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 A B S T R A C T

High arousal states, like fear and anxiety, play a crucial role in organisms’ adaptive responses to threats. 
Yet, inducing and reliably measuring such states within controlled settings presents challenges. This study 
uses a novel approach of CO2 enriched air vs normal air in a Virtual Reality (VR) context to induce high 
arousal whilst measuring physiological signals such as galvanic skin response (GSR), facial skin impedance, 
facial electromyography (fEMG), photoplethysmography (PPG), breathing, and pupillometry. In a single-blind 
study, 63 participants underwent a regimen involving 20 min of breathing regular air followed by 20 min 
of 7.5% CO2, separated by a brief interval. Findings demonstrate the efficacy of CO2 inhalation in eliciting 
high arousal, as substantiated by statistically significant changes for all signals, further validated through high 
(94%) accuracy arousal classification. This study establishes a method for inducing high arousal states within 
a laboratory context validated through comprehensive multi-sensor data and machine learning analyses. The 
study underscores the value of employing a suite of physiological measures to comprehensively describe the 
intricate dynamics of arousal. The generated database is a promising resource for researching physiological 
markers of arousal, panic, fear, and anxiety, offering insights that can potentially resonate within clinical and 
therapeutic realms.
. Introduction

Emotions are essential components of human experience which sig-
ificantly impact our behaviour, cognition, and overall well-being [1]. 
onsequently, detecting and measuring affective states has been a 
opic of growing interest in psychology, neuroscience, and computer 
cience [2]. Affective computing (AC), the field focused on developing 
lgorithms and systems to recognise, interpret, and respond to hu-
an emotions, has gained particular attention in recent years [3]. AC 
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can potentially improve many areas of human–computer interaction, 
including adaptive systems, gaming, and healthcare [4,5].

The reliable induction of affective states is a prerequisite for AC, 
leading to the co-existence of multiple emotion elicitation methods 
currently [6]. Typical forms of robust affective state inductions include 
the use of passive stimuli such as images [7], video [8] or sound [9]. 
The emotional responses to these states can be measured with arousal 
and valence self-ratings or physiological measures. Valence refers to the 
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pleasantness or unpleasantness of an emotion [10], while arousal re-
flects the level of activation or intensity of the emotional response [11].

However, a common problem in existing affective databases is that 
stimuli often fail to elicit extreme ends of the arousal spectrum [12,13]. 
In particular, very high arousal states, linked with threat processing, 
can be difficult to reproduce repeatedly and ethically in a laboratory 
setting [14]. Thus, models based on limited sections of the affect spec-
trum provide an incomplete picture. One solution could be the usage of 
immersive, interactive and engaging alternatives like VR (Virtual Real-
ity) [15,16] typically leading to stronger emotional responses [14,17,
18], which however can face an additional challenge — the metabolic 
demand. Interactive experiences such as VR by nature, involve a level of 
physicality and movement. This hampers the discrimination between, 
e.g., heart rate increases resulting from physical exertion or increasing 
arousal levels [19]. The same logic applies to other physiological 
affect indicators such as sweating (GSR) and respiration rates. Lastly, 
physical movement in interactive experiences often results in increased 
noise levels, potentially reducing data quality, and resulting in low 
reliability [20].

An alternative approach to induce enhanced arousal levels is the 
inhalation of CO2 enriched air. The anxiogenic properties of CO2 inhala-
tion have enabled researchers in medical and pharmacological fields 
to study panic [21] and anxiety [22] disorders. Autonomic arousal 
changes triggered in response to inhalation of CO2 enriched air (gas 
mixture with an increased amount of CO2) [23] also make this method 
appealing to AC researchers wishing to induce and investigate arousal. 
This is particularly true when high arousal levels are desired because 
the severity and modulation of the reaction are reliable and quickly 
reversible [22].

Thus, we propose that the induction of high arousal in VR (via 
CO2 inhalation whilst wearing a VR headset) can overcome subjectivity 
and cross-subject reliability issues and offer a more robust research 
method for affective dataset creation. To this end, we present here a 
study where 63 participants inhaled 20 min of regular atmospheric 
air (control) and 20 min of 7.5% CO2 (21% O2, nitrogen to fill) 
through an oronasal mask in two separate, single-blind conditions 
separated by a fifteen-minute break. We simultaneously recorded facial 
skin impedance and electromyography (EMG), photoplethysmography 
(PPG), pupil dilation and inertial measurement unit (IMU) physiolog-
ical signals with a biofeedback-enabled emteqPro VR headset [24]; 
incorporating separate finger sensors for galvanic skin responses (GSR) 
and a breathing belt for registering respiratory movements. Below, we 
summarise our main contributions:

1. CO2-Based Physiological Signal Database: to the best of our 
knowledge, this is one of the few existing physiological signal 
databases that utilise CO2 inhalation, an approach that remains 
rare in the field.

2. Multi-Modal Physiological Dataset: data containing a rich 
array of physiological signals such as facial EMG, PPG, IMU, 
GSR, pupillometry and respiration in response to CO2 exposure 
available for future research.

3. Characterisation of Arousal Signals: detailed analysis, includ-
ing temporal information for all physiological measures col-
lected in response to CO2 inhalation (high arousal state)

4. Wide Arousal Spectrum Coverage: demonstrated a full spec-
trum of arousal states, from low (air condition) to high (CO2
condition), enabling robust analysis and model training across 
the entire arousal range.

5. Identified Most Suitable Physiological Predictors of Arousal: 
Evaluated multiple physiological signals to determine the most 
informative predictors of arousal across both continuous and 
post-processed analyses. 
2 
2. Related work

This section encompasses the two key aspects coalescing in this 
study: the affect detection and induction methods within the context 
of AC, and the CO2 enriched air inhalation process.

2.1. Affect detection

In the context of the three pillars of AC (emotion recognition, 
emotion expression and subjective experiences/feelings) [3], affect 
detection is a critical component and a pre-requisite for any affective 
system to respond to the user’s mental state.

Typically, the subjective experience of an emotion is recorded with 
self-reporting measures, such as questionnaires or subjective rating 
scales. They allow individuals to directly express their emotional ex-
periences (feelings) [25]. With this subjective experience, many physi-
ological bodily changes co-occur and can be captured via physiological 
signals such as heart rate, skin impedance [26], and facial electromyo-
graphy (EMG) [27]. Facial expressions [28], vocal prosody [29], and 
body language [30] are other cues that can be analysed using computer 
vision and/or audio processing techniques. Analysing these biosignals 
and using outputs to guide the system in recognising, interpreting and 
ultimately responding to human emotion is the goal of AC [31].

Machine learning algorithms play a vital role in affect detection by 
enabling the development of models that can learn patterns and rela-
tionships in the collected data [32]. Supervised learning approaches on 
labelled datasets are commonly used to recognise affect by combining 
feature extraction techniques and classification algorithms [33]. Classi-
fiers ranging from classic support vector machines, random forests and 
shallow neural networks to deep classifiers can effectively categorise 
the input data into different affective states (see, for instance, [34]). 
More recently, ML affect detection approaches started incorporating 
multi-modal data fusion by combining multiple modalities like fa-
cial expressions, vocal cues, and physiological signals to improve the 
accuracy and reliability of emotion recognition [35,36].

2.2. Affect induction

The development of accurate affect detection algorithms relies on 
correct affective labels for physiological signals. Thus, reliable and 
reproducible affect induction is a prerequisite for developing affect 
detection systems. Common approaches to affect induction include the 
use of visual stimuli such as images [37] or videos [38], auditory 
stimuli [9], VR environments [39], memory recall [40], and even 
pharmacological interventions [41]. However, a systematic challenge 
in designing reliable affect induction is that certain induction methods 
favour specific emotions [6,42]. This fact, combined with the ongoing 
effort to enhance affect detection reliability, has led to the continual 
development of affective databases, which aim to leverage evolving 
technologies and target the entire affective spectrum [5].

Many affective databases include self-reported ratings to validate 
the participants’ experience and to label data. Thus, they are prone 
to the subjective bias of participants’ responses; this subjectivity is-
sue underlies all media-based affective datasets. As a result, affective 
databases require large samples to validate their repeatability, and even 
then, it cannot be guaranteed when transitioning between different cul-
tures and demographics [43,44]. Moreover, the distinction between the 
conscious experience of emotions (self-ratings), physiological measures 
of the body and brain during this experience, and facial/bodily expres-
sion of emotions exacerbate subjectivity issues of utilising self-ratings 
for affect detection [45].

These challenges suggest that an ideal affect induction method 
would have the following characteristics: (i) be fully reversible without 
any long-lasting side effects, (ii) reproducible for every individual, (iii) 
able to induce a full spectrum of affect and (iv) not rely on subjective 
self-ratings as labels.
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Table 1
Study summary.
 Number of participants 63 total-17 excluded, 46 used for analysis
 Conditions 1. Atmospheric air 2. 7.5% CO2
 Condition duration 20 min each, 15 min break in-between
 Study design Within-subjects
 Questionnaires PHQ9, GAD, SPIN, MINI-7 (addiction and anxiety sections)
 Rating Post condition: arousal/valence(1–9), anxiety(0–100)
 Physiological Signal Device used Frequency Location

 EMG emteqPro 1000 Hz 7 channel–face  
 Facial skin impedance emteqPro 50 Hz 7 channel–face  
 PPG emteqPro 50 Hz Forehead  
 Gyroscope emteqPro 50 Hz Head  
 Accelerometer emteqPro 50 Hz Head  
 GSR Biopac 1000 Hz Finger  
 Respiration Biopac 1000 Hz Chest  
 Eye tracking HTC Vive Pro Eye (Tobii) 120 Hz Eyes  
2.3. CO2 inhalation

The respiratory acidosis state is caused by the accumulation of 
carbon dioxide in the body and its impact on arousal has been a 
subject of interest in numerous studies [46]. In experimental settings, 
controlled exposure to CO2 inhalation can induce acute anxiety and 
autonomic arousal in healthy individuals [47], impairing prefrontal 
executive functions such as cognitive performance [48] and threat pro-
cessing [23]. This approach can be advantageous over regular induction 
methods due to its ability to intensify arousal symptoms and evoke neg-
ative affect in a dose-dependent manner, proving effective in eliciting 
a broad spectrum of responses in all individuals [49]. Moreover, CO2
inhalation has been identified to reliably raise systolic blood pressure 
and heart rate, increase respiration frequency, and induce a sense of 
breathlessness, indicating heightened autonomic arousal [21]. Critical 
for this study, these physiological changes are always accompanied 
by subjective and initially dose-dependent subjective experiences of 
anxiety, fear, and stress [22]. By systematically manipulating the CO2
concentration and exposure duration, researchers can elicit targeted 
arousal levels for affective states, and affect-driven technology design. 
This novel method for affect induction, initially validated in pharma-
ceutical studies for testing anxiolytic medications, fulfils the desired 
criteria by being completely reversible, consistent across participants, 
and not reliant on subjective self-ratings.

Carbon dioxide is generally regarded as having low toxicity when 
inhaled, but it can still pose significant risks, particularly in specialised 
occupations or controlled environments [50]. While the safety of CO2
inhalation in research settings has been extensively studied and val-
idated across numerous publications [21,51,52], this does not imply 
that experiments can be conducted with unrestricted concentrations or 
durations. In most studies involving CO2 inhalation, stringent exclusion 
criteria are typically applied, and the interplay between inhalation du-
ration and CO2 concentration is a critical factor in ensuring participant 
safety. The likelihood of side effects from CO2 inhalation increases with 
both the duration of exposure and the concentration level, effectively 
reducing the maximum safe exposure time for an individual [50]. 
At one end of the spectrum, some studies have employed extremely 
high CO2 concentrations up to 35% but limited exposure to a single 
breath [53], which limits the duration and amount of physiological data 
that can be collected during such a short period. At the other end of 
the spectrum, CO2 concentrations below 1% typically produce little to 
no observable effects [50]. Researchers select specific concentrations 
based on experimental goals with higher concentrations such as 20% 
or 35%, delivered through single or double vital capacity inhalations, 
which are commonly used to elicit acute panic responses, while pro-
longed exposures lasting up to 20 min require lower concentrations 
typically between 5% and 7% to induce states of anxiety, fear, tension, 
and stress [49]. As a result, a 7.5% CO2 concentration was selected 
for this study to maximise the duration of exposure, allowing for the 
collection of extensive physiological data while maintaining participant 
safety and eliciting sufficiently strong effects.
3 
3. Experimental setup

Healthy participants recruited from the general public participated 
in two separate, single-blind conditions (air and CO2 inhalation) using 
a within-subject design. Each condition lasted 20 min and was preceded 
by sensor fitting and calibration. Participants were seated for the entire 
duration. An ‘‘air condition’’ was administered first. A gas hissing sound 
was continuously played from a speaker throughout both conditions.

Participants were not aware of the active condition. After each 
condition and during a 15 min long break, participants took off all 
equipment, and proceeded to a separate preparation room where they 
were offered water and were asked to provide their arousal and valence 
ratings (self-assessment manikin 1–9), anxiety ratings (slider 0–100), 
and to predict the condition (air or CO2). Fig.  1 shows an overview of 
the study protocol while 5 illustrates the experimental setup combining 
all equipment, hardware and software.

3.1. Recruitment and participants

Ethics approval was obtained from the University of Southamp-
ton (71104.A2). Initial screening exclusion criteria from [23] were 
used, and several additional exclusions were added. The complete pre-
screening list included age (under 18 or over 55), body mass index 
(under 18 or above 28), weight under 45 kg, pregnancy — suspected 
or confirmed, breastfeeding, history of panic disorders (participant 
or family), diagnosed cardiovascular, respiratory, neurological condi-
tions, diabetes, severe allergies, current or recent participant in another 
medical trial, acute illness in the past 7 days, any medication use in 
past 8 weeks (not including paracetamol, aspirin, topical treatment, 
contraceptives), history of migraines requiring treatment, self-reported 
history of alcohol/drug abuse, regular smokers (1 or more cigarette per 
day), COVID-19 diagnosis within the last month or LONG COVID-19, 
not being registered with a GP (General Practitioner/local healthcare 
provider) and finally, having a large beard as it interfered with oronasal 
mask seal.

On the day of the data collection, each participant had their blood 
pressure tested to ensure it was within the predetermined limit (less 
than 140/90 with resting heart rate below 90 beats per minute). A 
breathalyser test was also administered to ensure participants had not 
consumed any alcohol before the study. A large proportion of female 
participants was unable to obtain a satisfactory oronasal mask seal, and 
female recruitment was stopped after initial testing.

In total, 63 participants took part in the study of which 59 were 
male and 4 were female. Eight participants asked to stop the CO2
condition before it was complete and were excluded from the analysis. 
Nine additional participants were excluded due to data corruption or 
equipment malfunction. The remaining 46 participants consisted of 45 
males and 1 female with a mean age of 23.48 years (min = 18, max =
41, SD = 5.830).
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Fig. 1. Flow diagram illustrating the study protocol.
3.2. Hardware

The air was supplied to participants through a face-worn oronasal 
mask (RESMED AirFit F30 [54]). A custom adapter was 3D printed to 
connect the oronasal mask to a tube connected to the air reservoir bag. 
This bag contained a switch that allowed to change between air sources 
for the two conditions (regular atmospheric and CO2 enriched air). 
The reservoir bag was connected to a regulator attached to medically 
certified gas mixture cylinders (7.5% CO2, 21% O2, N2 balance, sourced 
from a local supplier). Cylinders were securely fastened to a wall. The 
regulator allowed for pressure and flow rate regulation. To compensate 
for changes in gas consumption due to varied respiratory rates between 
and within participants over time, the flow rate was adjusted by one of 
the supervising researchers as needed to ensure the reservoir bag was 
full and the participant had a large supply of air available at any time.

The emteqPro system [24] mounted on a HTC Vive Pro Eye head-
set [55] enabled us to collect physiological measures, including fore-
head PPG, fEMG (7 channels - centre corrugator and left/right for 
zygomaticus, frontalis and orbicularis muscles), facial skin impedance 
(same 7 channels), head movements (gyroscope and accelerometer). 
Eye tracking data were recorded using the Tobii eye tracking sen-
sors embedded within the HTC VIVE PRO headset [56] (see Fig.  2). 
BIOPAC MP150 was used to include GSR (GSR100C) and respiration 
belt (RSP100C) sensor models [57].

3.3. Software

We developed a custom VR application using the Unity engine 
integrating emteqPro SDK and Tobii eye tracking package. The de-
veloped app integrated step-by-step instructions for each calibration 
step, recorded events of interest, and simultaneously triggered data 
collection from emteqPRO and eye sensors. The VR scene for both 
conditions was an empty, grey, dimly-lit room with uniform lighting. 
It contained a couch situated below the user’s point of view to convey 
the impression of sitting. Participants were instructed to look straight 
ahead in a virtual environment that was deliberately devoid of visual 
points of interest. Aside from the ability to look around, no interactions, 
movements, or animations were included. This minimalistic scene was 
designed to simulate the experience of sitting in an empty room, pro-
viding a controlled and distraction-free setting in contrast to the actual 
laboratory environment, which contained various sensors, computers, 
and medical equipment.

The SuperVision application for the emteqPro device (v1.4.0) and 
the BIOPAC application (AcqKnowledge version 4.3) were used for 
real-time signal monitoring [24].
4 
3.4. Data processing

Fig.  3 depicts the data-processing approach. A Windows 10 machine 
(GTX1060 6 GB, i7-6700 and 32 GB of RAM) with a shared system clock 
was the host system for the study, enabling time synchronisation of 
signals from different devices. All data were initially up-scaled to match 
the highest signal frequency of 1000 Hz using forward filling. Once 
synchronised, it was then down-sampled to 50 Hz. Data were divided 
into four different types of files. EmteqPro generated two of the four 
files, namely ‘.dab’ file containing physiological signals from the device. 
These dab files were converted into ‘.csv’ files using software provided 
by the manufacturer for loading into a Python environment for further 
processing. Secondly, ‘.json’ files contained event information (custom 
message indicating start/end of calibration and condition segments).

A similar process was used for processing and storing pupil dilation 
data in a proprietary ‘.eyedata’ format from Tobii. Data were initially 
converted to readable ‘csv’. The pupil dilation processing pipeline in-
cluded outlier rejection steps as described in [58] and included specific 
techniques for the following outlier types: (1) invalid data outliers 
(provided by the eye tracking device, e.g., due to eye being closed, 
momentary glitch etc.), (2) feasible range outliers (e.g., pupil dilation 
was outside the predetermined, feasible range of 1.5–9 mm), (3) dila-
tion speed outliers (e.g., pupil dilation change was disproportionately 
large to adjacent samples), and (4) gap artefacts outliers (e.g., pupil 
dilation was invalid from all of the combined filtering steps described). 
These samples are also likely invalid due to eye occlusion by blinking 
or other artefacts. Thus, we removed the frame corresponding to 120 
hz before and after each gap. Given the high correlation between both 
pupils [59], in the absence of pupil dilation from one eye, valid pupil 
dilation from the other eye replaced missing data. Once the remain-
ing outliers have been identified and removed, we used mean linear 
interpolation to fill in gaps in pupil dilation data. Finally, timestamps 
enabled us to synchronise pupil dilation data with the emteqPro and 
event data.

The last data file considered was a readable ‘.csv’ file containing 
GSR and respiration data from the BIOPAC device. In contrast to 
all other data, this file included the recording’s start time instead of 
timestamps. Given a known frequency of 1000 Hz, we used the start 
time to generate timestamps for each data row.

Signals from all devices were synchronised and downsampled to 
50 Hz, followed by a 3rd order Butterworth low-pass filter of pupil 
dilation, GSR, PPG, contact and IMU (Gyroscope and Acceleration) sig-
nals and a 4th order on respiration data. Filtering was unnecessary for 
the EMG data since the manufacturer already filtered and processed the
EMG Amplitude for all channels. Lastly, using data from both conditions 
and calibration segments, each participant’s dataset was individually 
normalised using min–max normalisation.
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Fig. 2. Researcher demonstrating emteqPro VR device with the oronasal mask attached to a hose via a custom 3D printed adapter.
Fig. 3. Flow diagram depicting the data processing pipeline.
3.5. Feature extraction

All signals (refer to Table  1) had the following features extracted: 
mean, std, min, max, median, range, iqr, 1st and 2nd derivative means 
and std. Combined mean pupil dilation across both eyes was also 
calculated using left and right-eye pupil dilation.

In addition, the neurokit2 library allowed us to extract additional, 
signal-specific features from the heart-rate sensors: PPG_Rate_Mean 
(beats per minute), HRV_MeanNN, HRV_SDNN, HRV_RMSSD, HRV_SD
SD, HRV_MedianNN, HRV_IQRNN for PPG data, SCR_Peaks_N, SCR_Pe-
aks_Amplitude_Mean, EDA_Tonic_SD for GSR data, RSP_Rate_Mean
(breaths per minute), RSP_Amplitude_Mean and RSP_Phase_Duration
_Ratio for respiration data.

Feature extraction was performed separately for segment overview 
and timed windows. In the segment overview, features were extracted 
from the entire duration of each condition, i.e., one mean heart rate 
value for the CO2 gas inhalation condition and one for air condition per 
participant. Additional feature extraction was performed on separate 
5 
time windows (each 60-s long and 10-s slide) of signals generated from 
each segment, resulting in, e.g., 115 mean heart-rate values extracted 
per condition for each participant.

Fig.  4 heatmap shows Pearson correlation coefficients between time-
windowed means of physiological signals, indicating that features from 
separate sensors are predominantly uncorrelated. Most moderate to 
strong correlations exist between features extracted from the same 
modality, like heart rate magnitude and variability, EMG data from 
pairs of muscle sensors, and left and right pupil dilation data. A salient 
exception is the respiration rate, which shows moderate to strong 
correlations with several other features such as heart rate, heart rate 
variability, GSR and certain EMG features.

4. Data analysis

This section investigates the effect of the CO2 inhalation on partici-
pant physiological responses compared to baseline air condition. First, 
we analysed each modality individually to identify differences between 
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Fig. 4. Pearson correlation coefficients heat map for a subset of extracted features.
Fig. 5. Experimental setup. From left to right: (i) Cylinder connected to a reservoir bag; (ii) researcher wearing VR headset, physiological sensors and oronasal 

mask; (iii) supervising researcher view of the real-time signals through SuperVision and AcqKnowledge applications.
air and CO2 conditions temporal dynamics. To this end, Fig.  6 shows 
the mean values of GSR, pupil dilatation, respiration and heart rates 
time series and overall violin plots.

4.1. Condition validation with self-ratings

The arousal, valence (1–9) and anxiety ratings (0–100) before the 
start of the experiment and after each condition were analysed to 
evaluate the effect of condition (air vs. CO2) on the ratings (see Fig. 
7).

Starting with arousal ratings, a repeated measures one-way ANOVA 
(within-participant factor of time - baseline/post air/post-CO2) with a 
Greenhouse–Geisser correction determined that mean arousal ratings 
differed significantly between conditions (𝐹 (1.696, 71.239) = 66.614,
p< 0.001, 𝜂2 = 0.613). Bonferroni corrected pairwise comparisons 
revealed that arousal ratings were not significantly different between 
baseline and air condition (𝑑 = 0.302, 𝑠𝑒 = 0.259, 𝑝 = 0.749) but were 
6 
significantly different between baseline and CO2 (𝑑 = −3.001, 𝑠𝑒 =
0.374, 𝑝 < 0.001) and between air and CO2 (𝑑 = −3.302, 𝑠𝑒 = 0.306, 𝑝 <
0.001).

Likewise, this approach revealed significant differences in val-
ence ratings between all three conditions (𝐹 (1.389, 59.717) = 87.897,p<
0.001, 𝜂2 = 0.671). Post-hoc analyses revealed significantly different 
valence ratings for all pairwise comparisons: baseline and air condition 
(𝑑 = −0.705, 𝑠𝑒 = 0.154, 𝑝 < 0.001), baseline and CO2 (𝑑 = −3.227, 𝑠𝑒 =
0.312, 𝑝 < 0.001), air and CO2 (𝑑 = −2.523, 𝑠𝑒 = 0.275 𝑝 < 0.001).

Finally, anxiety ratings differed between conditions (𝐹 (1.236, 43.247)
= 61.808,p< 0.001, 𝜂2 = 0.638). Post-hoc analyses revealed anxiety 
ratings shared a similar pattern to arousal, with anxiety ratings not 
differing between baseline and air conditions (𝑑 = 1.708, 𝑠𝑒 = 1.717, 𝑝 =
0.980), but reaching high significance for baseline and CO2 (𝑑 =
−32.714, 𝑠𝑒 = 3.817, 𝑝 < 0.001) as well as air and CO2 conditions 
( ̄𝑑 = − 34.422, 𝑠𝑒 = 4.360, 𝑝 < 0.001).
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Fig. 6. Air and CO2 enriched air conditions comparing GSR, respiration rate, heart rate and pupil dilation measures across participants. Left violin plots (a, c, e, 
g) show the distribution of values for each measure and condition. Right line plots (b, d, f, h) display the time series mean values for 60-s (with a 10-s overlap) 
sliding time windows per condition.
4.2. Galvanic skin response

The mean values of GSR for the air and CO2 conditions differ 
significantly (paired t-test 𝑡(45) = 8.538,p< 0.001, 𝑑 = 2.120). Fig. 
6 displays the time courses of mean GSR levels for the air and CO2
conditions. The CO2-related GSR dynamics are effectively captured by 
a logistic function curve fitting, revealing a sigmoidal response pattern 
characterised by maximum GSR, growth rate, and temporal midpoint 
7 
parameters. Meanwhile, a quadratic function successfully explains the 
air-related GSR dynamics, portraying a parabolic trend with parameters 
reflecting amplitude, curvature, and temporal shift.

4.3. Respiratory rate

Along similar lines, mean respiration rates (RR) between the air and 
CO  conditions differ significantly (𝑡(45) = 14.216,p< 0.001, 𝑑 = 1.913). 
2
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Fig. 7. Mean and standard error of arousal (1–9), valence (1–9) and anxiety (0–100) ratings provided before the study (baseline), and after both air and CO2
conditions (∗ indicates significance at 𝑝 < 0.001, see main text).
Temporal dynamics under elevated CO2 levels follow a sigmoidal re-
sponse pattern, while the RR dynamics associated with air exposure 
follow a linear trend (Fig.  6d).

4.4. Heart rate

The difference between the mean heart-rate values (beats per min-
ute calculated from the emteqPRO PPG data) between the air and CO2
conditions was also statistically significant (paired t-test, 𝑡(45) = 45.533,
p< 0.001, 𝑑 = 9.490). In contrast to respiration rate and GSR for 
the CO2 condition, the temporal dynamics of heart rate exhibited a 
predominantly linear increase. This trend was also evident in the air 
condition, albeit with a considerably diminished slope compared to 
the CO2 condition (Fig.  6f). Notably, the increase levels off subtly 
during the last few minutes of the CO2 condition, hinting at a potential 
maximum of the heart rate.

4.5. Pupil dilation

Normalised pupil dilation did not differ significantly between con-
ditions when comparing mean values independent of time (𝑡(45) =
1.52, 𝑝 = 0.134, 𝑑 = 0.309). However, the picture differs when consid-
ering temporal dynamics, i.e., the pupil dilation in the air condition 
follows a predominantly quadratic model. Temporal changes in the 
CO2 condition show a more complex behaviour modelled by a 5th-
order polynomial (Fig.  6h). Initial spikes in pupil dilation are evident 
in both conditions. However, the CO2 condition exhibits a higher and 
longer spike, followed by a rapid decline leading to a significantly lower 
minimum value than the air condition. After 6-8 min, the pupil dilation 
increases progressively more linearly.

4.6. EMG sensors: Facial muscle amplitude and skin impedance

The same sensors registered both EMG and skin impedance. The bar 
plots in Fig.  8 and time series plots in Fig.  9 provide a comprehensive 
visualisation of the mean values per condition across all time points 
and for each time window, respectively.

Next, we examined the effects of air and CO2 conditions on facial 
EMG activity and skin impedance (Fig.  8). Individual muscle groups 
differed between the air and CO2 conditions (paired t-tests, 𝑝 < 0.05). 
Likewise, skin impedance measures significantly differ between con-
ditions for all sensors apart from the ‘‘RightFrontalis’’. For the EMG 
amplitude measure, both sides of the orbicularis and zygomaticus 
muscles showed significantly different activation levels. Results are 
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Table 2
Paired t-tests results for the skin impedance and EMG amplitude analyses.
 Muscle Skin impedance EMG

 T-statistic 𝑃 -value T-statistic 𝑃 -value 
 LeftFrontalis 2.921 0.005 −1.068 0.291  
 RightFrontalis 1.973 0.055 −1.100 0.277  
 LeftOrbicularis 2.085 0.043 −2.031 0.048  
 RightOrbicularis 3.512 0.001 −2.556 0.014  
 LeftZygomaticus 2.363 0.023 −2.747 0.009  
 RightZygomaticus 4.244 0.000 −4.794 0.000  
 CenterCorrugator 4.969 0.000 −1.427 0.160  

summarised in Table  2. For both measures, time series are displayed in 
Fig.  8. Curves were fitted with polynomial regressions for all conditions 
and sensors separately.

4.7. IMU (Gyroscope & Accelerometer)

In contrast with other physiological sensors, mean values for the 
IMU sensors used (gyroscope and accelerometer) were less informa-
tive (Fig.  10), as expected: Gyroscopes measure angular velocity, and 
accelerometers capture linear acceleration. Unless there is continuous 
movement, the signal from these sensors drops to its baseline. This 
characteristic, combined with our sedentary protocol, results in sig-
nals that contain short peaks which are not well represented by the 
arithmetic mean of the overall measurement. Therefore, other features 
previously mentioned, such as standard, deviation, interquartile range, 
min, max etc. were extracted instead.

The combined results from a multivariate analysis of variance 
(MANOVA) for the gyroscope and accelerometer data revealed signif-
icant differences between conditions. Results underscore a substantial 
impact of both gyroscope features and condition on the observed vari-
ability (Wilks’ 𝛬 = 0.004, 𝐹 (28, 63) = 527.890, 𝑝 < 0.001). The condition 
itself (Air vs. CO2) elicited a significant effect (𝛬 = 0.362, 𝐹 (30, 61) =
3.583, 𝑝 < 0.001), highlighting differences in gyroscope measurements 
between conditions.

Similarly, in the accelerometer analysis, the significance of the 
model was salient (𝛬 = 0.0082, 𝐹 (28, 63) = 272.371, 𝑝 < 0.001). The ‘con-
dition variable’ remained statistically significant (𝛬 = 0.415, 𝐹 (30, 61) =
2.869, 𝑝 = 0.0001), further highlighting differences in accelerometer 
measurements.

MANOVA results provided robust evidence on the effect of condition 
in gyroscope and accelerometer variance. To explore the individual 
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Fig. 8. Comparison of mean EMG amplitude and facial skin impedances between the air and the CO2 conditions. ∗ indicates significance at 𝑝 < 0.001. (a) Violin 
plots of mean values. (b) Regression fits.
impact of each feature, uni-variate ANOVA follow-up tests were car-
ried out (full results table available in supplementary material). In 
summary, for the gyroscope, Bonferroni corrected univariate ANOVA 
analysis showed significant differences for interquartile range (IQR) 
as well as standard deviation (SD) and its two derivatives (first and 
second-order) across all three axes. For the accelerometer, the 𝑥-axis 
reached significance in SD, the 𝑦-axis reached significance in SD and 
the 1st derivative, and the 𝑧-axis for its first and second-order SD 
derivatives. The magnitudes of both sensors were calculated using the 
Euclidean norm (Fig.  10). The mean magnitude for the accelerometer 
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also differs between conditions 𝑡(90) = −3.098, 𝑝 = 0.003, but not for 
the gyroscope 𝑡(90) = 0.002, 𝑝 = 0.999.

5. Machine learning decoding pipelines

We devised two distinct machine-learning pipelines, a feature-based 
and a deep learning-based pipeline. The first classic pipeline to assess 
feature differences between the air and CO2 conditions. To this end, 
decoders utilised features extracted from physiological signals through-
out their entire duration as inputs. The second and novel pipeline 
leveraged state-of-the-art deep learning algorithms to learn from raw 
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Fig. 9. Comparison of mean EMG amplitude and facial skin impedances between air and CO2 conditions over time for seven muscle groups with fitted regressions. 
(a) Regression fits for facial EMG amplitude. (b) Regression fits for facial skin impedances.

Fig. 10. Comparison between air and CO2 conditions of probability densities and temporal dynamics of accelerometer and gyroscope mean values.
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Table 3
Average accuracy (ACC) and F1-scores over 46 participants, grouped per data 
modality and classification method.
 Single classification — Entire condition data
 Classifier C-SVC KNN RF RR

 modality ACC F1 ACC F1 ACC F1 ACC F1  
 All 0.72 0.70 0.71 0.69 0.90 0.89 0.94 0.94  
 EMG A 0.57 0.50 0.61 0.60 0.66 0.62 0.62 0.59  
 EMG C 0.67 0.63 0.69 0.67 0.73 0.71 0.70 0.68  
 HRV 0.69 0.66 0.69 0.67 0.71 0.68 0.76 0.74  
 IMU 0.66 0.64 0.58 0.56 0.79 0.77 0.82 0.81  
 GSR 0.81 0.79 0.77 0.76 0.80 0.78 0.82 0.80  
 PupilSize 0.50 0.41 0.55 0.53 0.58 0.56 0.64 0.60  
 RSP 0.82 0.80 0.88 0.87 0.89 0.88 0.90 0.89  
 HRV/IMU/GSR/RSP 0.72 0.70 0.71 0.69 0.86 0.85 0.94 0.94  
 Continuous classification — Time windowed data
 Classifier STResNet CNN ConvLSTM Transformer

 modality ACC F1 ACC F1 ACC F1 ACC F1  
 All 0.69 0.67 0.66 0.66 0.62 0.62 0.63 0.62  
 EMG A 0.69 0.69 0.64 0.63 0.63 0.62 0.58 0.57  
 EMG C 0.55 0.52 0.57 0.57 0.52 0.50 0.59 0.54  
 HRV 0.79 0.79 0.73 0.73 0.75 0.75 0.50 0.50  
 IMU 0.85 0.85 0.82 0.82 0.82 0.82 0.64 0.62  
 GSR 0.64 0.62 0.67 0.65 0.66 0.65 0.61 0.58  
 PupilSize 0.66 0.66 0.61 0.61 0.56 0.53 0.50 0.48  
 RSP 0.86 0.86 0.84 0.84 0.83 0.83 0.64 0.62  
 HRV/IMU/GSR/RSP 0.84 0.84 0.69 0.68 0.72 0.72 0.63 0.63  

signal segments without previous feature extraction (30 s with 25 s 
overlap). Predictions generated in this pipeline were continuous (one 
prediction every 5 s), and thus is very different from the condition 
classification provided in the first pipeline. Thus, results are not directly 
comparable between the two approaches.

Table  3 lists accuracy and F1-scores of classification results for all 
decoders in both pipelines, as will be discussed next. Importantly, every 
model in both pipelines considers each input modality separately and 
the combination of all to demonstrate the differences of a multi-modal 
approach in arousal detection.

5.1. Feature-based analysis to distinguish between the air and CO2 condi-
tions

First, we used classic machine learning decoders to distinguish 
between the air and the CO2 conditions based on the extracted phys-
iological features. Baseline classifiers include C-SVC (Support Vector 
Classifier), KNN (K-Nearest Neighbours), RF (Random Forest), and LRR 
(Linear Ridge Regression), offering a range of distinct characteristics to 
tackle the classification problem from complementary angles, and were 
successfully used in affect detection [60].

In short, hyperparameter optimisation proceeded by defining a sep-
arate hyperparameter grid for each classifier, including regularisation 
strength, kernel type, number of neighbours, and maximum tree depth 
among others (see, for instance, [61]). This optimisation was followed 
by an independent leave-one-subject-out Cross-Validation (LOSO-CV) 
approach to ensure a reliable evaluation, preventing over-fitting. This 
technique involves iterative training classifiers on the data from all 
subjects except one and then evaluating the performance on the held-
out subject. Repeating this process for each subject separately results 
in a comprehensive assessment of classifiers’ generalisation capability. 
The heat map in Fig.  11 depicts classifier results for each out of the 
46 participants. The x- and 𝑦-axis represent the test participant and 
input modality, while the colour shows the F1-score. Results show a 
high decoding accuracy for the multi-modal LRR decoder followed by 
the RF consistently for all participants, followed by RF, underpinned by 
the effect of respiration and GSR inputs primarily (Fig.  11).
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5.2. Deep learning for continuous predictions with raw signals

Next, we devised a novel end-to-end continuous classification task 
for affect decoding leveraging raw signals. The diverse set of signals 
encompassed 7 EMG amplitude channels (EMG A), 7 EMG contact chan-
nels (EMG C), raw PPG and emteqPro-calculated heart rate (HR), the 
X, Y, and Z dimensions of the gyroscope and accelerometer instruments 
(IMU), right and left pupil dilation (PupilSize), Biopac galvanic skin 
response (GSR), and respiration rate (RR). Noticeably, like in the classic 
pipeline, we tested each modality individually (uni-modal approach) 
to gauge the accuracy of each signal independently, followed by a 
comprehensive multi-modal approach combining all input modalities.

To this end, we evaluated a range of state-of-the-art optimised 
Deep Learning architectures, including Convolutional Neural Networks 
(CNN - 3 layers, 64 units), Convolutional LSTM – Long Short-Term 
Memory networks (3 CNN and 1 LSTM layer, 64 units), a Transformer 
(2 layers, 2 heads, 16 units), and a STResNet [62] designed for multi-
channel time-series data specifically; all with a consistent dropout rate 
of 0.2. Code implementation of each architecture is available with 
our published Python library at https://github.com/michalgnacek/co2-
study.

Like in the previous section, we trained subject-independent models, 
i.e., the test subjects were not part of the training data. We grouped 
the subjects into five non-overlapping folds to speed up training and 
evaluation times and used a five-fold cross-validation strategy. Next, 
we split training data further into internal training and validation sets. 
Thus, for each fold, the data from the 46 subjects consists of training 
(32 subjects), validation (5 subjects) and test subjects (9 subjects). 
The validation data was used to monitor the model’s performance 
during training on unseen subjects. The best-performing model on the 
validation data was used for the final test evaluation [62].

Models were trained using categorical cross-entropy loss and Adam 
optimiser (default learning rate of 0.001), and the training process 
was monitored using accuracy as the primary metric. Additionally, the 
supplementary material shows the training histories, including accu-
racy and loss curves over epochs to provide insights into the learning 
dynamics of each model. Even in this challenging end-to-end modality, 
the STResNet provides a reasonable overall continual accuracy of up 
to 87% for Respiration and 86% for IMU inputs, followed by the CNN 
architecture (3).

6. Discussion

This study investigated the effect of CO2-enriched air vs. normal 
air on affective self-ratings. We leveraged physiological and movement 
measures to discern whether supplemented air inhalation can induce 
affective, physiological, and movement changes over time in a VR 
environment. This question is relevant because affect/mood induction 
is usually achieved instead by affective stimuli such as pictures, words, 
text passages, music/videos, etc. Existing methods can induce salient 
valence differences [10]. However, the elicitation of arousal, especially 
in the realm of high values, presents a more complex challenge [18,24]. 
As alternative examples, fear [14] or stress-inducing public speak-
ing [39] have been used to elevate arousal. However, the effectiveness 
of these methods can vary substantially among participants due to 
variable interpersonal traits [44] and movement noise.

By contrast, CO2-enriched air inhalation is a dependable and safe 
approach for inducing heightened arousal states, presenting multiple 
advantages over conventional methodologies [23]. This study intro-
duces an innovative approach for collecting self-ratings, GSR, EMG, 
respiration rate, heart rate, and head movement, including acceleration 
and angular velocity. In addition, recording facial EMG presented an 
extra challenge due to CO2 inhalation necessitating an oronasal mask 
obscuring the entire face. The new EmteqPro device addressed this 
challenge with a new monitoring approach of muscle activity from 
dry facial EMG sensors (and a PPG sensor) integrated into a VR HMD 
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Fig. 11. Heat map showing F1-scores for individual participants per classifier and modality in air vs. CO2 classification task.
headset. To our knowledge, this study is the first to combine facial 
EMG recordings with CO2 inhalation, not to mention its integration 
into a VR setup, which could enable future studies to display virtual 
environments in conjunction with CO2 inhalation.

Remarkably, our findings showed that the CO2-enriched air con-
dition induced higher arousal and anxiety levels than the regular air 
condition, reflected in all physiological and movement measures. Multi-
modal physio-facial data also permits the development of feature-based, 
end-to-end shallow and deep learning models with generally high test 
accuracy (Table  3) that could serve as baselines for developing more 
advanced solutions for monitoring arousal changes.

6.1. Self-ratings, participant experience and experimenter observations

We registered arousal, valence and anxiety self-rating levels at the 
beginning and end of each condition. As expected, all participants 
experienced the CO2 condition as more arousing and anxiety-provoking 
than the baseline (air) condition (Fig.  7). A common theme for all 
participants was a pattern of strenuous and pronounced breathing 
that underwent an initial sharp escalation, followed by a subsequent 
tapering off and eventual stabilisation at a consistent pace. This ex-
perience was frequently characterised as fraught with stress, worry 
and apprehension, which often peaks during the first minutes of the 
experiment, followed by the acclimatisation to the heightened state. 
Self-regulation techniques like controlled breathing or positive cogni-
tive and emotion regulation strategies facilitated this adjustment. These 
reported experiences align with the quantitative self-ratings and hence 
are central to interpreting temporal patterns of physiological changes 
underlying arousal dynamics.

6.2. Physiological and movement analysis

Most physiological measures showed significant differences between 
the CO2 and the air condition. Specifically, mean respiration rate, heart 
rate, galvanic skin response (GSR), and facial EMG amplitudes were 
enhanced while skin impedance levels diminished in the CO2 condition. 
All measures indicated a heightened state of arousal in the CO  in line 
2
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with the collected self-ratings and previous research [23], except the 
mean pupil dilation, which did not differ between the conditions (see 
details in the following section).

More interestingly, temporal patterns of physiological signals were 
manifold. Physiological responses generally (but see below) showed a 
consistent escalation, followed by a levelling off – a phenomenon in-
dicative of a potential threshold – in response to CO2 inhalation, consis-
tent with participants’ experiences. However, their temporal dynamics 
were diverse.

Specifically, the GSR signal reached its plateau much more swiftly 
than other metrics (between 2.5 and 5 min). Previous research exposing 
participants to the same amount of CO2 albeit for a much shorter 
duration (2 min) found a similar pattern of GSR, rising sharply and 
followed by a steady level [49]. The respiration rate sharply increased 
for the first 10 min, continuing to climb gradually until approximately 
the 15 min mark. This profile will yield a high discrimination power 
between air and CO2 conditions discussed in the next section. The 
availability of precise data regarding the temporal shifts in respiration 
rate during CO2 inhalation is limited (emphasising the significance 
of this paper). Still, a heightened breathing rate is a well-recognised 
symptom of acidosis [46].

Interestingly, the heart rate measure did not follow this pattern but 
exhibited a near-linear increase almost up to the end of the condition. 
While other CO2 studies primarily present mean heart rate values for 
a general condition [21,23], consistent with our findings, the present 
study accentuates temporal differences between respiratory and cardio-
vascular control systems, elucidating how these interactions can lead to 
unique response patterns during CO2 inhalation.

Crucially, this study unveils heightened activation of the EMG am-
plitudes measured by the facial sensors across all facial muscles in the 
CO2 condition. The simultaneous facial muscle activation across the 
facial muscles may signify arousal intensity changes, whereas changes 
in specific muscles (orbicularis and zygomaticus) might relate more 
to valence changes [27]. However, we observed increased deglutition 
(swallowing) behaviour for most participants during the CO2 condition, 
possibly influencing EMG amplitude in these areas. This study did 
not measure primary facial muscle activity involved in swallowing. 
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Additionally, the proximity of the buccinator (one of these muscles) 
to the zygomaticus muscle may have some impact [63].

The skin impedance from the facial EMG sensors allowed us to eval-
uate if separate GSR measurements outside the EmteqPro mask were 
necessary, gauging the information provided by impedance responses. 
Skin impedance signals typically decrease over time (Fig.  9). However, 
responses increased for the oribularis and zygomaticus sensors (re-
duced contact/higher impedance) before decreasing again (enhanced 
contact/lower impedance) only in the CO2 condition, presented last. 
Additionally, the timing of the peaks of skin impedance approximately 
aligns with those of GSR. This timing may suggest success in capturing 
the relationship between GSR and skin impedance. Amplitude plots 
(Fig.  9) offer an alternative explanation for this phenomenon. The 
presence of EMG amplitude peaks indicate heightened facial move-
ments during these segments in the CO2 condition. This presence could 
explain skin impedance increase due to worsened skin contact caused 
by facial movements.

Tasks involving hyperventilation (such as those due to CO2 inhala-
tion) are typically characterised by elevated levels of head motion 
that synchronise with the inhalation and exhalation cycles [64]. The 
temporal analysis of the accelerometer revealed a consistent increase 
in magnitude over time for both conditions, with a noticeably higher 
trend in the CO2 condition. The baseline air measurements suggested 
that participants might have been gradually disengaging or feeling 
discomfort due to prolonged stillness and the presence of numerous 
sensors. Accordingly, the CO2 condition led to a significantly higher 
and more pronounced increase of the accelerometer magnitude over 
time.

Finally, pupil dilation analyses led to intriguing findings. The use of 
a VR environment prevented pupil dilation due to luminosity changes. 
In the CO2 condition, the time course analysis revealed a swiftest and 
very pronounced dilation followed by a prominent pupil contraction, 
culminating in a slower, sustained, and linear phase of pupil dilation. 
In the air condition, pupil dilation partially correlated with the GSR 
signal, forming an inverse U-shaped trajectory (Fig.  6).

Pupils generally dilate in response to increases in arousal [58]. 
The effect of deliberate inhalation of CO2 and pupil size has not been 
well researched, and existing literature is scarce and often limited 
to individual case reports of unconscious patients [65]. However, it 
suggests that increased concentration of CO2 levels in the blood leads to 
pupil contraction [66], in line with our findings. The interplay between 
possibly opposing effects of CO2 inhalation, arousal, and increased 
breathing rate on CO2 bloodstream concentration and potential self-
regulation may account for the observed pupil dilation curve with 
multiple inflexion points.

6.3. Effective decoding arousal levels

Machine learning classifiers effectively discerned between high 
(CO2) and low arousal air conditions from physiological signals. Multi-
modal classifiers based on all input features achieved a very high 
accuracy of up to 94% for the LRR decoder and a comparable F1 
score (Table  3), not previously achieved to our knowledge. Respiration 
features garnered the highest accuracy, followed closely by IMU and 
GSR consistently for all subjects (Fig.  11), underlying the multimodal 
approach success. We expected the relevance of these inputs, given 
the sharp and consistent increase of such physiological responses from 
the outset of the CO2 stimulation (Fig.  6). By contrast, the EMG 
amplitude, conventionally used for valence detection, demonstrated 
the least accuracy among the variables [67] again in line with its 
more variable temporal dynamics (Fig.  9). Furthermore, we devel-
oped a continuous prediction end-to-end deep learning pipeline to 
delve into the interaction between physiological measures and arousal. 
Surprisingly, several single-input models surpassed the comprehensive 
approach incorporating all available modalities (Table  3). This decrease 
in accuracy for the multi-modal model, which combined all signals, 
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can be attributed to the dilution effect of fusing informative with 
less relevant signals [68], suggesting specific input selection strategy 
might be more beneficial. Based on this finding, we combined the four 
best-performing modalities, including HRV, IMU, GSR, and respiration 
to evaluate the impact of excluding lower-performing modalities on 
classification accuracy and repeated the experiment for both pipelines. 
Taking a step back to the single classification pipeline where the 
multimodal approach already yielded the highest accuracy within the 
single classification pipeline, our results showed that adding pupil size, 
EMG amplitude, and contact data offered little to no improvement. 
This suggests that these modalities may be safely omitted, potentially 
enhancing performance by reducing the number of features evaluated. 
We conducted similar experiments using the continuous classification 
pipeline, evaluating models that used only the four modalities (HRV, 
IMU, GSR, and respiration). These models achieved higher accuracy 
than those trained on the full set of input signals. However, the best 
results overall were still obtained by the top-performing single-modality 
models.

Notably, the STResNet classifier based on the respiration rate signal 
exhibited an accuracy of 0.87, followed closely by IMU with 0.86, and 
HRV with 0.81. It is worth highlighting a decline in the performance 
of GSR between the two approaches. This observation suggests that 
despite often being regarded as a gold standard for arousal detec-
tion [14,34], GSR might not be optimal for continuous detection within 
shorter time windows. Alternative measures such as respiration rate, 
IMU and heart rate could offer further insights in such scenarios.

Respiration rate consistently achieved the highest classification ac-
curacy across both single and continuous classification pipelines (see 
Table  3), likely due to its strong and direct physiological response to 
CO2 inhalation. Elevated CO2 levels trigger an immediate and auto-
matic increase in respiration rate as the body attempts to regulate [49]. 
This strong, rapid, and sustained response made respiration rate partic-
ularly well-suited for classification, offering a robust signal with clearly 
distinguishable features. Unlike other physiological measures that may 
plateau or vary in latency, respiration rate continues to rise over time, 
supporting effective continuous classification throughout the exposure 
period (see Fig.  6).

6.4. Limitations and future work

This study enabled the simultaneous administration of CO2 enriched 
air via the Resmed F30 oronasal mask and the recording of facial EMG 
with the EmteqPro mask integrated into the Vive Pro Eye headset. How-
ever, this setup featured some limitations. Even with this new compact 
oronasal mask, individuals with smaller facial proportions encountered 
fitting issues due to potential interference between the two devices, 
that is, an insufficient gap between the VR headset and the mask. 
This issue caused the headset to press and break the seal around the 
mouth, compromising gas delivery. Unfortunately, these participants 
had to be excluded, highlighting a unique hardware compatibility issue. 
Notably, this challenge disproportionately affected female participants, 
possibly introducing a bias. Future studies could explore options such 
as employing more compact VR headsets or tailored, alternative gas de-
livery mechanisms to mitigate this concern. For example, the HTC Vive 
Pro Eye headset is notably bulkier than other commercial headsets, 
e.g., Oculus Quest, and may not face the same problem.

Secondly, the CO2 inhalation caused a heightened deglutition reflex 
and a dry mouth sensation. This effect could cause artefacts in the facial 
EMG measures unrelated to arousal changes. Future studies might find 
ways to extract these artefacts with ICA analysis techniques.

Previous studies showed that photoplethysmography (PPG) signals 
are a dependable source of respiratory rate measurements [69]. The 
database provided here furnishes a valid avenue for algorithm vali-
dation, offering both PPG and respiration belt data. Moreover, IMU 
sensors have the potential to enhance this algorithm through the fusion 
of PPG signals with subtle head movements that occur during deep 
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breathing. A sedentary,low-movement protocol can accentuate the sub-
tle variations required for accurate respiratory rate interpretation from 
these signals, aiding the creation of more robust algorithms.

Another potential limitation of the study is the lack of counter-
balancing in the order of experimental conditions. Specifically, all 
participants began with the air condition. In a preceding pilot study, 
the condition order was counterbalanced, with half of the participants 
starting with air and the other half with CO2. However, the protocol 
was modified in the current study for two key reasons. First, the 
study employed a single-blind design in which participants were not 
informed of the condition they were undergoing. After each condition, 
participants were asked to guess which one involved CO2. In every 
case, participants correctly identified the CO2 condition, likely due to 
its unmistakable physical intensity. If the CO2 condition were adminis-
tered first, participants would easily infer that the following condition 
was air, thereby undermining the blind design. Second, the pilot study 
revealed that participants who began with the CO2 condition were 
significantly more likely to withdraw from the experiment. While the 
precise reasons for this remain unclear, one plausible explanation is 
that the combination of multiple physiological sensors and a face mask 
created an environment that exacerbated discomfort or claustrophobic 
sensations. Starting with the air condition may have allowed partici-
pants to acclimate to the setup before undergoing the more challenging 
CO2 condition. Based on these considerations, the decision was made 
to always begin with the air condition in the current study to preserve 
the data integrity and blind study design. We recommend that future 
studies investigate a counterbalanced design with a reduced level of 
CO2 to reduce the likelihood of participant withdrawal.

An alternative and potentially valuable direction for future re-
search using the collected data involves examining the role of anxiety, 
specifically how varying levels of anxiety may influence physiologi-
cal responses. While our results confirmed that participants reported 
higher levels of anxiety during the CO2 condition, a reverse analysis—
investigating how baseline anxiety levels in the general population 
or even anxiety disorders modulates physiological signals was not 
conducted, as it fell outside the scope of the current study. Actually, 
participants who withdrew due to extreme panic or anxiety were 
excluded from the primary analysis. However, their data may hold 
important insights, as these individuals could exhibit the most pro-
nounced physiological responses. Exploring their data in future work 
may help illuminate how their profiles differ from those who were able 
to complete the study.

The established reliability of CO2 inhalation for inducing heightened 
arousal, corroborated by prior research [21,23,49] and our results, 
implies that overall condition ratings might be somewhat redundant be-
yond condition validation. However, our physiological findings indicate 
a non-linear and multi-directional pattern of arousal escalation (Figs.  9, 
6). As a result, continuous self-ratings of arousal and other ratings could 
offer valuable insights across the condition scenario, fostering a more 
nuanced labelling system beyond the binary categorisation of high and 
low arousal.

Lastly, to enhance the interpretability of our machine learning 
models, future work should incorporate explainable AI (XAI) tech-
niques [70]. For the feature-based classifiers, model-agnostic methods 
such as SHAP (SHapley Additive exPlanations) values and permutation 
importance can identify which physiological features most strongly 
influence model predictions. For the deep learning pipeline, methods 
such as integrated gradients, saliency maps, or attention-weight visual-
isations may shed light on which temporal segments or signal channels 
contribute most to continuous arousal predictions. Additionally, coun-
terfactual explanations could offer valuable insight by showing how 
minimal changes in physiological features might alter the predicted 
arousal state, e.g., by identifying the threshold at which a respiration 
rate shift would flip a prediction from low to high arousal [71]. 
Integrating such XAI methods could also support the discovery of 
interpretable and potentially actionable physiological markers.
14 
7. Conclusion

The present study proposes a novel approach to induce high arousal 
states through CO2 inhalation while simultaneously capturing a range 
of physiological signals. The benefits of this study and the resulting 
database are multifaceted, offering valuable insights into affect in-
duction and potential applications. While this approach is unlikely 
to be practical for everyday use due to the complexity of the setup 
and potential health risks, these extensive and laboratory-based ex-
periments can yield valuable insights that support the development of 
more comprehensive arousal detection algorithms, the evaluation of 
emotion-aware systems, and the modelling of stress responses [72–74].

The challenges associated with reliably inducing high arousal, es-
pecially in static settings, are well-documented. This study successfully 
addresses this issue by demonstrating the efficacy of CO2 inhalation 
in eliciting high arousal states. Through a combination of physio-
logical measures such as respiration rate, heart rate, galvanic skin 
response, pupil size, and facial electromyography, the study showcases 
the distinctive responses induced by CO2 inhalation. These responses, 
characterised by initial sharp increases followed by plateauing or subtle 
changes, provide a comprehensive view of the body’s physiological 
reactions to high arousal induction by CO2 inhalation.

Integrating the oronasal mask, the emteqPro mask and a breathing 
belt allow for simultaneous monitoring of facial EMG, movement, 
heart rate, eye tracking, and respiration rate measures. This fusion 
can lighten the interplay between facial expressions, physiological 
responses, and subjective affective states evoked by CO2 versus air 
inhalation.

Machine learning decoders confirm the effectiveness of these com-
bined physiological measures in discerning high arousal states. The 
high accuracy in distinguishing between CO2 and air conditions – 
mainly through leveraging respiration rate dynamics – reinforces the 
approach’s viability. Future work could simulate scenarios with less dis-
tinguishable affect conditions to explore the limits of the ML approach 
by systematically manipulating VR content.

Despite these contributions, the study acknowledges limitations 
such as the hardware fit constraints of the VR headset and the oronasal 
mask that potentially introduced gender bias due to the differing face 
sizes. Future studies may explore alternative solutions to mitigate these 
limitations and add continuous self-ratings of arousal to offer a more 
nuanced understanding of arousal dynamics.

In conclusion, this study’s innovative approach of combining CO2
versus air inhalation, VR, and comprehensive physiological sensing 
provides a new resource for researchers interested in investigating high 
arousal states. Hence, it contributes to a more holistic understanding of 
human affective experiences.
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