to the so-called
negative bias [62].

Looking at the event-ratings, this asymmetry was not as
prominent for the active group; the positive events were rated
of similar intensity to the negative events. By comparison, the
passive group’s event ratings were characterised by overall
lower arousal, reduced positive valence but also increased
negative stimulation, regardless of the VE. This was sur-
prising because all these events were pre-validated [6] in
screen-based settings like the passive group’s condition [34].
We however witnessed a stronger modulation of interactivity
on self-reported affect scores, and disproportionate nega-
tive affective ratings in the passive mode in-situ study. This
negative bias may be tentatively reflecting potential lack of
engagement, habituation and boredom [61], [63] although no
engagementmeasures were collected to confirm this. It is also
possible that the passive group did not meet their expectations
of the VR experience thus generating negative affective reac-
tions (in line with the predictive coding theory [65, 7]).

Our active-VR CASR event-ratings showcase a clear
V-shape ‘boomerang’ curve [54] considerably evident on
ratings of the IAPS picture library, e.g. [65], showing that
arousal reflects the intensity of valence, towards higher
pleasure (positive) or displeasure (negative). The further sup-
ports H2c, that active VR facilitates naturalistic appraisal
patterns. These results show that interactivity meaningfully
shapes affective processing in immersive environments and
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underscore the need to explore additional moderators like
user expectations and engagement.

In summary, the study demonstrated that the affective
impact of VEs is closely linked to presence, with higher
intensity of affect—both positive and negative—correlating
with stronger feelings of immersion in the VR experience.
It was shown that CASR and event-based ratings during user-
driven interactive VR experiences are a valid and highly
sensitive, context-aware alternative to post-VR assessments.
In the future, we recommend using CASR and event-based
ratings for more accurate and continuous affect measurement
in VR studies, especially in conjunction with continuous
physiological measures.
The effect of affect induction on cognition as measured

by memory accuracy.Memory accuracy scores were signifi-
cantly higher for the positive and negative VEs compared to
the Neutral (similar to the presence scores), with the active
group outperforming the passive group. Overall, emotional
intensity in VR, regardless of valence direction (negative
or positive), was found to enhance memory recognition,
particularly in the active VR environments, with significant
correlations between memory and presence for both positive
and negative VEs. These findings support H1b and H2d,
that both affective intensity and interaction mode enhance
memory performance.
EMG and Heart Rate Measures Discriminate Affec-

tive Conditions. A key benefit of the CASR method is its
compatibility with continuous physiological data, allowing
moment-by-moment comparisons between subjective ratings
and bodily signals. Our findings show similar affective effects
mirrored in the physiological data recorded within the three
VEs supporting the feasibility of recognising valence and
arousal from physiological sensors (H3a and H3b).

The EMG activation from the seven facial sensors not only
discriminated between the positive and negative conditions
(esp. for the active group) but also between the affective
conditions and the neutral one for both groups (table 3,
fig.9). Similarly, PPG measures, which have been tradition-
ally used for the detection of arousal responses, were sensitive
to the affective VE and the group type. More specifically,
the pulse rate was higher in the active group compared
to the passive group. This was expected, because physical
movement can directly affect the physiological signals (e.g.,
raise heart rate). More importantly, in the active group the
pulse rate was enhanced in affective conditions compared
to the neutral condition. This shows that PPG had good
discriminatory power between high arousing VEs against the
low arousing neutral VE, esp. in the active group, despite
degraded signal quality by introducing undesired variations
and artefacts in the signal [66], especially in upright posi-
tions [67] and due to motion-induced artifacts [68], [69].
Note, pulse rate variability was enhanced in the active com-
pared to the passive condition but there were hardly any
differences between affective VEs. These reduced effects for
the PRV can be explained by the higher sensitivity to artifacts

because the computation of PVR measures in VR is more
sensitive to motion changes compared to rBPM and EMG
features.

In summary, our study investigated the feasibility of the
usage of physiological measures in an ‘active’ compared to a
‘passive’ condition. Most studies detecting affect outside VR
record data from users in seated positions facing one direction
(e.g. [70], [71], [72], [73]). This approach is sensibly chosen
to enhance to signal quality albeit at the cost of reducing the
ecological validity, limiting users, and contriving the study
setting. In our study, despite physical movement and the
inherent effects on the extracted EMG pulse-rate measures,
it was clearly demonstrated that with appropriate filtering and
dynamic epoching techniques, it is possible to extract EMG
and PPG measures of wearable sensors in interactive immer-
sive settings. These measures show clear differences between
affective VEs, esp. in the interactive conditions, supporting
H3c that physiological sensing can detect affective responses
in active VR.
Distance from event-stimulus; a promising valence mea-

sure for room-scale VR. In the active group, distance analysis
revealed that participants moved closer (approach) to events
in the positive VE compared to the neutral and negative
VE. Interestingly, avoidance behaviour in the negative VE
was not significantly different from the neutral VE, sug-
gesting that the neutral stimuli served as a useful control.
This finding partly supports H3d, that approach/avoidance
behaviour can indicate valence—but suggests avoidance
may be more context-dependent in immersive VR. This
may indicate that avoidance in VR is expressed differ-
ently, potentially influenced by the virtual environment’s
design or the nature of the negative stimuli, warranting fur-
ther exploration into how avoidance manifests in immersive
settings.

VIII. LIMITATIONS AND FUTURE DIRECTIONS
This study demonstrated the feasibility of using interactive,
room-scale VR environments to induce andmeasure affective
responses, leveraging continuous self-ratings and physiolog-
ical data. However, there are some limitations and areas for
future exploration.

First, the scarcity of pre-validated affective VR environ-
ments and comprehensive experimental guidelines remains a
challenge, highlighting the need for further development in
this field. Although the study introduced several innovative
methods, including online scenario validation and contin-
uous self-ratings (CASR), it also faced constraints related
to the varying sensitivity and susceptibility of physiologi-
cal measures and potential motion artifacts in different VR
conditions. Motion-related artefacts were a known source
of noise. Our study design intentionally relied on native
room-scale locomotion via SteamVR’s walk-in-place func-
tionality to preserve naturalistic movement and evaluate
affective responses under minimal technological mediation.
Future work could explore alternativemovementmechanisms
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and platform-based locomotion approaches which were
beyond the scope of this work.

Second, physiological signals such as PPG and EMG
can be highly sensitive to motion artifacts, particularly in
active VR conditions. In our study, a strict exclusion protocol
for motion contaminated datasets was implemented, which
ensured signal quality but substantially reduced the available
sample size. This underscores the need for more sophisticated
motion correction strategies. Future studies could integrate
inertial motion sensor data and/or apply offline motion arti-
fact correction (e.g. with ICA methods) or use real-time
correction algorithms to improve the robustness of physio-
logical analyses, for wearable PPG sensors (see [66], [74],
[75]).

Future research should address these limitations by refin-
ing the experimental designs and signal processing pipeline to
improve overall signal quality. Studies should also expand the
range of affective and contextual VR scenarios and incorpo-
rate state-of-the-art interaction technologies to increase eco-
logical validity. Additionally, incorporating machine learning
techniques could provide deeper insights into physiologi-
cal data mapping and subjective traits affecting emotional
responses. Moreover, exploring how avoidance behaviour
manifests in VR, given its potential to be expressed dif-
ferently in immersive environments compared to traditional
settings, would be valuable.

Future research should build upon our study’s find-
ings, which not only provide a valuable library of
experimental data and analysis but also outline steps
towards a systematic approach for affective experiment
analysis in VR. Our guidelines, specifically tailored for
room-scale interactive settings, offer a foundation for devel-
oping robust experimental principles and advancing the
field’s understanding of affect detection in immersive
environments.

IX. CONCLUSION
This study successfully demonstrated the potential of
user-centred affect detection approaches within immersive
VR environments, showcasing the advantages of integrat-
ing unobtrusive, miniaturized wearable sensors. By using
these technologies, we established the feasibility of capturing
continuous electrophysiological data and detecting affective
responses in VR settings. Our findings reveal that interactive,
room-scale VR environments are highly effective in inducing
and measuring variations in emotional valence and arousal,
with continuous self-ratings and physiological data providing
valuable insights into user experiences.

The results underscore the superiority of active interac-
tion modes over passive settings for affect elicitation. The
active VR experience led to stronger affective ratings, higher
memory scores, and enhanced presence compared to pas-
sive VR. This is supported by our event-based analysis of
physiological signals and affective ratings, indicating that
free-walking interactive VR experiences offer more robust
affective stimulation than traditional seated experiences.

The study also highlights the benefits of incorporating
pre-validated 3D interactive events in VR, which can bet-
ter manipulate emotional responses through naturalistic
exploration.

Overall, this study underscores the feasibility of devel-
oping context-aware systems for affect detection in
VR, which could significantly benefit future applica-
tions in entertainment, simulation training, and health-
care by offering more objective assessments of user
emotions.
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