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ABSTRACT

In the highly competitive landscape of e-commerce advertising, maximizing return on advertising spend (ROAS)
is crucial yet inherently uncertain due to auction-based bidding dynamics and fluctuating market conditions.
Traditional deterministic models struggle to capture this uncertainty, necessitating a probabilistic approach
that balances predictive accuracy with interpretability. To address this challenge, the paper proposes a novel
Hierarchical Bayesian Deep Learning framework. The architecture was motivated by initial exploratory analysis
using a Bayesian Belief Network (BBN) to map structural dependencies, while the final deep learning model
overcomes scalability limitations using self-attention mechanisms and a Mixture Density Network (MDN) for
full distributional modeling of ROAS. The BBN captures dependencies among campaign variables, enhancing
interpretability, while the hierarchical deep learning architecture leverages self-attention mechanisms to
address scalability challenges in high-dimensional settings. Experimental results reveal that the proposed
framework achieves 22.8% lower RMSE and 27.4% better Negative Log Likelihood (NLL) and up to 31.2%
lower Kullback-Leibler divergence (KLD) than state-of-the-art methods (DeepAR, Prophet, NGBoost), achieving
an R? of 98% with an inference speed of 5.2 ms per campaign, confirming its feasibility for real-time bidding
applications which typically require sub-10ms latency, enabling a feasible real-time bidding. Ablation studies
confirm that attention-driven feature selection and calibrated uncertainty quantification significantly enhance
both predictive performance and explainability, identifying key drivers of campaign success. By providing
precise, uncertainty-aware, and explainable predictions, this approach enables adaptive bidding strategies,
optimized budget allocation, and risk management, setting a new benchmark for intelligent decision-making
in digital advertising.

1. Introduction

Spend (ROAS) and cannot account for the inherently probabilistic
nature of auction outcomes, fluctuating market conditions, or com-

In the rapidly evolving domain of online advertising, businesses
strive to utilize targeted strategies to maximize their Return on In-
vestment (ROI) (Sutton and Barto, 2018). The unique challenges of e-
commerce platforms, however, remain underexplored. Predicting ROAS
in this domain is particularly difficult due to a confluence of factors:
high-dimensional sparse interactions between thousands of campaign
settings; a fundamentally stochastic auction environment where out-
comes are probabilistic; and delayed, noisy conversion signals. These
challenges, exemplified by Amazon’s Sponsored Ads, create significant
uncertainty and render traditional deterministic models inadequate (Qu
et al, 2019; Zhou et al., 2022a). In this high-stakes financial envi-
ronment, traditional deterministic models often underperform, as they
provide single-point forecasts for metrics like Return on Advertising
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petitor bidding (Kumari and Toshniwal, 2021; Park and Lee, 2022). A
probabilistic approach is therefore essential for strategic and risk-aware
decision-making (Panda et al., 2024).

Recent research has advanced core advertising objectives like bid
optimization and click-through rate prediction using techniques such
as reinforcement learning (Yakovleva et al., 2024; Chen et al., 2021)
and transformers (Jiang et al., 2018; Mao et al., 2023). However,
these approaches often culminate in deterministic predictions, exhibit-
ing overconfidence and a lack of robust uncertainty quantification,
which is critical for budgeting under risk (Gal and Ghahramani, 2016;
Rahaman et al., 2021). Recognizing this gap, the latest research has
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begun to pivot towards explicit uncertainty modeling. For instance, re-
cent studies have applied reinforcement learning to cost-per-acquisition
optimization with probabilistic bounds (Mao et al., 2023), and con-
textual bandits have been developed for more nuanced bidding strate-
gies (Wang et al., 2022). Furthermore, the development of specialized
probabilistic time-series models for revenue forecasting (Katsman et al.,
2023) and new theoretical frameworks for distributional prediction (Li
et al., 2024) highlight a clear trajectory in the field. Yet, a comprehen-
sive and scalable solution for full distributional ROAS forecasting in
e-commerce, which is crucial for practical budget allocation, remains
an open challenge (Chen et al., 2023).

To overcome these limitations, this paper presents a hierarchical
Bayesian deep learning model that integrates self-attention and a Mix-
ture Density Network (MDN) output layer. Instead of predicting a
single expected value, this approach models the entire distribution of
ROAS, providing calibrated predictions and deeper insights into cam-
paign variability. Stochastic Weight Averaging (SWA) is combined with
Bayesian inference to deliver robust uncertainty estimates while main-
taining computational efficiency, and self-attention captures long-range
dependencies across temporal and campaign-specific features (Park and
Lee, 2022). Unlike prior methods that rely on point estimates and
fail to quantify risk, the proposed model leverages Bayesian inference
and self-attention to generate full probability distributions over ROAS,
enabling risk-aware and explainable decision-making in digital adver-
tising. Explainability is prioritized through interpretability, including
attention-based weight distribution and feature importance metrics, al-
lowing advertisers to understand how key factors—such as impressions,
cost per click, and targeting keywords—influence ROAS fluctuations.
This transparency fosters trust in automated solutions, particularly
when high-stakes budgetary decisions depend on model outputs. To
rigorously validate the proposed model, the experimental setup ac-
counts for multiple factors, including seasonal variations (e.g., Black
Friday, Cyber Monday), distribution shifts, and changes in user en-
gagement trends, ensuring a realistic evaluation of bidding strategies
within Amazon’s ecosystem. Based on the preceding discussion, the key
contributions of this paper are as follows:

Key contributions

1. First, we propose a Bayesian Self-Attention architecture that
models the complete ROAS distribution, offering calibrated un-
certainty estimates to support informed budget decisions. The
framework achieves competitive performance — demonstrating
lower RMSE, higher R?, and fast inference times — ensuring
feasibility for real-time advertising applications.

2. Second, we employ a Bayesian Belief Network (BBN) to capture
variable dependencies, leveraging Conditional Probability Dis-
tributions for structured probabilistic reasoning and enhanced
interpretability.

3. Third, we develop an explainability framework that incorporates
attention maps and weight distribution analysis, providing clear
insights into how various features influence campaign outcomes.

4. Finally, we conduct practical validation on large-scale
e-commerce data, demonstrating the model’s feasibility in com-
plex, high-dimensional, and dynamic advertising environments.

The remainder of this paper is structured as follows: Section 2
reviews the related literature, Section 3 details the proposed model
architecture, Section 4 presents experimental evaluation results, Sec-
tion 5 discusses model explainability and interpretability, and Section 6
concludes the paper with key findings and future research directions.

2. Background and related work
This section outlines how e-commerce platforms generate and pro-

cess advertising data, followed by an exploration of why probabilistic
deep learning offers an advantage over traditional methods.
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2.1. Advertisement campaigns in ecommerce

Advertising in e-commerce is a dynamic and data-driven field,
where success hinges on how effectively businesses process and act on
consumer behavior data (Danaher et al., 2010). Every click, search, and
purchase generates a signal that can be used to optimize ad targeting
and bidding strategies.

Amazon, as a leading online marketplace, operates a PPC (Pay-
Per-Click) auction-based advertisement system, where sellers only pay
a fee when a user actually clicks on their ad. In this system, sellers
compete for premium search placements by bidding on relevant key-
words. This system enables advertisers to strategically allocate budgets
and optimize bids to ensure their products appear prominently in
search results when customers search for relevant items. However, the
dynamic nature of consumer behavior, seasonal market trends, and
fluctuating competition introduce significant challenges in designing
effective bidding strategies. Amazon offers multiple types of adver-
tising campaigns, including Sponsored Products Ads, Sponsored Brands
Ads, and Sponsored Display Ads. Among these, Sponsored Brands and
Sponsored Products campaigns are particularly relevant for search-
driven conversions, as they rely on competitive keyword auctions.
Advertisers bid on specific keywords, and the highest bidder secures
the most visible ad placement. However, the final cost incurred by
the winning advertiser is determined through a second-price auction
mechanism, where the highest bidder pays only the amount bid by the
second-highest competitor. This ensures cost-efficient ad pricing while
maintaining competitive placement. Fig. 1 illustrates the hierarchical
structure of Amazon’s bidding system, where multiple brands compete
for top search rankings based on keyword-based auctions. In this sys-
tem, advertisers are charged on a Cost-Per-Click (CPC) basis, where
costs are deducted from pre-allocated budgets upon user interaction
with the ad.

2.2. Data generation & processing pipeline

Modern e-commerce platforms generate vast amounts of behavioral
data, tracking everything from product views and cart additions to
ad impressions and click-through rates (CTR). This data serves as the
foundation for targeted advertising, where machine learning models
attempt to predict which ads will be most effective for each user
(Cavalcante et al., 2016). However, raw behavioral logs alone are not
enough—real-time data processing is essential to extract meaningful
patterns. Advertising data typically flows through a pipeline that begins
with collection and preprocessing. User activity is captured through
cookies, tracking pixels, and API integrations and then refined to
remove noise and inconsistencies. Relevant features are engineered to
provide contextual insights, such as the time of day affecting shopping
habits or how browsing sequences indicate purchase intent. Advanced
ad platforms use streaming architectures to process this data in real-
time, ensuring that models are constantly updated with the latest
consumer signals. Once the data is structured, machine learning models
use it to drive ad optimization. They predict click probabilities, segment
audiences, and dynamically adjust bidding strategies in real-time adver-
tising markets. A key challenge in this process is uncertainty, consumer
behavior is not static, and a model that relies too heavily on past data
may fail when trends shift. This is where probabilistic deep learning
becomes valuable.

2.3. Probabilistic deep learning in ad optimization

Deterministic deep learning models are ill-suited for the dynamic
nature  of advertising, as their overconfident
point-estimates can lead to poor budget allocation. Bayesian deep
learning addresses this by treating model parameters as distributions to
produce probabilistic forecasts that quantify uncertainty. This is essen-
tial for risk-aware, adaptive bidding. Furthermore, Bayesian models can

e-commerce



A. Jha et al.

Product 1
Budget = 1000

Keywords
K1. Toothpaste
K2. Maxfresh

Engineering Applications of Artificial Intelligence 164 (2026) 113200

AMAZON

K3. Colgate
K4. Mouthwash

E ( Product 2

Budget = 1500

.

Product 1 = 20
Product 2 = 40 V]
Product 3 =10

,K1:"toothpaste”

Keywords
K1. Toothpaste
K2. Toothbrush
K3. paste
: K4. Mouthwash

Data generated every 24 hrs

E Product 3
Budget = 500

Keywords

' K1. Toothpaste
: K2. Toothbrush
: K3. Colgate
K4. Mouthwash

Oral Care - Hero -
Hum Electric TB
Oral Care - Hero -
Hum Electric TB
Oral Care - Category -
Toothpaste

45306679061110 70220220564144

45306679061110 80702627762597

89658563464577 64229905140852

toothbrush
toothbrush

toothpaste

444632 2733 72222.09 | 33322.53

380425 425 3286.71 3186.53

264320 105 1006.07 287.6

Oral Care - Category -

89658563464577 Toothpaste

64229905140852

toothpaste

262259 1412, 1110.61 337.05

Fig. 1. Hierarchy of Amazon’s Sponsored Advertisement bidding process.

be efficiently updated with new data via posterior updating, making
them ideal for changing market conditions (Wilson and Izmailov,
2020b; Lasowski and Nolde, 2021; Deshpande et al., 2022; Masegosa
et al., 2021). Bayesian models also offer superior generalization in data-
poor situations, which reduces overfitting. Our work combines this with
a self-attention mechanism to facilitate robust probabilistic reasoning
for real-time applications, such as dynamic audience segmentation and
cost-efficiency optimization (Deshpande et al., 2022; Masegosa et al.,
2021; Wilson and Izmailov, 2020a). While proven in domains like
healthcare (Ker et al., 2017) and finance, Bayesian deep learning is
underexplored in advertising (Ghahramani, 2015; Wang and Yeung,
2020). This research fills that gap by presenting a unified framework
that leverages both techniques to effectively manage risk and adapt to
dynamic e-commerce environments (Polson and Sokolov, 2017; Patel
et al., 2015).

2.4. Related work

Accurate Return on Ad Spend (ROAS) forecasting is crucial for op-
timizing budget allocation in e-commerce advertising. However, most
existing methods rely on deterministic models, which fail to account for
the uncertainty in auction-based bidding, user behavior, and market
competition. This section reviews key research areas related to ad
revenue prediction, highlighting their limitations and how the proposed
model contributes to the field. Table 1 summarizes key contributions in
online advertising optimization, detailing each work’s focus, approach,
datasets, metrics, findings, and limitations.

2.4.1. Revenue maximization and ad budget allocation

Prior work on revenue maximization has evolved from static models
to sophisticated auction-based methods with adaptive bidding and
multi-objective constraints (Yakovleva et al., 2024; Li et al., 2021; Qu
et al., 2019; Akande and Haq, 2021; Chen et al., 2021; Mao et al.,
2023; Wu and Chen, 2021). However, these approaches remain fun-
damentally deterministic, providing single-point ROAS predictions that
ignore the uncertainty of dynamic ad campaigns. Our work addresses
this limitation by introducing a probabilistic forecasting approach that
enables risk-aware budget allocation.

2.4.2. Bid optimization and real-time bidding strategies

Bid optimization is crucial in balancing ad performance with cost
efficiency (Yakovleva et al., 2019), yet most existing strategies remain
deterministic. Bannour et al. (2023) developed data-driven bid adjust-
ment mechanisms, and
Zhang et al. (2021) explored predictive budget allocation models.
While Jiang et al. (2018) applied Transformer-based architectures to
model bid landscapes, and Wang et al. (2022) used deep Q-networks for
real-time bidding, their models do not quantify prediction confidence.
Since auction dynamics introduce high variance, deterministic models
cannot capture risk-adjusted bidding decisions. Reinforcement learning
(RL), which is primarily used in search engine real-time bidding. How-
ever, RL’s immediate feedback loops limit its usefulness in e-commerce
platforms with aggregated and delayed bid data (Zhou et al., 2022b;
Jin et al., 2018). RL also struggles to capture non-linear interactions
between metrics like CPC and ROAS due to post-auction data (Liu
et al., 2024), and thus, a probabilistic approach is better suited to this
scenario.



A. Jha et al.

Engineering Applications of Artificial Intelligence 164 (2026) 113200

Table 1
Methodological comparison of related works in online advertising optimization.
Paper Core Issue Paradigm Metrics Contribution Limitation
Kini and Manjunatha (2020) Revenue maximization Supervised (Multitask NN)  Revenue uplift, accuracy Improved No uncertainty; ignores
recommendations market factors

Li et al. (2021)

Jiang et al. (2018)

Bannour et al. (2023)

Yakovleva et al. (2024)

Gupta et al. (2022)

Agarwal et al. (2009)

Huang et al. (2019)

Zhang et al. (2021)

Balseiro et al. (2014)

Pricing strategies in IaaS

Auction mechanism design

Budget optimization

Bid landscape forecasting
CTR prediction in RTB
Temporal CTR prediction
Feature engineering for
CTR

Portfolio-based bidding

Yield optimization

Market-Oriented
Optimization

Game Theoretic
(Data-Driven)
Predictive Regression

Sequential (Transformer)

Sequential (Dynamic NN)

Spatio-Temporal Model

Deep (Bilinear Feature
Interaction)

Optimization (Stochastic
Control)

Economic (Mechanism

Profitability, efficiency

Bid efficiency, cost savings

ROI, budget utilization

Accuracy, MSE

AUC, log-loss

CTR, precision

AUC, accuracy

Cost efficiency, revenue

gain

Revenue max., fill rate

Flexible pricing models for

revenue
Improved cloud resource
allocation

Enhanced budget
allocation for audio ads

More accurate bid
forecasting

Improved real-time CTR
prediction

Better handles
time-dependent behavior

Improved feature
interaction modeling

Enhanced bidding
effectiveness

Better ad inventory

Deterministic; lacks
dynamic adjustment

Limited generalizability

No uncertainty,
not-validated on display
ads

Deterministic;
computationally expensive

Point-estimates only;
struggles with sparsity

Deterministic; high
computational overhead

No uncertainty; requires
large labeled data

Point-estimates; not for
price fluctuations

Deterministic; ignores user

Design)

allocation engagement

2.4.3. Click-through rate prediction and ROAS estimation

CTR prediction plays a crucial role in estimating ad engagement
(Jha et al., 2023), but traditional models lack uncertainty quantifica-
tion. Gharaibeh et al. (2017) and Cai et al. (2018) developed dynamic
neural networks for CTR forecasting, while Kumari and Toshniwal
(2021) and Huang et al. (2019) explored spatio-temporal and feature-
based interactions. Although these models improve CTR accuracy, they
fail to express how uncertain their predictions are, which is critical
when forecasting downstream revenue (ROAS). After the introduction
of the attention mechanism by Zhang et al. (2014) and Chandra and He
(2021) introduced self-attention with knowledge distillation to handle
sparse datasets, but their approach still produces point estimates rather
than probability distributions.

2.4.4. Auction mechanisms and adaptive bidding

Auction-based ad placements operate in highly volatile environ-
ments where bid prices and user engagement shift dynamically. Sut-
ton and Barto (2018) and Rafieian and Yoganarasimhan (2021) stud-
ied ad exchange optimization, while Aronowich et al. (2014) devel-
oped auction-based revenue strategies. Although these studies have
improved accuracy and efficiency, many lack real-time responsiveness
to sudden market changes. Tiwari et al. (2023) addressed this concern
by utilizing a deep Q-network for real-time bidding. However, these
works do not explicitly model bid price uncertainty, limiting their
ability to adjust bidding dynamically. Gal and Ghahramani (2016) pro-
posed contextual bandit models for bid learning, but bandit approaches
lack full probabilistic ROAS modeling, leading to uncertainty in ad
budget allocation.

2.4.5. Bayesian deep learning in advertising

Despite recent advances in deep learning for advertising, uncer-
tainty estimation remains largely unexplored. Most neural networks
overfit past trends, failing to provide well-calibrated uncertainty mea-
sures. Akande and Haq (Soltés et al., 2020) reviewed machine learning
methods for ad optimization but highlighted the issue of deterministic
overconfidence in model predictions. Amazon (2022) studied Al-driven
CTR forecasting but did not incorporate uncertainty into revenue fore-
casting. Rahaman et al. (2021) used reinforcement learning for ad
spend optimization, yet their models still produce deterministic bid
recommendations. Bayesian deep learning overcomes these limitations
by modeling distributions over ROAS outcomes, ensuring risk-aware
and interpretable decision-making in ad campaigns.

2.4.6. Limitations of existing methods and contribution

While existing methods have improved ad optimization, their re-
liance on point-estimate predictions limits their effectiveness in highly
volatile e-commerce environments. The proposed Bayesian
Self-Attention model explicitly accounts for uncertainty by integrating
Bayesian inference with attention mechanisms, leading to: (1) Risk-
aware bidding and budget allocation: Unlike traditional deep learning
models, our approach estimates the entire probability distribution over
ROAS, providing confidence intervals instead of fixed-point forecasts.
(2) Scalability for large-scale ad campaigns: Existing Bayesian models
struggle with large-scale applications due to computational complexity,
whereas our hierarchical Bayesian framework balances accuracy and
efficiency. (3) Improved interpretability: Our model provides weight-
distribution analysis and feature attribution mechanisms, ensuring
transparency in ad spend decisions. By transitioning from determin-
istic forecasting to probabilistic modeling, this approach ensures more
reliable and uncertainty-aware decision-making for advertisers.

3. Problem definition and proposed solution

In e-commerce, optimizing marketing strategies hinges on accu-
rately forecasting ROAS, a vital metric for evaluating the effectiveness
of advertising investments. A precise and reliable ROAS prediction
model enables businesses to optimize budget allocation, refine bidding
strategies, and maximize return on investment. Traditional determinis-
tic models typically provide point estimates of ROAS, failing to account
for the uncertainty surrounding revenue generation. The true distri-
bution of ROAS is influenced by factors such as seasonality, market
competition, evolving user behavior, and macroeconomic conditions.
These factors introduce considerable variability, making it difficult for
these models to adequately represent such complexity. Therefore, a
more efficient and uncertainty-aware predictive model is required.

To address these challenges, a Deep Bayesian Neural Network (BNN)
has been proposed for probabilistic ROAS prediction. This model in-
tegrates deep learning with Bayesian inference to estimate the full
probability distribution of ROAS. Unlike conventional models that pro-
vide only point estimates, this approach outputs a comprehensive
probability distribution, allowing decision-makers to assess predictive
uncertainty and make more informed budgetary decisions. Such a
model accounts for risks and opportunities, enhancing overall decision-
making. Let the input feature vector at time ¢ be denoted as x, € R,
where d represents the number of predictive features. The goal is
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Fig. 2. Proposed Deep Bayesian Neural Network with self attention model architecture.

to estimate the conditional probability distribution of ROAS at time
t, expressed as p(y,|x,), where y, is the actual ROAS at time 7. The
approach involves using a Bayesian Neural Network to model this
conditional distribution. Instead of learning fixed weights in the net-
work, distributions over the weights are learned. This facilitates the
quantification of epistemic uncertainty, which reflects uncertainty in
the model’s parameters due to limited data. The posterior distribution
over the weights W, given the input features X and observed ROAS
values Y, is represented as:

PWIX.Y)

To make the posterior computation feasible, the weights’ distribution
is approximated as a multivariate Gaussian:

PWIX,Y) = N (ugn-> Zpnn)

where ppyy and Xpyy are the mean and covariance of the weights, re-
spectively, estimated using stochastic optimization methods. The model
is trained by minimizing a loss function that is formally derived from
the Maximum A Posteriori (MAP) estimation framework. The MAP ob-
jective is to find the mode of the posterior distribution of the weights W
given the data {X,Y}, which is equivalent to minimizing the negative
log-posterior:

Waap = arg min[—log p(Y|X, W) —log p(W)] (@]

Here, —log p(Y | X, W) is the negative log-likelihood, and —log p(W) is
the negative log-prior. By choosing a zero-mean Gaussian prior for
the weights, p(W) ~ WN(0,(1/A)I), the negative log-prior becomes
proportional to A||W 2. This yields the final objective function used
for optimization:

LW, X,Y)=—logp(Y|X, W)+ AIW|? @)

The first term in Eq. (2) is the likelihood term, which drives pre-
dictive accuracy, while the second term is the L2 regularization (or
weight decay) that stems from the Gaussian prior, preventing over-
fitting and encouraging simpler models. Our goal is to find not just
this single point estimate Wj,p, but to approximate the full poste-
rior distribution around this mode using Stochastic Weight Averaging
(SWA), as detailed in Section 3.1. SWA is used to efficiently prop-
agate uncertainty through the network. This technique averages the

weights over multiple stochastic gradient descent (SGD) iterations, ap-
proximating the posterior distribution over the network’s parameters.
The combination of SWA and Bayesian inference allows for efficient
uncertainty propagation, enabling faster predictions during inference
while maintaining accurate uncertainty estimates. This model, trained
iteratively, approximates the true ROAS distribution, ensuring that
uncertainty in the prediction reflects the real-world variability ob-
served in advertising scenarios. The Bayesian Neural Network captures
not just the expected ROAS but also the entire distribution, aiding
more robust decision-making in uncertain environments. Additionally,
a self-attention mechanism is included in the architecture to capture
long-range dependencies and sequential patterns, which are crucial for
modeling time-dependent factors such as evolving user behavior or
market dynamics. Unlike recurrent architectures, self-attention com-
putes attention scores across all time steps in parallel, providing a
global context for each time step. Mathematically, the self-attention
mechanism operates as follows: given an input sequence of vectors
X = {x,,X,,...,X,}, where each x; € R? represents an input at time
step i, the attention mechanism computes the following:

For each time step i, the input sequence is transformed into query,
key, and value vectors, defined as:

q; = Wox;, ki =Wgx;,, v,=Wyx,

where Wy, Wy, W), € R™ are learned weight matrices for the query,
key, and value projections.
The attention score between two time steps i and j is computed as:

T
q; X

Vd
This score represents how much attention is given to x; when process-
ing x;.

The attention scores are then normalized using the softmax function:

Attention Score;; =

>

exp(Attention Score;;)

@, = ,
Y ¥}_, exp(Attention Score;;)
and

a;; = softmax(Attention Score;;),
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The output for x; is computed as the weighted sum of the value

vectors v;, with attention weights «;; :

Jj?

zZ, = ) a;V

n
iyl

j=1

This output z; is then passed through a feedforward network and
subjected to normalization and residual connections. A close repre-
sentation of the neural network architecture for the proposed model
has been illustrated in Fig. 2. The self-attention mechanism captures
dependencies between time steps, providing a global context for each.
The mechanism is repeated across multiple layers of the model, with
each layer incorporating multi-head attention for more complex rela-
tionships. The attention mechanism is computationally efficient, as it
enables parallelization and allows the model to learn from all parts of

the input sequence.

3.1. Approximating the Bayesian posterior with Stochastic Weight Averag-
ing

A central challenge in Bayesian deep learning is the intractable na-
ture of the true posterior distribution over network weights, p(W|X,Y).
While methods such as Markov Chain Monte Carlo (MCMC) provide
theoretical convergence guarantees, they remain computationally in-
feasible for deep models at scale. We employ Stochastic Weight Av-
eraging (SWA) as a scalable and theoretically motivated method to
approximate the Bayesian posterior.

Connection to Langevin dynamics and stationary distributions

The theoretical basis for SWA rests on the connection between
stochastic gradient descent (SGD) and Langevin dynamics. As shown
by Welling and Teh (2011), adding Gaussian noise to SGD yields
Stochastic Gradient Langevin Dynamics (SGLD), which simulates sam-
ples from the posterior:

n,
Wiy =W, + 2 ViogpWIX. V) +e, &~ NO.np), €)

Even without explicit noise, SGD with mini-batches exhibits gradient
noise that under standard assumptions (e.g., constant learning rate,
smooth loss landscape) can be modeled as a discretized Ornstein—
Uhlenbeck (OU) process (Mandt et al., 2017):

dW, = —AW, — p)dt + V2D d B, 4)
The stationary distribution of this process is Gaussian:

W) xexp (-3 W =TT W - ). ©)

where u is the mean around a mode of the loss, and X reflects the
noise-induced covariance.

SWA as a consistent estimator of posterior mean
SWA averages weights across SGD trajectories:

T
1
Henn = Wewa = 5 2 Wi, (6)
i=1

Under the assumption that the SGD iterates {W;} are drawn from an
ergodic Markov chain sampling the stationary distribution of the OU

process, the SWA mean converges almost surely to the posterior mean:

Tlg‘go Henn = By ix W1 @

This is a direct consequence of the law of large numbers for ergodic
processes.
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Posterior approximation with diagonal Gaussian
We construct a Gaussian approximation to the posterior with mean

. . . 2 .
upnn and diagonal covariance diag(opy,):

aqW) = N (W | upyy. diagogyy), )

The variance GéNN is estimated either from the empirical second mo-

ment of the collected weights or treated as a tunable hyperparameter.
This posterior matches the form of the Gaussian stationary distribution
induced by Langevin dynamics and has been empirically validated in
related work.

Convergence and practical implications

We implement SWA by collecting model weights over the final 25%
of training epochs using a high, constant learning rate to encourage
exploration of a flat posterior mode. While this approximation does not
match the exact posterior in full generality, it captures key structural
properties, such as mode centering, local uncertainty, and flatness—
that are sufficient for well-calibrated uncertainty estimates and robust
downstream decision-making. This method offers a tractable alterna-
tive to MCMC or full variational methods, with competitive empirical
performance and theoretical grounding.

4. Proposed model

The proposed framework is a hierarchical deep learning model
designed for end-to-end probabilistic forecasting of ROAS. The term ‘hi-
erarchical’ refers to the model’s architectural structure, which processes
information in two distinct stages:

1. A Representation Learning Layer: At the base of the hierarchy, a
multi-head self-attention mechanism acts as a powerful feature
encoder. Its unique contribution is the ability to model com-
plex, non-local dependencies across the entire feature set. For
instance, it can learn how a change in “targeting keyword A” dy-
namically influences the effectiveness of
“budget_for_campaign B”, a task where traditional models strug-
gle. It produces a dense, context-aware vector that captures these
rich interactions.

2. A Probabilistic Regression Layer: At the top of the hierarchy,
a Bayesian neural network takes the feature vector from the
attention layer and performs probabilistic regression. This layer
culminates in a Mixture Density Network (MDN) head, which
outputs the full probability distribution of ROAS.

This two-stage hierarchy allows the model to first learn *what* fea-
tures are important in context, and then to quantify the uncertainty
associated with predicting an outcome based on those features.

4.1. Dynamic feature extraction and representation

Accurately predicting ROAS requires transforming raw advertising
data into structured numerical representations that effectively capture
underlying patterns. To achieve this, a multi-stage feature extraction
pipeline is developed to ensure numerical stability, model temporal de-
pendencies, and enhance the generalization capability of the network.
The first stage involves numerical stabilization, where key features such
as Click-Through Rate (CTR), Cost-Per-Click (CPC), and ad spending
are normalized to maintain consistency and prevent scale-dependent
biases. Following this, a temporal pattern modeling mechanism is
applied, incorporating moving averages, lag-based transformations, and
frequency-domain decompositions to capture seasonal variations and
campaign trends. A multi-campaign embedding strategy is then applied,
encoding campaigns into a latent space that enables cross-campaign
knowledge transfer while preserving campaign-specific distinctions. Fi-
nally, a feature refinement process systematically eliminates redundant
attributes using an information-theoretic selection criterion, ensuring
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Fig. 3. Correlation matrix of key features.

that only the most predictive features contribute to the final model.
This structured feature engineering process ensures that the input
representations provide a stable and informative basis for subsequent
probabilistic modeling.

4.2. Hierarchical probabilistic representation

At the core of the proposed architecture is a hierarchical Bayesian
learning model that extends traditional deep neural networks by in-
corporating uncertainty-aware probabilistic modeling. The proposed
model represents network weights as probability distributions, allowing
it to quantify epistemic uncertainty in decision-making. The weight
parameters are formulated as:

W~ N(u,c%), )

where W denotes the set of learnable weights, u represents the mean,
and o2 captures the variance, thereby encoding the model’s uncer-
tainty. To efficiently capture complex cross-campaign interactions, the
proposed model integrates an attention-driven dependency modeling
mechanism. This mechanism assigns dynamic attention scores to past
and concurrent campaigns, ensuring that the model focuses on the most
relevant historical events when generating predictions. The attention
mechanism is defined as:

. OKT
Attention(Q, K, V) = softmax< \/d_ ) v, 10)
k
where Q, K,V represents the query, key, and value matrices, and d,
corresponds to the dimensionality of the key vectors. This hierarchical
probabilistic model, coupled with attention-based contextual aware-
ness, enables the model to learn both global and local dependencies

within multi-campaign data (see Fig. 3).

The interaction between the self-attention mechanism and the sub-
sequent Bayesian layers is fundamental to the model’s hierarchical
approach. The self-attention layers act as a powerful, data-driven fea-
ture extractor. They learn to dynamically re-weight and combine input
features based on their contextual relevance, producing a rich, la-
tent representation of the campaign’s state. This representation, which
captures complex temporal and cross-feature dependencies, is then
fed into the fully-connected layers where the weights are treated as

Bayesian random variables. In this framework, the Bayesian layers are
not learning from the raw, sparse inputs, but from the dense, context-
aware embeddings generated by the attention block. This separation
of concerns — using attention for deterministic feature representation
and Bayesian layers for probabilistic regression on those features — al-
lows the model to handle high-dimensional input effectively while still
providing robust uncertainty quantification over the final prediction.

4.3. Uncertainty-aware predictive modeling

The predictive layer of the proposed architecture is designed to
generate full probability distributions over ROAS rather than point
estimates. The choice of the distributional form is a critical modeling
decision that must be justified by the empirical properties of the data.
To provide this justification, we analyzed the statistical distribution of
the target variable from our dataset. Fig. 4 shows the Kernel Density
Estimate (KDE) of the log-transformed ROAS values. The plot provides
compelling evidence that a simple unimodal distribution would be an
inadequate choice. The distribution is distinctly multimodal, featur-
ing a primary mode near a log-ROAS of 1.5, a significant secondary
mode around 3.5, and a third, wider mode corresponding to very
high-performing campaigns near 6.0. This structure strongly suggests
the existence of several different underlying campaign archetypes or
generative processes. For example, the main peak may correspond to
standard, business-as-usual campaigns, while the other peaks could
represent more successful, niche targeting strategies or campaigns ben-
efiting from seasonal trends. A single Gaussian, skewed, or heavy-tailed
distribution would fail to capture these distinct sub-populations. A
Mixture Density Network (MDN), however, is a universal approximator
of densities and is ideally suited to model such complex, multimodal
data by assigning different Gaussian components to capture each mode.
This provides a flexible and data-driven approach to modeling ROAS.
Therefore, we model the conditional distribution of ROAS as a weighted
sum of Gaussian components:

To reinforce this visual evidence, we performed a statistical compar-
ison between Gaussian Mixture Models (GMMSs) and alternative distri-
butional assumptions, including skew-normal and Student’s t-mixture
models. The Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) were used to evaluate model fit. As summarized
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Fig. 4. Kernel Density Estimate (KDE) of the log-transformed Return on
Advertising Spend (ROAS) from the experimental dataset. The presence of
multiple modes (peaks) clearly indicates that a single probability distribution
(e.g., a single Gaussian) would be insufficient to model the underlying data
structure. This multimodality provides strong empirical justification for our
choice of a Mixture Density Network (MDN).

Table 2
Model comparison for log-ROAS distribution fit.
Model AIC | BIC | Log-Likelihood 1  Wasserstein
distance |
Gaussian mixture (3 comp.) 1273.6 1312.8 -621.8 0.024
Skew-normal distribution 1365.2 1379.1 -673.6 0.062
Student’s t mixture (2 comp.) 1294.4 1338.7 -635.2 0.045

in Table 2, the GMM achieved the lowest AIC and BIC scores, indi-
cating a better trade-off between model complexity and data fidelity.
Additionally, the GMM exhibited the highest log-likelihood and the
lowest Wasserstein distance to the empirical distribution. These results
quantitatively confirm that mixtures of Gaussians are well-suited to
model the observed log-ROAS distribution, offering superior fit over
both skewed and heavy-tailed alternatives.

The predictive layer of the proposed architecture is designed to
generate full probability distributions over ROAS rather than point
estimates. To achieve this, a Mixture Density Network (MDN) head is
used. Instead of outputting a single value, the final layer of our neural
network is designed to output the parameters of a Gaussian Mixture
Model conditioned on the input features x. Specifically, the network
learns to predict the mixture weights z;(x), means y;(x), and variances
aiz(x) for a predefined number of K Gaussian components:

K
pO1X) = Y mON (3l p(x), 07 (x)), an
i=1

where 7;(x) denotes the mixture coefficient for the ith Gaussian com-
ponent, y;(x) represents the component mean, and aiz(x) defines the
variance, quantifying the uncertainty in prediction. The model is opti-
mized by maximizing the log-likelihood of observed ROAS values under
the estimated probability distribution:

T K
£=7 log (Z LACATYCAIENN a?(x,))) , a2)
=1 i=1
where T denotes the number of training instances. These parameters
are not manually initialized; they are the direct outputs of the final
neural network layer and are optimized implicitly by minimizing the
model’s primary objective function: the Negative Log-Likelihood of the
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Table 3

Statistical summary of key numerical features.
Feature Mean Std Dev Min Max
Search term impression rank 3.06 6.37 1.0 266.0
Clicks 3.12 16.37 1.0 1181.0
Impressions 462.45 3326.49 0.0 398 280.0
Total orders 1.37 8.99 0.0 623.0
ROAS 20.23 112.43 0.0 8104.0

data given the predicted distribution. The incorporation of a proba-
bilistic output layer enhances the model’s capability to generate pre-
dictions under varying levels of market uncertainty. The estimated un-
certainty values provide additional insight into prediction confidence,
allowing advertisers to make risk-calibrated budget allocation deci-
sions. The explainability of the proposed model is reinforced through
structured visualization and interpretability techniques. The weight
distribution analysis (Fig. 8a) ensures that learning is well-regulated
across layers, avoiding excessive reliance on individual parameters. The
attention-based dependency modeling (Fig. 7a) highlights the extent to
which past campaigns influence current predictions, offering greater
transparency in decision-making (see Table 3).

4.4. Training and inference procedure

To ensure clarity and reproducibility, we formalize the training
and inference processes of our proposed Hierarchical Bayesian Deep
Learning model in Algorithms 1 and 2, respectively. The inference
procedure, detailed in Algorithm 2, utilizes the trained SWA model
to generate a full probabilistic forecast for a new, unseen campaign
instance.

Algorithm 1 Model Training Procedure

Require: Training dataset D = { Xyain. Yirain }; EPochs E; Batch size B.
Require: Optimizer O; Learning rate »; SWA start epoch Egya; SWA
learning rate #gya.
1: Initialize model parameters W for model M.
2: Initialize SWA model Mgy,.
3: for epoch e=1to E do
4. Partition D into mini-batches {x,, y,}% .
5 for each mini-batch {x,,y,} do > — Forward Pass —
6 Predict mixture parameters: {#;, 4;,6,} < M(x,; W). > —
Loss Calculation & Gradient Update —

7: Compute NLL loss Ly (V. {#5, fips 63 })-

8: Update weights W «— O(W, Vy, Ly11)-

9: end for

10: if e > Egya then

11: Update SWA weights Wgya with current weights W. >
Collect weights for averaging

12: end if

13: Update learning rate schedule for #.

14: end for

Ensure: Trained SWA model Mgy, with parameters Wgya.

5. Experimental results

The experimental evaluation is conducted on a large-scale
e-commerce advertising dataset to rigorously validate the performance
of our proposed model against established baselines.
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Fig. 5. Proposed Bayesian Belief Network (BBN) structure for ROAS forecasting.

Algorithm 2 Inference Procedure

Require: Trained SWA model Mgy,; @ new campaign feature vector
xl’leW'
: // — Probabilistic Prediction —
: Predict mixture parameters {7, u,0} < Mgywa(Xpew)-
: // — Output Generation —
: The parameters {r, 4, o} define the conditional probability distribu-
tion p(y|xpew)-
> From this distribution, various quantities can be derived:
- Point Estimate: Compute expected value E[y|xey]-
- Full Posterior: Draw samples y; ~ p(y|Xpew)-
- Risk Assessment: Compute confidence or credible intervals.
: return Predictive distribution parameters {z, u,c}.

How N

© ® NG

5.1. Dataset and preprocessing

The experimental evaluation is conducted on a large-scale
e-commerce advertising dataset comprising 160,621 campaign
instances spanning a 24-month timeframe. These campaigns encom-
pass a wide array of objectives, budget allocations, and user seg-
ments, offering a comprehensive representation of digital advertising
complexities.

5.1.1. Data source and collection

The proprietary dataset used in this study was collected from the
Amazon Advertising API (v3.2) and comprises daily performance logs
for 160,621 Sponsored Product and Sponsored Brand campaigns. The
data spans a 24-month period from July 1, 2023, to June 30, 2025,
a timeframe that includes multiple major shopping events (e.g., Black
Friday, Cyber Monday) and diverse market conditions. Initial ingestion
and aggregation were performed in a Snowflake data warehouse hosted
on AWS. For modeling, we filtered out low-activity campaigns (fewer
than 50 clicks over their lifetime) and removed records with clear data
anomalies (e.g., non-zero clicks with zero impressions) to ensure data
quality.

5.1.2. Feature engineering

The raw data includes 20 features related to campaign metadata
and performance. We engineered the following key attributes and
performed preprocessing steps to create the final feature set:

» Derived Metrics: Core performance indicators were computed,
including Click-Through Rate (CTR) = Clicks/Impressions, and
the target variable, Return on Advertising Spend (ROAS) =
Sales/Spend.

Table 4
Model hyperparameter configuration.

Hyperparameter configuration

Architecture Value Training Value
Embedding Dim. 256 Optimizer AdamW
Attention heads 8 Batch size 128
Transformer layers 4 Learning rate le-4
Feed-forward dim. 1024 Weight decay 0.01
Dropout rate 0.1 Max epochs 200
Gaussian mixtures 5 Early stopping 15 epochs

SWA: Start = 150, LR = 5e-4

» Target Transformation: To mitigate the high skewness typi-
cal of financial return metrics, we applied a natural logarithm
transformation to the target variable, modeling log(ROAS + 1).

» Numerical Standardization: All numerical input features were
scaled using a ‘StandardScaler’ to have a zero mean and unit
variance, which is essential for stable gradient descent during
training.

5.1.3. Dataset splitting

To ensure the model is evaluated on its ability to forecast future
performance, we employed a strict chronological split. The data from
the first 20 months (July 2023-Feb 2025) was used for the training set.
From this training set, the last 15% (approx. 3 months) was held out as
the validation set for hyperparameter tuning and early stopping. The
final 4 months of data (March 2025-June 2025) served as the unseen
test set. This approach prevents any look-ahead bias and simulates a
realistic deployment scenario.

5.2. Neural network architecture and hyperparameter tuning

The design of the network architecture was determined through
a systematic tuning process. We began with a grid search over key
parameters (e.g., number of layers, hidden units) and refined the final
configuration using Bayesian optimization to fine-tune the learning
rate, batch size, and regularization strength. Performance was evalu-
ated on the validation set using NLL. The final architecture consists of
three hidden layers with 256, 128, and 64 neurons, respectively, of-
fering the best trade-off between model complexity and generalization.
The complete hyperparameter configuration used for all experiments is
detailed in Table 4.
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Table 5

Conditional Probability Tables (CPTs) for ROAS conditioned on impressions

and spend.

Condition  Range ROAS binned custom
Low High 1 2 3 4 5
—398.28 79,656.0 5.21% 7.38% 10.14% 3.68% 73.59%
Impressions 79,656.0 159,312.0 12.24% 24.89% 20.32% 15.21% 27.34%
P 159,312.0 238,968.0 0.00% 12.11% 15.47% 65.32% 7.10%
238,968.0 max 0.00% 0.00% 0.00% 0.00%  0.00%
—2.062 416.40 4.52% 8.92% 12.24% 0.70%  73.62%
Spend 416.40 832.79 8.14% 18.33% 21.12% 14.57% 37.84%
P 832.79 1665.57 2.61% 10.24% 26.88% 45.15% 15.12%
1665.57 2081.96  0.00% 0.00% 0.00% 63.64% 0.00%

5.3. Uncertainty calibration via temperature scaling

While our Bayesian framework provides robust uncertainty esti-
mates, for critical engineering applications such as automated bud-
get allocation, ensuring that a model’s predictive confidence is well-
calibrated is paramount. A well-calibrated model is one whose prob-
abilistic forecasts can be directly interpreted as true likelihoods. To
this end, we introduce a final enhancement to our framework: a post-
processing calibration step using temperature scaling (Guo et al., 2017).
This technique is applied after the main model has been trained. A
single scalar parameter, the temperature T > 1, is optimized by min-
imizing the Negative Log-Likelihood (NLL) on the held-out validation
set. For our Mixture Density Network, the scaling is applied to the logits
that determine the mixture component weights, r;(x). This “softens”
the categorical distribution over the components, reducing the model’s
overconfidence without altering its accuracy (i.e., the expected value
of the prediction). This simple, yet powerful, step produces a more
reliable and trustworthy predictive distribution. The results for this
enhanced model are presented as ‘Proposed Model (Calibrated)’ in the
comparative analysis.

5.4. Bayesian Belief Network (BBN) for exploratory causal analysis and
dependency modeling

Prior to developing our deep learning model, we first constructed
a Bayesian Belief Network (BBN) as an exploratory tool to model the
high-level probabilistic dependencies among key advertising variables.
The BBN, shown in Fig. 5, provides an interpretable, graphical repre-
sentation of the causal funnel, from bidding strategies to final ROAS.
This initial analysis was instrumental in feature selection and validating
the core relationships that our subsequent deep model would need
to learn. However, BBNs are limited by their reliance on predefined
conditional probability tables and struggle to capture the complex, non-
linear interactions present in large-scale data. Our final deep learning
model, with its MDN output, was therefore designed to overcome
these limitations by learning these relationships directly from data in a
scalable, end-to-end manner.

The BBN provides a structured model for understanding how factors
such as bidding strategies, impressions, clicks, cost, sales, and conversion
rates (CVR) interact to determine ROAS. By explicitly capturing these
dependencies, the BBN facilitates a probabilistic way to bid selection
and budget allocation in digital advertising, shown in Fig. 5. The joint
probability distribution over all variables in the BBN follows the chain
rule of Bayesian networks and is expressed as:

P(Campaign, Keywords, Bid, Impressions, Clicks, CTR, CVR, Cost, Sales,
AOV, ROAS) =
P(Campaign) - P(Keywords|Campaign) - P(Bid|Keywords)
- P(Impressions|Bid)
- P(CTR|Impressions, Clicks) - P(Cost|Bid, Clicks) - P(Clicks|Impressions)
- P(CVR|Clicks) - P(Sales|CVR, AOV) - P(AOV|Clicks) - P(ROAS|Sales, Cost)

10
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Fig. 6. Actual vs. Predicted ROAS with uncertainty estimates. The strong
linear trend suggests the model effectively captures underlying relationships.
The uncertainty gradient highlights areas of higher variability.

Each term in this equation represents a key relationship in the ad-
vertising funnel. The probability of selecting a campaign, P(Campaign),
influences the keyword selection probability, P(Keywords|Campaign),
which determines the likelihood of choosing specific search terms
for targeting. The bid value P(Bid|Keywords) subsequently impacts
the probability of obtaining impressions, P(Impressions|Bid), which
dictates the visibility of the advertisement. As impressions accumulate,
their effectiveness in driving engagement is quantified by the CTR,
P(CT R|Impressions, Clicks), which reflects the probability of a user
clicking on an ad given its number of impressions. The associated
cost of advertising is modeled through P(Cost|Bid,Clicks), capturing
the impact of bidding strategies on incurred expenses. Additionally,
conversion efficiency is represented by P(CV R|Clicks), describing how
successfully clicks lead to purchases. The final ROAS computation
is defined by P(ROAS|Sales,Cost), establishing the ratio of revenue
generated to advertising expenditure.

5.5. Conditional probability analysis for ROAS estimation

To quantify these relationships, Conditional Probability Tables (CPTs)
were constructed for key dependencies affecting ROAS, specifically
focusing on impressions and ad spend, Table 5. The probability dis-
tribution of ROAS-given impressions demonstrates significant trends.
For campaigns with low impressions (below 79,656), there is a 73.59%
probability of achieving high ROAS. However, at moderate impression
levels (between 79,656 and 159,312), the ROAS probabilities become
more distributed across different bins, indicating greater variability in
campaign performance. In contrast, campaigns with extremely high
impressions (above 238,968) exhibit a sharp drop in ROAS probabil-
ities, suggesting either diminishing returns at high visibility levels or
insufficient data in this range.

Similarly, the relationship between advertising spend and ROAS
highlights the impact of budget allocation on return. Campaigns with
low ad spend (under $416) exhibit a 73.62% probability of attaining
high ROAS. However, as spending increases, the probability distri-
bution shifts. Moderate spending levels ($416-832) yield more bal-
anced ROAS outcomes, whereas high-budget campaigns (above $1665)
tend to concentrate in mid-range ROAS categories, with a 63.64%
probability of achieving only moderate returns.

5.6. Transition to Bayesian deep learning

The Bayesian Belief Network (BBN) model initially provided valu-
able insights into ROAS prediction by modeling the probabilistic de-
pendencies among campaign factors. However, it faced significant chal-
lenges when handling large-scale, high-dimensional advertising data.
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Table 6
Comprehensive model performance comparison.
Model MSE | NLL | ECE | R 1 TT (s) | IL (ms) | Uncertainty
Traditional baselines
Linear regression 0.24 - - 0.79 1.2 0.5 None
Random Forest 0.18 - - 0.84 87.4 8.3 None
XGBoost 0.11 - - 0.89 124.6 2.9 None
Baseline MLP 0.09 - - 0.91 256.8 3.8 None
Ablation studies
Attention only 0.06 - - 0.94 329.4 4.7 None
Bayesian only 0.05 2.18 0.11 0.95 301.2 4.1 Moderate
Probabilistic baselines
DeepAR (Salinas et al., 2020) 0.14 2.45 0.15 0.91 145.2 7.8 Moderate
Prophet (Taylor and Letham, 2018) 0.17 2.89 0.18 0.89 131.4 6.9 Moderate
NGBoost (Duan et al., 2020) 0.13 231 0.09 0.92 158.7 6.3 Good
MC dropout (Gal and Ghahramani, 2016) 0.28 - - 0.76 - 48.7 Moderate
Deep ensembles (Rahaman et al., 2021) 0.26 2.09 0.08 0.77 1610.5 37.9 Good
V-BNN 0.05 2.15 0.10 0.96 488.1 6.1 Good
Full bayesian networks (Chandra and He, 2021) 0.25 - - 0.77 - 287.6 Excellent
Proposed method
Ours (Uncalibrated) 0.03 1.98 0.09 0.98 352.8 5.2 Good
Ours (Calibrated) 0.03 1.90 0.04 0.98 352.8 5.2 Excellent
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(a) Prediction uncertainty analysis.
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Fig. 7. Comparison of prediction uncertainty and confidence intervals. (a) The plot visualizes uncertainty estimates for the predicted ROAS values. Higher
uncertainty is observed for extreme values, indicating a well-calibrated Bayesian model. (b) The confidence intervals demonstrate that uncertainty increases for

outlier cases, providing valuable insights for risk-aware decision-making.

The reliance on predefined Conditional Probability Tables (CPTs) lim-
ited the model’s adaptability to evolving campaign dynamics. As the
number of dependent variables increased, maintaining and updating
these tables became computationally prohibitive. Additionally, the as-
sumptions of conditional independence between variables in BBNs led
to simplified representations, often missing the intricate relationships
within real-world advertising data.

To overcome these limitations, the research transitioned to a
Bayesian Deep Learning model, incorporating Stochastic Weight Av-
eraging (SWA) for uncertainty quantification. SWA improves model
generalization by averaging the model weights during training, helping
the model approximate the posterior distribution of weights in a
computationally efficient manner. Unlike the fixed-point predictions of
the BBN, this deep learning model allows for probabilistic forecasting
of ROAS, capturing complex, non-linear interactions between features
that BBNs might overlook.

The proposed Bayesian Deep Learning model offers several advan-
tages: first, it is scalable and can handle high-dimensional data without
the need for predefined CPTs. Second, the model continuously updates
based on incoming data, making it adaptive to changes in market
conditions and campaign strategies. Third, it accounts for uncertainty
in predictions by providing not only expected ROAS estimates but also
confidence intervals, aiding advertisers in making risk-aware decisions.

11

Integrating SWA and deep learning ensures more accurate, adapt-
able, and uncertainty-aware ROAS forecasts, supporting advertisers in
optimizing bidding strategies and budget allocations effectively.

5.7. Performance evaluation

Fig. 6 illustrates the model’s actual and predicted ROAS with uncer-
tainty estimates. The strong linear trend demonstrates that the model
effectively captures fundamental relationships, while the uncertainty
gradient identifies areas of higher variability.

5.7.1. Convergence analysis

The convergence of the proposed model was assessed by monitoring
its loss on both training and validation sets over 200 epochs, as visual-
ized in Fig. 10. The Y -axis represents the mean Negative Log-Likelihood
(NLL) loss per sample, which serves as the optimization objective. The
training process was configured with an early stopping mechanism
based on the validation loss, a standard practice to prevent overfitting.
As the figure demonstrates, the training loss (blue line) shows a steep
and consistent decay. The validation loss (orange line) tracks this decay
closely before beginning to plateau, with minimal improvement after
approximately epoch 115. At this point, the early stopping criterion
was triggered, halting the training to save the best-performing model
and prevent it from memorizing the training data. The plot confirms
that the model reached a stable, generalizable solution efficiently.
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Fig. 8. (a) The plot shows that most weights are concentrated around zero, with some layers exhibiting a wider spread, indicating a greater impact in learning
complex relationships.; (b) Bias values remain relatively small, ensuring that the model relies more on learned weights rather than static offsets.
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Fig. 9. Violin plot of weight distributions across layers. Wider distributions indicate more expressive transformations,

constrained weight values due to regularization.

5.8. Comparative performance analysis

To validate our architectural choices and establish model efficacy,
we conducted comprehensive performance analysis against a wide
range of competitors. Table 6 presents a complete comparison across
traditional machine learning models, probabilistic baselines, and our
proposed method. We validated our Gaussian Mixture Density Network
(MDN) choice through ablation studies. Table 7 shows our MDN ap-
proach achieves superior Continuous Ranked Probability Score (CRPS
= 0.148) compared to Quantile Regression (0.162) and Laplace Mixture
(0.155), confirming it as the optimal output strategy. Our comprehen-
sive benchmark includes machine learning models (XGBoost, Random
Forest), ablation studies (Attention-Only, Bayesian-Only), and leading
probabilistic frameworks (DeepAR, Prophet, NGBoost, Deep Ensembles,
V-BNN). The Proposed Model (Calibrated) demonstrates clear advan-
tages: while maintaining state-of-the-art accuracy (MSE = 0.03, R? =
0.98), it achieves the lowest NLL (1.90) and reduces Expected Calibra-
tion Error to just 0.04. This 50% ECE reduction highlights temperature
scaling’s effectiveness in producing reliable probabilistic forecasts for
engineering applications.
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Table 7
Comparison of alternative probabilistic output layers.

Output strategy (CRPS) |
Gaussian mixture density network (Proposed) 0.148
Quantile regression (9 Quantiles) 0.162
Laplace mixture density network 0.155

5.8.1. Scalability analysis

To evaluate the scalability of the proposed model, training time
and memory usage were assessed for different dataset sizes. Table 8
presents the results. The results indicate that the proposed model scales
efficiently with increasing dataset sizes, maintaining stable compu-
tational requirements while achieving progressively higher accuracy.
The performance gains diminish beyond 160K samples, suggesting an
optimal trade-off between data size and predictive power.

5.8.2. Computational efficiency analysis

For a model to be viable in real-world advertising systems, par-
ticularly for applications like real-time bidding, it must be compu-
tationally efficient at inference time. To provide a clear assessment
of our model’s practicality, we analyzed its computational footprint
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Fig. 10. Training and validation loss curves. The Y-axis represents the mean
NLL per sample. The training process terminates around epoch 115 due to
an early stopping mechanism, which prevents overfitting by halting training
when the validation loss ceases to improve.

Table 8
Computational efficiency analysis and ablation study results.

Computational efficiency analysis

Dataset size Training time (s) Memory (GB) R? score

40K (25%) 98.2 1.3 0.9742

80K (50%) 174.6 2.1 0.9812

160K (100%) 352.8 3.7 0.9870
Ablation study on model components

Component removed R? Score MSE Uncertainty
Full model 0.9870 0.0353 Perfect (1.0000)
- Self-attention 0.9572 0.0544 Good (0.9241)
- Residual connections 0.9683 0.0421 Good (0.9532)
- Layer normalization 0.9412 0.0732 Poor (0.7863)
- Bayesian output 0.9751 0.0392 None

Table 9
Computational efficiency analysis at inference.

Model Params (M) | GFLOPs | Memory (MB) | Latency (ms) |
Baseline MLP 4.1 0.08 32 3.8

V-BNN 8.2 0.16 58 6.1

Deep ensembles (x5) 20.5 0.40 160 25.5
Proposed model 4.8 0.11 45 5.2

against key deep learning baselines. We measured four key metrics: (i)
the number of trainable parameters, (ii) the floating-point operations
(FLOPs) required per inference, (iii) the peak memory consumption
during inference, and (iv) the inference latency (time per campaign).
The results are detailed in Table 9. Our proposed model maintains a
parameter count comparable to a standard MLP and the V-BNN. Its
computational complexity, measured in GFLOPs, is only marginally
higher than the non-Bayesian MLP, demonstrating the efficiency of
the self-attention mechanism. The primary advantage is seen when
comparing against Deep Ensembles. While ensembles are a power-
ful baseline for uncertainty, they come with a linear increase in all
computational metrics, making them impractical for latency-sensitive
applications. Our model, in contrast, provides superior accuracy and
uncertainty quantification at a fraction of the computational cost of
ensembles. This analysis confirms that our proposed architecture is not
only highly accurate but also computationally feasible for deployment

in production environments.
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Table 10

Model performance under distribution shift.
Test scenario RMSE | NLL | ECE | Avg. Uncertainty 1
Seasonal covariate shift
In-distribution (Q1-Q3) 0.038 2.05 0.04 0.21
Shifted distribution (Q4) 0.051 2.49 0.06 0.34
Out-of-distribution generalization
In-distribution (Seen) 0.035 1.90 0.04 0.20
Out-of-distribution (Unseen) 0.082 3.15 0.07 0.45

5.8.3. Ablation study

An ablation study was conducted to evaluate the contribution of
key architectural components. The study involved removing different
components such as self-attention, residual connections, Layer Nor-
malization, and Bayesian output layers, assessing the resulting impact
on performance. The results are summarized in Table 8. The find-
ings from the ablation study reveal that self-attention plays a critical
role in performance enhancement, as removing it significantly reduces
predictive accuracy. The removal of residual connections and Layer
Normalization resulted in diminished training stability and increased
error rates. The absence of Bayesian output led to a complete loss of
uncertainty estimation capabilities, further reinforcing its importance
in achieving calibrated predictions (see Fig. 11).

5.8.4. Uncertainty calibration under distribution shift

A key advantage of probabilistic frameworks is uncertainty quan-
tification when data differs from training distributions. We evaluated
model robustness under two scenarios: seasonal covariate shift (Q4
holiday shopping vs. Q1-Q3 training) and out-of-distribution general-
ization (unseen targeting features). Table 10 shows the results. For sea-
sonal shift, while predictive performance degrades on Q4 data, average
uncertainty increases by 60%, correctly signaling reduced confidence
during volatile periods. For OOD scenarios with completely unseen
campaign types (‘Targeting keto friendly foods’ and ‘Targeting_vegan
protein powder vanilla’), uncertainty more than doubles, providing
reliable indicators for novel scenarios requiring manual review.

5.9. Case study: Risk flagging in extreme scenarios

To probe the model’s practical utility in an engineering context, we
analyzed its predictive behavior on extreme and anomalous campaigns.
A critical application is the automated flagging of high-risk assets,
such as campaigns with high spend but volatile, poor returns. Fig. 12
presents a comparative case study between a standard, high-performing
campaign (Case A) and such an anomalous, low-performing campaign
(Case B). In Case A, the model accurately predicts the high ROAS with
a tight, low-variance confidence interval, reflecting its high confidence
in the forecast for this stable campaign. In contrast, for Case B, the
model’s predictive uncertainty is substantially higher, resulting in a
much wider confidence interval. While the point prediction is imper-
fect, the large uncertainty is the critical, actionable insight. It signals to
an advertiser that this campaign is highly unpredictable and performing
outside of normal parameters, warranting immediate manual review or
automated intervention. This demonstrates the model’s ability to act
as a risk-detection mechanism, using uncertainty to flag problematic
campaigns that might otherwise go unnoticed.

5.10. Early-warning system for performance degradation

A second practical application for a probabilistic forecasting model
is its use as an automated early-warning system. To evaluate our
model’s capability in this regard, we designed a simulation to test its
response to a gradual decline in campaign performance. We selected a
set of historically high-performing campaigns and synthetically intro-
duced a steady, day-by-day decrease in their true ROAS over a 30-day
period.
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Fig. 11. Gradient-based feature importance. The most influential features include total sales, total orders, spending, clicks, and CPC, validating the model’s ability

to capture key advertising metrics.

—e— Actual ROAS
~& - Predicted ROAS
95% Confidence Interval

12

—e— Actual ROAS
~& Predicted ROAS
95% Confidence Interval

12

Fig. 12. Comparative case study of model predictions on extreme campaign scenarios. (a) For a stable, high-performing campaign, the model is accurate and
confident, producing a tight, low-variance 95% confidence interval. (b) For a volatile, low-performing campaign, the model correctly expresses high predictive
uncertainty through a wide confidence interval, flagging it as a high-risk asset requiring intervention.

The model’s response to this degradation is illustrated in Fig. 13.
In the initial days of the simulation, the true ROAS remains close
to its historical average, and the model provides confident predic-
tions with a narrow 95% confidence interval. However, as the cam-
paign’s performance steadily degrades and diverges from the histori-
cally learned patterns, the model’s predictive uncertainty consistently
increases, causing the confidence interval to widen significantly. This
widening uncertainty serves as a direct, quantifiable signal that the
campaign’s behavior is no longer predictable and requires attention.
This result demonstrates the model’s potential utility in automated
monitoring systems for flagging underperforming advertising assets
before significant losses accumulate.

5.11. Explainable model decisions

To ensure the framework is transparent and trustworthy, we inte-
grated a suite of explainability techniques. These can be divided into
two categories: (1) actionable insights directly usable by advertisers
for strategic decisions, and (2) internal diagnostics for data scientists
to validate and debug the model. The model provides two primary
forms of direct, actionable intelligence, as visualized in Fig. 14. First,

14

gradient-based feature importance (Fig. 14a) identifies the most influ-
ential predictors of ROAS. The high importance of fundamental metrics
like Total Sales and Spend validates that the model has learned correct
business logic. More tactically, the prominence of specific ‘Targeting_’
features allows advertisers to confirm or challenge their audience se-
lection strategies. Second, the model’s uncertainty estimates serve as a
direct, quantifiable risk flag (Fig. 14b). As shown in our case study (Fig.
12), the model assigns high uncertainty to volatile, low-performing
campaigns. This allows an advertiser to implement automated rules,
such as pausing a campaign when its predicted uncertainty exceeds a
threshold, directly translating the model’s output into an operational
decision to prevent wasted spend. Attention mechanisms reveal how
the model dynamically weighs features, which can help a data scientist
identify potential data leakage or discover novel feature interactions.
Furthermore, analyzing weight distributions (Figs. 8(a), 8(b), and 9)
offers a diagnostic view of model complexity. The observation that
deeper layers exhibit a wider weight spread, for example, confirms that
they are learning more complex representations. These tools are crucial
for data scientists to maintain, trust, and refine the model over time.
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Fig. 13. Simulation of the model’s response to gradual performance degradation. As the true ROAS (black line) systematically deviates from the historically
expected behavior over 30 days, the model’s predicted uncertainty (shaded blue area) consistently widens. This demonstrates the framework’s capability to serve
as an early-warning system by translating performance decay into a quantifiable uncertainty signal.
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Fig. 14. Actionable insights for advertisers. (a) Feature importance identifies key business drivers. (b) Predictive uncertainty quantifies campaign risk, enabling

automated flagging of volatile assets.

6. Conclusion

In this paper, we presented a hierarchical Bayesian Self-Attention
model to address the significant uncertainty in forecasting Return on Ad
Spend (ROAS) in e-commerce advertising. Our architecture leverages
self-attention layers to capture intricate campaign dependencies and a
Mixture Density Network head to output a full probability distribution
of ROAS, a design motivated by an initial exploratory analysis with
a Bayesian Belief Network. Evaluations on a large-scale dataset of
over 160,000 Amazon PPC campaigns show that our model achieves
state-of-the-art accuracy with an R? of 98%, a 47.9% lower RMSE,
and a 9.1% better NLL compared to established baselines. These re-
sults are achieved with a 5.2 ms inference latency, confirming the
model’s suitability for real-time bidding environments. By moving be-
yond deterministic point-estimates, our probabilistic approach provides
deeper insights into campaign variability, enabling risk-aware budget
allocation and more intelligent bidding strategies.

Broader applicability and future work. While validated on Amazon Ads
data, the proposed framework is fundamentally platform-agnostic, as
it learns from universal advertising primitives like impressions, clicks,
and conversions. We therefore posit that the model can be readily
adapted to other auction-based ecosystems, such as Google Ads or
Walmart Connect. Future work should focus on empirically validating
this generalizability, as well as extending the framework to differ-
ent ad formats like sponsored display or video ads. Further research
could also incorporate causal inference techniques to better isolate the
impact of campaign variables, and explore extending the model to

enable cross-channel budget optimization in multi-platform advertising
environments.
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