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 A B S T R A C T

In the highly competitive landscape of e-commerce advertising, maximizing return on advertising spend (ROAS) 
is crucial yet inherently uncertain due to auction-based bidding dynamics and fluctuating market conditions. 
Traditional deterministic models struggle to capture this uncertainty, necessitating a probabilistic approach 
that balances predictive accuracy with interpretability. To address this challenge, the paper proposes a novel 
Hierarchical Bayesian Deep Learning framework. The architecture was motivated by initial exploratory analysis 
using a Bayesian Belief Network (BBN) to map structural dependencies, while the final deep learning model 
overcomes scalability limitations using self-attention mechanisms and a Mixture Density Network (MDN) for 
full distributional modeling of ROAS. The BBN captures dependencies among campaign variables, enhancing 
interpretability, while the hierarchical deep learning architecture leverages self-attention mechanisms to 
address scalability challenges in high-dimensional settings. Experimental results reveal that the proposed 
framework achieves 22.8% lower RMSE and 27.4% better Negative Log Likelihood (NLL) and up to 31.2% 
lower Kullback–Leibler divergence (KLD) than state-of-the-art methods (DeepAR, Prophet, NGBoost), achieving 
an R2 of 98% with an inference speed of 5.2 ms per campaign, confirming its feasibility for real-time bidding 
applications which typically require sub-10ms latency, enabling a feasible real-time bidding. Ablation studies 
confirm that attention-driven feature selection and calibrated uncertainty quantification significantly enhance 
both predictive performance and explainability, identifying key drivers of campaign success. By providing 
precise, uncertainty-aware, and explainable predictions, this approach enables adaptive bidding strategies, 
optimized budget allocation, and risk management, setting a new benchmark for intelligent decision-making 
in digital advertising.
1. Introduction

In the rapidly evolving domain of online advertising, businesses 
strive to utilize targeted strategies to maximize their Return on In-
vestment (ROI) (Sutton and Barto, 2018). The unique challenges of e-
commerce platforms, however, remain underexplored. Predicting ROAS 
in this domain is particularly difficult due to a confluence of factors: 
high-dimensional sparse interactions between thousands of campaign 
settings; a fundamentally stochastic auction environment where out-
comes are probabilistic; and delayed, noisy conversion signals. These 
challenges, exemplified by Amazon’s Sponsored Ads, create significant 
uncertainty and render traditional deterministic models inadequate (Qu 
et al., 2019; Zhou et al., 2022a). In this high-stakes financial envi-
ronment, traditional deterministic models often underperform, as they 
provide single-point forecasts for metrics like Return on Advertising 
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Spend (ROAS) and cannot account for the inherently probabilistic 
nature of auction outcomes, fluctuating market conditions, or com-
petitor bidding (Kumari and Toshniwal, 2021; Park and Lee, 2022). A 
probabilistic approach is therefore essential for strategic and risk-aware 
decision-making (Panda et al., 2024).

Recent research has advanced core advertising objectives like bid 
optimization and click-through rate prediction using techniques such 
as reinforcement learning (Yakovleva et al., 2024; Chen et al., 2021) 
and transformers (Jiang et al., 2018; Mao et al., 2023). However, 
these approaches often culminate in deterministic predictions, exhibit-
ing overconfidence and a lack of robust uncertainty quantification, 
which is critical for budgeting under risk (Gal and Ghahramani, 2016; 
Rahaman et al., 2021). Recognizing this gap, the latest research has 
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begun to pivot towards explicit uncertainty modeling. For instance, re-
cent studies have applied reinforcement learning to cost-per-acquisition 
optimization with probabilistic bounds (Mao et al., 2023), and con-
textual bandits have been developed for more nuanced bidding strate-
gies (Wang et al., 2022). Furthermore, the development of specialized 
probabilistic time-series models for revenue forecasting (Katsman et al., 
2023) and new theoretical frameworks for distributional prediction (Li 
et al., 2024) highlight a clear trajectory in the field. Yet, a comprehen-
sive and scalable solution for full distributional ROAS forecasting in 
e-commerce, which is crucial for practical budget allocation, remains 
an open challenge (Chen et al., 2023).

To overcome these limitations, this paper presents a hierarchical 
Bayesian deep learning model that integrates self-attention and a Mix-
ture Density Network (MDN) output layer. Instead of predicting a 
single expected value, this approach models the entire distribution of 
ROAS, providing calibrated predictions and deeper insights into cam-
paign variability. Stochastic Weight Averaging (SWA) is combined with 
Bayesian inference to deliver robust uncertainty estimates while main-
taining computational efficiency, and self-attention captures long-range 
dependencies across temporal and campaign-specific features (Park and 
Lee, 2022). Unlike prior methods that rely on point estimates and 
fail to quantify risk, the proposed model leverages Bayesian inference 
and self-attention to generate full probability distributions over ROAS, 
enabling risk-aware and explainable decision-making in digital adver-
tising. Explainability is prioritized through interpretability, including 
attention-based weight distribution and feature importance metrics, al-
lowing advertisers to understand how key factors—such as impressions, 
cost per click, and targeting keywords—influence ROAS fluctuations. 
This transparency fosters trust in automated solutions, particularly 
when high-stakes budgetary decisions depend on model outputs. To 
rigorously validate the proposed model, the experimental setup ac-
counts for multiple factors, including seasonal variations (e.g., Black 
Friday, Cyber Monday), distribution shifts, and changes in user en-
gagement trends, ensuring a realistic evaluation of bidding strategies 
within Amazon’s ecosystem. Based on the preceding discussion, the key 
contributions of this paper are as follows:

Key contributions
1. First, we propose a Bayesian Self-Attention architecture that 
models the complete ROAS distribution, offering calibrated un-
certainty estimates to support informed budget decisions. The 
framework achieves competitive performance — demonstrating 
lower RMSE, higher 𝑅2, and fast inference times — ensuring 
feasibility for real-time advertising applications.

2. Second, we employ a Bayesian Belief Network (BBN) to capture 
variable dependencies, leveraging Conditional Probability Dis-
tributions for structured probabilistic reasoning and enhanced 
interpretability.

3. Third, we develop an explainability framework that incorporates 
attention maps and weight distribution analysis, providing clear 
insights into how various features influence campaign outcomes.

4. Finally, we conduct practical validation on large-scale
e-commerce data, demonstrating the model’s feasibility in com-
plex, high-dimensional, and dynamic advertising environments.

The remainder of this paper is structured as follows: Section 2 
reviews the related literature, Section 3 details the proposed model 
architecture, Section 4 presents experimental evaluation results, Sec-
tion 5 discusses model explainability and interpretability, and Section 6 
concludes the paper with key findings and future research directions.

2. Background and related work

This section outlines how e-commerce platforms generate and pro-
cess advertising data, followed by an exploration of why probabilistic 
deep learning offers an advantage over traditional methods.
2 
2.1. Advertisement campaigns in ecommerce

Advertising in e-commerce is a dynamic and data-driven field, 
where success hinges on how effectively businesses process and act on 
consumer behavior data (Danaher et al., 2010). Every click, search, and 
purchase generates a signal that can be used to optimize ad targeting 
and bidding strategies.

Amazon, as a leading online marketplace, operates a PPC (Pay-
Per-Click) auction-based advertisement system, where sellers only pay 
a fee when a user actually clicks on their ad. In this system, sellers 
compete for premium search placements by bidding on relevant key-
words. This system enables advertisers to strategically allocate budgets 
and optimize bids to ensure their products appear prominently in 
search results when customers search for relevant items. However, the 
dynamic nature of consumer behavior, seasonal market trends, and 
fluctuating competition introduce significant challenges in designing 
effective bidding strategies. Amazon offers multiple types of adver-
tising campaigns, including Sponsored Products Ads, Sponsored Brands 
Ads, and Sponsored Display Ads. Among these, Sponsored Brands and 
Sponsored Products campaigns are particularly relevant for search-
driven conversions, as they rely on competitive keyword auctions. 
Advertisers bid on specific keywords, and the highest bidder secures 
the most visible ad placement. However, the final cost incurred by 
the winning advertiser is determined through a second-price auction 
mechanism, where the highest bidder pays only the amount bid by the 
second-highest competitor. This ensures cost-efficient ad pricing while 
maintaining competitive placement. Fig.  1 illustrates the hierarchical 
structure of Amazon’s bidding system, where multiple brands compete 
for top search rankings based on keyword-based auctions. In this sys-
tem, advertisers are charged on a Cost-Per-Click (CPC) basis, where 
costs are deducted from pre-allocated budgets upon user interaction 
with the ad.

2.2. Data generation & processing pipeline

Modern e-commerce platforms generate vast amounts of behavioral 
data, tracking everything from product views and cart additions to 
ad impressions and click-through rates (CTR). This data serves as the 
foundation for targeted advertising, where machine learning models 
attempt to predict which ads will be most effective for each user 
(Cavalcante et al., 2016). However, raw behavioral logs alone are not 
enough—real-time data processing is essential to extract meaningful 
patterns. Advertising data typically flows through a pipeline that begins 
with collection and preprocessing. User activity is captured through 
cookies, tracking pixels, and API integrations and then refined to 
remove noise and inconsistencies. Relevant features are engineered to 
provide contextual insights, such as the time of day affecting shopping 
habits or how browsing sequences indicate purchase intent. Advanced 
ad platforms use streaming architectures to process this data in real-
time, ensuring that models are constantly updated with the latest 
consumer signals. Once the data is structured, machine learning models 
use it to drive ad optimization. They predict click probabilities, segment 
audiences, and dynamically adjust bidding strategies in real-time adver-
tising markets. A key challenge in this process is uncertainty, consumer 
behavior is not static, and a model that relies too heavily on past data 
may fail when trends shift. This is where probabilistic deep learning 
becomes valuable.

2.3. Probabilistic deep learning in ad optimization

Deterministic deep learning models are ill-suited for the dynamic 
nature of e-commerce advertising, as their overconfident
point-estimates can lead to poor budget allocation. Bayesian deep 
learning addresses this by treating model parameters as distributions to 
produce probabilistic forecasts that quantify uncertainty. This is essen-
tial for risk-aware, adaptive bidding. Furthermore, Bayesian models can 



A. Jha et al. Engineering Applications of Artiϧcial Intelligence 164 (2026) 113200 
Fig. 1. Hierarchy of Amazon’s Sponsored Advertisement bidding process.
be efficiently updated with new data via posterior updating, making 
them ideal for changing market conditions (Wilson and Izmailov, 
2020b; Lasowski and Nolde, 2021; Deshpande et al., 2022; Masegosa 
et al., 2021). Bayesian models also offer superior generalization in data-
poor situations, which reduces overfitting. Our work combines this with 
a self-attention mechanism to facilitate robust probabilistic reasoning 
for real-time applications, such as dynamic audience segmentation and 
cost-efficiency optimization (Deshpande et al., 2022; Masegosa et al., 
2021; Wilson and Izmailov, 2020a). While proven in domains like 
healthcare (Ker et al., 2017) and finance, Bayesian deep learning is 
underexplored in advertising (Ghahramani, 2015; Wang and Yeung, 
2020). This research fills that gap by presenting a unified framework 
that leverages both techniques to effectively manage risk and adapt to 
dynamic e-commerce environments (Polson and Sokolov, 2017; Patel 
et al., 2015).

2.4. Related work

Accurate Return on Ad Spend (ROAS) forecasting is crucial for op-
timizing budget allocation in e-commerce advertising. However, most 
existing methods rely on deterministic models, which fail to account for 
the uncertainty in auction-based bidding, user behavior, and market 
competition. This section reviews key research areas related to ad 
revenue prediction, highlighting their limitations and how the proposed 
model contributes to the field. Table  1 summarizes key contributions in 
online advertising optimization, detailing each work’s focus, approach, 
datasets, metrics, findings, and limitations.
3 
2.4.1. Revenue maximization and ad budget allocation
Prior work on revenue maximization has evolved from static models 

to sophisticated auction-based methods with adaptive bidding and 
multi-objective constraints (Yakovleva et al., 2024; Li et al., 2021; Qu 
et al., 2019; Akande and Haq, 2021; Chen et al., 2021; Mao et al., 
2023; Wu and Chen, 2021). However, these approaches remain fun-
damentally deterministic, providing single-point ROAS predictions that 
ignore the uncertainty of dynamic ad campaigns. Our work addresses 
this limitation by introducing a probabilistic forecasting approach that 
enables risk-aware budget allocation.

2.4.2. Bid optimization and real-time bidding strategies
Bid optimization is crucial in balancing ad performance with cost 

efficiency (Yakovleva et al., 2019), yet most existing strategies remain 
deterministic. Bannour et al. (2023) developed data-driven bid adjust-
ment mechanisms, and
Zhang et al. (2021) explored predictive budget allocation models. 
While Jiang et al. (2018) applied Transformer-based architectures to 
model bid landscapes, and Wang et al. (2022) used deep Q-networks for 
real-time bidding, their models do not quantify prediction confidence. 
Since auction dynamics introduce high variance, deterministic models 
cannot capture risk-adjusted bidding decisions. Reinforcement learning 
(RL), which is primarily used in search engine real-time bidding. How-
ever, RL’s immediate feedback loops limit its usefulness in e-commerce 
platforms with aggregated and delayed bid data (Zhou et al., 2022b; 
Jin et al., 2018). RL also struggles to capture non-linear interactions 
between metrics like CPC and ROAS due to post-auction data (Liu 
et al., 2024), and thus, a probabilistic approach is better suited to this 
scenario.
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Table 1
Methodological comparison of related works in online advertising optimization.
 Paper Core Issue Paradigm Metrics Contribution Limitation  
 Kini and Manjunatha (2020) Revenue maximization Supervised (Multitask NN) Revenue uplift, accuracy Improved 

recommendations
No uncertainty; ignores 
market factors 

 

 Li et al. (2021) Pricing strategies in IaaS Market-Oriented 
Optimization

Profitability, efficiency Flexible pricing models for 
revenue

Deterministic; lacks 
dynamic adjustment 

 

 Jiang et al. (2018) Auction mechanism design Game Theoretic 
(Data-Driven)

Bid efficiency, cost savings Improved cloud resource 
allocation

Limited generalizability  

 Bannour et al. (2023) Budget optimization Predictive Regression ROI, budget utilization Enhanced budget 
allocation for audio ads

No uncertainty, 
not-validated on display 
ads 

 

 Yakovleva et al. (2024) Bid landscape forecasting Sequential (Transformer) Accuracy, MSE More accurate bid 
forecasting

Deterministic; 
computationally expensive 

 

 Gupta et al. (2022) CTR prediction in RTB Sequential (Dynamic NN) AUC, log-loss Improved real-time CTR 
prediction

Point-estimates only; 
struggles with sparsity 

 

 Agarwal et al. (2009) Temporal CTR prediction Spatio-Temporal Model CTR, precision Better handles 
time-dependent behavior

Deterministic; high 
computational overhead 

 

 Huang et al. (2019) Feature engineering for 
CTR

Deep (Bilinear Feature 
Interaction)

AUC, accuracy Improved feature 
interaction modeling

No uncertainty; requires 
large labeled data 

 

 Zhang et al. (2021) Portfolio-based bidding Optimization (Stochastic 
Control)

Cost efficiency, revenue 
gain

Enhanced bidding 
effectiveness

Point-estimates; not for 
price fluctuations 

 

 Balseiro et al. (2014) Yield optimization Economic (Mechanism 
Design)

Revenue max., fill rate Better ad inventory 
allocation

Deterministic; ignores user 
engagement

 

2.4.3. Click-through rate prediction and ROAS estimation
CTR prediction plays a crucial role in estimating ad engagement

(Jha et al., 2023), but traditional models lack uncertainty quantifica-
tion. Gharaibeh et al. (2017) and Cai et al. (2018) developed dynamic 
neural networks for CTR forecasting, while Kumari and Toshniwal 
(2021) and Huang et al. (2019) explored spatio-temporal and feature-
based interactions. Although these models improve CTR accuracy, they 
fail to express how uncertain their predictions are, which is critical 
when forecasting downstream revenue (ROAS). After the introduction 
of the attention mechanism by Zhang et al. (2014) and Chandra and He 
(2021) introduced self-attention with knowledge distillation to handle 
sparse datasets, but their approach still produces point estimates rather 
than probability distributions.

2.4.4. Auction mechanisms and adaptive bidding
Auction-based ad placements operate in highly volatile environ-

ments where bid prices and user engagement shift dynamically. Sut-
ton and Barto (2018) and Rafieian and Yoganarasimhan (2021) stud-
ied ad exchange optimization, while Aronowich et al. (2014) devel-
oped auction-based revenue strategies. Although these studies have 
improved accuracy and efficiency, many lack real-time responsiveness 
to sudden market changes. Tiwari et al. (2023) addressed this concern 
by utilizing a deep Q-network for real-time bidding. However, these 
works do not explicitly model bid price uncertainty, limiting their 
ability to adjust bidding dynamically. Gal and Ghahramani (2016) pro-
posed contextual bandit models for bid learning, but bandit approaches 
lack full probabilistic ROAS modeling, leading to uncertainty in ad 
budget allocation.

2.4.5. Bayesian deep learning in advertising
Despite recent advances in deep learning for advertising, uncer-

tainty estimation remains largely unexplored. Most neural networks 
overfit past trends, failing to provide well-calibrated uncertainty mea-
sures. Akande and Haq (Šoltés et al., 2020) reviewed machine learning 
methods for ad optimization but highlighted the issue of deterministic 
overconfidence in model predictions. Amazon (2022) studied AI-driven 
CTR forecasting but did not incorporate uncertainty into revenue fore-
casting. Rahaman et al. (2021) used reinforcement learning for ad 
spend optimization, yet their models still produce deterministic bid 
recommendations. Bayesian deep learning overcomes these limitations 
by modeling distributions over ROAS outcomes, ensuring risk-aware 
and interpretable decision-making in ad campaigns.
4 
2.4.6. Limitations of existing methods and contribution
While existing methods have improved ad optimization, their re-

liance on point-estimate predictions limits their effectiveness in highly 
volatile e-commerce environments. The proposed Bayesian
Self-Attention model explicitly accounts for uncertainty by integrating 
Bayesian inference with attention mechanisms, leading to: (1) Risk-
aware bidding and budget allocation: Unlike traditional deep learning 
models, our approach estimates the entire probability distribution over 
ROAS, providing confidence intervals instead of fixed-point forecasts. 
(2) Scalability for large-scale ad campaigns: Existing Bayesian models 
struggle with large-scale applications due to computational complexity, 
whereas our hierarchical Bayesian framework balances accuracy and 
efficiency. (3) Improved interpretability: Our model provides weight-
distribution analysis and feature attribution mechanisms, ensuring 
transparency in ad spend decisions. By transitioning from determin-
istic forecasting to probabilistic modeling, this approach ensures more 
reliable and uncertainty-aware decision-making for advertisers.

3. Problem definition and proposed solution

In e-commerce, optimizing marketing strategies hinges on accu-
rately forecasting ROAS, a vital metric for evaluating the effectiveness 
of advertising investments. A precise and reliable ROAS prediction 
model enables businesses to optimize budget allocation, refine bidding 
strategies, and maximize return on investment. Traditional determinis-
tic models typically provide point estimates of ROAS, failing to account 
for the uncertainty surrounding revenue generation. The true distri-
bution of ROAS is influenced by factors such as seasonality, market 
competition, evolving user behavior, and macroeconomic conditions. 
These factors introduce considerable variability, making it difficult for 
these models to adequately represent such complexity. Therefore, a 
more efficient and uncertainty-aware predictive model is required.

To address these challenges, a Deep Bayesian Neural Network (BNN) 
has been proposed for probabilistic ROAS prediction. This model in-
tegrates deep learning with Bayesian inference to estimate the full 
probability distribution of ROAS. Unlike conventional models that pro-
vide only point estimates, this approach outputs a comprehensive 
probability distribution, allowing decision-makers to assess predictive 
uncertainty and make more informed budgetary decisions. Such a 
model accounts for risks and opportunities, enhancing overall decision-
making. Let the input feature vector at time 𝑡 be denoted as 𝐱𝑡 ∈ R𝑑 , 
where 𝑑 represents the number of predictive features. The goal is 
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Fig. 2. Proposed Deep Bayesian Neural Network with self attention model architecture.
to estimate the conditional probability distribution of ROAS at time 
𝑡, expressed as 𝑝(𝑦𝑡|𝐱𝑡), where 𝑦𝑡 is the actual ROAS at time 𝑡. The 
approach involves using a Bayesian Neural Network to model this 
conditional distribution. Instead of learning fixed weights in the net-
work, distributions over the weights are learned. This facilitates the 
quantification of epistemic uncertainty, which reflects uncertainty in 
the model’s parameters due to limited data. The posterior distribution 
over the weights 𝐖, given the input features 𝐗 and observed ROAS 
values 𝐘, is represented as:
𝑝(𝐖|𝐗,𝐘)

To make the posterior computation feasible, the weights’ distribution 
is approximated as a multivariate Gaussian:
𝑝(𝐖|𝐗,𝐘) ≈  (𝝁BNN,ΣBNN)

where 𝝁BNN and ΣBNN are the mean and covariance of the weights, re-
spectively, estimated using stochastic optimization methods. The model 
is trained by minimizing a loss function that is formally derived from 
the Maximum A Posteriori (MAP) estimation framework. The MAP ob-
jective is to find the mode of the posterior distribution of the weights 𝑊
given the data {𝑋, 𝑌 }, which is equivalent to minimizing the negative 
log-posterior: 
𝑊MAP = argmin

𝑊
[− log 𝑝(𝑌 |𝑋,𝑊 ) − log 𝑝(𝑊 )] (1)

Here, − log 𝑝(𝑌 |𝑋,𝑊 ) is the negative log-likelihood, and − log 𝑝(𝑊 ) is 
the negative log-prior. By choosing a zero-mean Gaussian prior for 
the weights, 𝑝(𝑊 ) ∼  (0, (1∕𝜆)𝐼), the negative log-prior becomes 
proportional to 𝜆‖𝑊 ‖

2. This yields the final objective function used 
for optimization: 
(𝑊 ,𝑋, 𝑌 ) = − log 𝑝(𝑌 |𝑋,𝑊 ) + 𝜆‖𝑊 ‖

2 (2)

The first term in Eq.  (2) is the likelihood term, which drives pre-
dictive accuracy, while the second term is the L2 regularization (or 
weight decay) that stems from the Gaussian prior, preventing over-
fitting and encouraging simpler models. Our goal is to find not just 
this single point estimate 𝑊MAP, but to approximate the full poste-
rior distribution around this mode using Stochastic Weight Averaging 
(SWA), as detailed in Section 3.1. SWA is used to efficiently prop-
agate uncertainty through the network. This technique averages the 
5 
weights over multiple stochastic gradient descent (SGD) iterations, ap-
proximating the posterior distribution over the network’s parameters. 
The combination of SWA and Bayesian inference allows for efficient 
uncertainty propagation, enabling faster predictions during inference 
while maintaining accurate uncertainty estimates. This model, trained 
iteratively, approximates the true ROAS distribution, ensuring that 
uncertainty in the prediction reflects the real-world variability ob-
served in advertising scenarios. The Bayesian Neural Network captures 
not just the expected ROAS but also the entire distribution, aiding 
more robust decision-making in uncertain environments. Additionally, 
a self-attention mechanism is included in the architecture to capture 
long-range dependencies and sequential patterns, which are crucial for 
modeling time-dependent factors such as evolving user behavior or 
market dynamics. Unlike recurrent architectures, self-attention com-
putes attention scores across all time steps in parallel, providing a 
global context for each time step. Mathematically, the self-attention 
mechanism operates as follows: given an input sequence of vectors 
𝐗 = {𝐱1, 𝐱2,… , 𝐱𝑛}, where each 𝐱𝑖 ∈ R𝑑 represents an input at time 
step 𝑖, the attention mechanism computes the following:

For each time step 𝑖, the input sequence is transformed into query, 
key, and value vectors, defined as:
𝐪𝑖 = 𝐖𝑄𝐱𝑖, 𝐤𝑖 = 𝐖𝐾𝐱𝑖, 𝐯𝑖 = 𝐖𝑉 𝐱𝑖,

where 𝐖𝑄,𝐖𝐾 ,𝐖𝑉 ∈ R𝑑×𝑑 are learned weight matrices for the query, 
key, and value projections.

The attention score between two time steps 𝑖 and 𝑗 is computed as:

Attention Score𝑖𝑗 =
𝐪𝑇𝑖 𝐤𝑗
√

𝑑
,

This score represents how much attention is given to 𝐱𝑗 when process-
ing 𝐱𝑖.

The attention scores are then normalized using the softmax function:

𝛼𝑖𝑗 =
exp(Attention Score𝑖𝑗 )

∑𝑛
𝑘=1 exp(Attention Score𝑖𝑘)

,

and

𝛼𝑖𝑗 = softmax(Attention Score𝑖𝑗 ),
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The output for 𝐱𝑖 is computed as the weighted sum of the value 
vectors 𝐯𝑗 , with attention weights 𝛼𝑖𝑗 :

𝐳𝑖 =
𝑛
∑

𝑗=1
𝛼𝑖𝑗𝐯𝑗 .

This output 𝐳𝑖 is then passed through a feedforward network and 
subjected to normalization and residual connections. A close repre-
sentation of the neural network architecture for the proposed model 
has been illustrated in Fig.  2. The self-attention mechanism captures 
dependencies between time steps, providing a global context for each. 
The mechanism is repeated across multiple layers of the model, with 
each layer incorporating multi-head attention for more complex rela-
tionships. The attention mechanism is computationally efficient, as it 
enables parallelization and allows the model to learn from all parts of 
the input sequence.

3.1. Approximating the Bayesian posterior with Stochastic Weight Averag-
ing

A central challenge in Bayesian deep learning is the intractable na-
ture of the true posterior distribution over network weights, 𝑝(𝑊 |𝑋, 𝑌 ). 
While methods such as Markov Chain Monte Carlo (MCMC) provide 
theoretical convergence guarantees, they remain computationally in-
feasible for deep models at scale. We employ Stochastic Weight Av-
eraging (SWA) as a scalable and theoretically motivated method to 
approximate the Bayesian posterior.

Connection to Langevin dynamics and stationary distributions
The theoretical basis for SWA rests on the connection between 

stochastic gradient descent (SGD) and Langevin dynamics. As shown 
by Welling and Teh (2011), adding Gaussian noise to SGD yields 
Stochastic Gradient Langevin Dynamics (SGLD), which simulates sam-
ples from the posterior: 

𝑊𝑡+1 = 𝑊𝑡 +
𝜂𝑡
2
∇ log 𝑝(𝑊𝑡|𝑋, 𝑌 ) + 𝜀𝑡, 𝜀𝑡 ∼  (0, 𝜂𝑡), (3)

Even without explicit noise, SGD with mini-batches exhibits gradient 
noise that under standard assumptions (e.g., constant learning rate, 
smooth loss landscape) can be modeled as a discretized Ornstein–
Uhlenbeck (OU) process (Mandt et al., 2017): 

𝑑𝑊𝑡 = −𝐴(𝑊𝑡 − 𝜇)𝑑𝑡 +
√

2𝐷𝑑𝐵𝑡, (4)

The stationary distribution of this process is Gaussian: 

𝑝(𝑊 ) ∝ exp
(

−1
2
(𝑊 − 𝜇)⊤𝛴−1(𝑊 − 𝜇)

)

, (5)

where 𝜇 is the mean around a mode of the loss, and 𝛴 reflects the 
noise-induced covariance.

SWA as a consistent estimator of posterior mean
SWA averages weights across SGD trajectories: 

𝜇BNN = 𝑊SWA = 1
𝑇

𝑇
∑

𝑖=1
𝑊𝑖, (6)

Under the assumption that the SGD iterates {𝑊𝑖} are drawn from an 
ergodic Markov chain sampling the stationary distribution of the OU 
process, the SWA mean converges almost surely to the posterior mean: 

lim
𝑇→∞

𝜇BNN = E𝑝(𝑊 |𝑋,𝑌 )[𝑊 ]. (7)

This is a direct consequence of the law of large numbers for ergodic 
processes.
6 
Posterior approximation with diagonal Gaussian
We construct a Gaussian approximation to the posterior with mean 

𝜇BNN and diagonal covariance diag(𝜎2BNN): 

𝑞(𝑊 ) ≈  (𝑊 ∣ 𝜇BNN,diag(𝜎2BNN)), (8)

The variance 𝜎2BNN is estimated either from the empirical second mo-
ment of the collected weights or treated as a tunable hyperparameter. 
This posterior matches the form of the Gaussian stationary distribution 
induced by Langevin dynamics and has been empirically validated in 
related work.

Convergence and practical implications
We implement SWA by collecting model weights over the final 25% 

of training epochs using a high, constant learning rate to encourage 
exploration of a flat posterior mode. While this approximation does not 
match the exact posterior in full generality, it captures key structural 
properties, such as mode centering, local uncertainty, and flatness—
that are sufficient for well-calibrated uncertainty estimates and robust 
downstream decision-making. This method offers a tractable alterna-
tive to MCMC or full variational methods, with competitive empirical 
performance and theoretical grounding.

4. Proposed model

The proposed framework is a hierarchical deep learning model 
designed for end-to-end probabilistic forecasting of ROAS. The term ‘hi-
erarchical’ refers to the model’s architectural structure, which processes 
information in two distinct stages:

1. A Representation Learning Layer: At the base of the hierarchy, a 
multi-head self-attention mechanism acts as a powerful feature 
encoder. Its unique contribution is the ability to model com-
plex, non-local dependencies across the entire feature set. For 
instance, it can learn how a change in ‘‘targeting_keyword_A’’ dy-
namically influences the effectiveness of
‘‘budget_for_campaign_B’’, a task where traditional models strug-
gle. It produces a dense, context-aware vector that captures these 
rich interactions.

2. A Probabilistic Regression Layer: At the top of the hierarchy, 
a Bayesian neural network takes the feature vector from the 
attention layer and performs probabilistic regression. This layer 
culminates in a Mixture Density Network (MDN) head, which 
outputs the full probability distribution of ROAS.

This two-stage hierarchy allows the model to first learn *what* fea-
tures are important in context, and then to quantify the uncertainty 
associated with predicting an outcome based on those features.

4.1. Dynamic feature extraction and representation

Accurately predicting ROAS requires transforming raw advertising 
data into structured numerical representations that effectively capture 
underlying patterns. To achieve this, a multi-stage feature extraction 
pipeline is developed to ensure numerical stability, model temporal de-
pendencies, and enhance the generalization capability of the network. 
The first stage involves numerical stabilization, where key features such 
as Click-Through Rate (CTR), Cost-Per-Click (CPC), and ad spending 
are normalized to maintain consistency and prevent scale-dependent 
biases. Following this, a temporal pattern modeling mechanism is 
applied, incorporating moving averages, lag-based transformations, and 
frequency-domain decompositions to capture seasonal variations and 
campaign trends. A multi-campaign embedding strategy is then applied, 
encoding campaigns into a latent space that enables cross-campaign 
knowledge transfer while preserving campaign-specific distinctions. Fi-
nally, a feature refinement process systematically eliminates redundant 
attributes using an information-theoretic selection criterion, ensuring 
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Fig. 3. Correlation matrix of key features.
that only the most predictive features contribute to the final model. 
This structured feature engineering process ensures that the input 
representations provide a stable and informative basis for subsequent 
probabilistic modeling.

4.2. Hierarchical probabilistic representation

At the core of the proposed architecture is a hierarchical Bayesian 
learning model that extends traditional deep neural networks by in-
corporating uncertainty-aware probabilistic modeling. The proposed 
model represents network weights as probability distributions, allowing 
it to quantify epistemic uncertainty in decision-making. The weight 
parameters are formulated as: 
𝑊 ∼  (𝜇, 𝜎2), (9)

where 𝑊  denotes the set of learnable weights, 𝜇 represents the mean, 
and 𝜎2 captures the variance, thereby encoding the model’s uncer-
tainty. To efficiently capture complex cross-campaign interactions, the 
proposed model integrates an attention-driven dependency modeling 
mechanism. This mechanism assigns dynamic attention scores to past 
and concurrent campaigns, ensuring that the model focuses on the most 
relevant historical events when generating predictions. The attention 
mechanism is defined as: 

Attention(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 , (10)

where 𝑄,𝐾, 𝑉  represents the query, key, and value matrices, and 𝑑𝑘
corresponds to the dimensionality of the key vectors. This hierarchical 
probabilistic model, coupled with attention-based contextual aware-
ness, enables the model to learn both global and local dependencies 
within multi-campaign data (see Fig.  3).

The interaction between the self-attention mechanism and the sub-
sequent Bayesian layers is fundamental to the model’s hierarchical 
approach. The self-attention layers act as a powerful, data-driven fea-
ture extractor. They learn to dynamically re-weight and combine input 
features based on their contextual relevance, producing a rich, la-
tent representation of the campaign’s state. This representation, which 
captures complex temporal and cross-feature dependencies, is then 
fed into the fully-connected layers where the weights are treated as 
7 
Bayesian random variables. In this framework, the Bayesian layers are 
not learning from the raw, sparse inputs, but from the dense, context-
aware embeddings generated by the attention block. This separation 
of concerns — using attention for deterministic feature representation 
and Bayesian layers for probabilistic regression on those features — al-
lows the model to handle high-dimensional input effectively while still 
providing robust uncertainty quantification over the final prediction.

4.3. Uncertainty-aware predictive modeling

The predictive layer of the proposed architecture is designed to 
generate full probability distributions over ROAS rather than point 
estimates. The choice of the distributional form is a critical modeling 
decision that must be justified by the empirical properties of the data. 
To provide this justification, we analyzed the statistical distribution of 
the target variable from our dataset. Fig.  4 shows the Kernel Density 
Estimate (KDE) of the log-transformed ROAS values. The plot provides 
compelling evidence that a simple unimodal distribution would be an 
inadequate choice. The distribution is distinctly multimodal, featur-
ing a primary mode near a log-ROAS of 1.5, a significant secondary 
mode around 3.5, and a third, wider mode corresponding to very 
high-performing campaigns near 6.0. This structure strongly suggests 
the existence of several different underlying campaign archetypes or 
generative processes. For example, the main peak may correspond to 
standard, business-as-usual campaigns, while the other peaks could 
represent more successful, niche targeting strategies or campaigns ben-
efiting from seasonal trends. A single Gaussian, skewed, or heavy-tailed 
distribution would fail to capture these distinct sub-populations. A 
Mixture Density Network (MDN), however, is a universal approximator 
of densities and is ideally suited to model such complex, multimodal 
data by assigning different Gaussian components to capture each mode. 
This provides a flexible and data-driven approach to modeling ROAS. 
Therefore, we model the conditional distribution of ROAS as a weighted 
sum of Gaussian components:

To reinforce this visual evidence, we performed a statistical compar-
ison between Gaussian Mixture Models (GMMs) and alternative distri-
butional assumptions, including skew-normal and Student’s t-mixture 
models. The Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) were used to evaluate model fit. As summarized 
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Fig. 4. Kernel Density Estimate (KDE) of the log-transformed Return on 
Advertising Spend (ROAS) from the experimental dataset. The presence of 
multiple modes (peaks) clearly indicates that a single probability distribution 
(e.g., a single Gaussian) would be insufficient to model the underlying data 
structure. This multimodality provides strong empirical justification for our 
choice of a Mixture Density Network (MDN).

Table 2
Model comparison for log-ROAS distribution fit.
 Model AIC ↓ BIC ↓ Log-Likelihood ↑ Wasserstein 

distance ↓
 

 Gaussian mixture (3 comp.) 1273.6 1312.8 −621.8 0.024  
 Skew-normal distribution 1365.2 1379.1 −673.6 0.062  
 Student’s t mixture (2 comp.) 1294.4 1338.7 −635.2 0.045  

in Table  2, the GMM achieved the lowest AIC and BIC scores, indi-
cating a better trade-off between model complexity and data fidelity. 
Additionally, the GMM exhibited the highest log-likelihood and the 
lowest Wasserstein distance to the empirical distribution. These results 
quantitatively confirm that mixtures of Gaussians are well-suited to 
model the observed log-ROAS distribution, offering superior fit over 
both skewed and heavy-tailed alternatives.

The predictive layer of the proposed architecture is designed to 
generate full probability distributions over ROAS rather than point 
estimates. To achieve this, a Mixture Density Network (MDN) head is 
used. Instead of outputting a single value, the final layer of our neural 
network is designed to output the parameters of a Gaussian Mixture 
Model conditioned on the input features 𝑥. Specifically, the network 
learns to predict the mixture weights 𝜋𝑖(𝑥), means 𝜇𝑖(𝑥), and variances 
𝜎2𝑖 (𝑥) for a predefined number of 𝐾 Gaussian components: 

𝑝(𝑦|𝑥) =
𝐾
∑

𝑖=1
𝜋𝑖(𝑥) (𝑦|𝜇𝑖(𝑥), 𝜎2𝑖 (𝑥)), (11)

where 𝜋𝑖(𝑥) denotes the mixture coefficient for the 𝑖th Gaussian com-
ponent, 𝜇𝑖(𝑥) represents the component mean, and 𝜎2𝑖 (𝑥) defines the 
variance, quantifying the uncertainty in prediction. The model is opti-
mized by maximizing the log-likelihood of observed ROAS values under 
the estimated probability distribution: 

 =
𝑇
∑

𝑡=1
log

( 𝐾
∑

𝑖=1
𝜋𝑖(𝑥𝑡) (𝑦𝑡|𝜇𝑖(𝑥𝑡), 𝜎2𝑖 (𝑥𝑡))

)

, (12)

where 𝑇  denotes the number of training instances. These parameters 
are not manually initialized; they are the direct outputs of the final 
neural network layer and are optimized implicitly by minimizing the 
model’s primary objective function: the Negative Log-Likelihood of the 
8 
Table 3
Statistical summary of key numerical features.
 Feature Mean Std Dev Min Max  
 Search term impression rank 3.06 6.37 1.0 266.0  
 Clicks 3.12 16.37 1.0 1181.0  
 Impressions 462.45 3326.49 0.0 398280.0 
 Total orders 1.37 8.99 0.0 623.0  
 ROAS 20.23 112.43 0.0 8104.0  

data given the predicted distribution. The incorporation of a proba-
bilistic output layer enhances the model’s capability to generate pre-
dictions under varying levels of market uncertainty. The estimated un-
certainty values provide additional insight into prediction confidence, 
allowing advertisers to make risk-calibrated budget allocation deci-
sions. The explainability of the proposed model is reinforced through 
structured visualization and interpretability techniques. The weight 
distribution analysis (Fig.  8a) ensures that learning is well-regulated 
across layers, avoiding excessive reliance on individual parameters. The 
attention-based dependency modeling (Fig.  7a) highlights the extent to 
which past campaigns influence current predictions, offering greater 
transparency in decision-making (see Table  3).

4.4. Training and inference procedure

To ensure clarity and reproducibility, we formalize the training 
and inference processes of our proposed Hierarchical Bayesian Deep 
Learning model in Algorithms 1 and 2, respectively. The inference 
procedure, detailed in Algorithm 2, utilizes the trained SWA model 
to generate a full probabilistic forecast for a new, unseen campaign 
instance.

Algorithm 1 Model Training Procedure
Require: Training dataset  = {𝑋train, 𝑌train}; Epochs 𝐸; Batch size 𝐵.
Require: Optimizer ; Learning rate 𝜂; SWA start epoch 𝐸SWA; SWA 

learning rate 𝜂SWA.
1: Initialize model parameters 𝑊  for model 𝑀 .
2: Initialize SWA model 𝑀SWA.
3: for epoch 𝑒 = 1 to 𝐸 do
4:  Partition  into mini-batches {𝑥𝑏, 𝑦𝑏}𝑁𝑏=1.
5:  for each mini-batch {𝑥𝑏, 𝑦𝑏} do ⊳ — Forward Pass —
6:  Predict mixture parameters: {𝜋̂𝑏, 𝜇̂𝑏, 𝜎̂𝑏} ← 𝑀(𝑥𝑏;𝑊 ). ⊳ — 
Loss Calculation & Gradient Update —

7:  Compute NLL loss NLL(𝑦𝑏, {𝜋̂𝑏, 𝜇̂𝑏, 𝜎̂𝑏}).
8:  Update weights 𝑊 ← (𝑊 ,∇𝑊 NLL).
9:  end for
10:  if 𝑒 ≥ 𝐸SWA then
11:  Update SWA weights 𝑊SWA with current weights 𝑊 . ⊳

Collect weights for averaging
12:  end if
13:  Update learning rate schedule for 𝜂.
14: end for
Ensure: Trained SWA model 𝑀SWA with parameters 𝑊SWA.

5. Experimental results

The experimental evaluation is conducted on a large-scale
e-commerce advertising dataset to rigorously validate the performance 
of our proposed model against established baselines.



A. Jha et al. Engineering Applications of Artiϧcial Intelligence 164 (2026) 113200 
Fig. 5. Proposed Bayesian Belief Network (BBN) structure for ROAS forecasting.
Algorithm 2 Inference Procedure
Require: Trained SWA model 𝑀SWA; a new campaign feature vector 

𝑥new.
1: // — Probabilistic Prediction —
2: Predict mixture parameters {𝜋, 𝜇, 𝜎} ← 𝑀SWA(𝑥new).
3: // — Output Generation —
4: The parameters {𝜋, 𝜇, 𝜎} define the conditional probability distribu-
tion 𝑝(𝑦|𝑥new).

5: ⊳ From this distribution, various quantities can be derived:
6:  - Point Estimate: Compute expected value E[𝑦|𝑥new].
7:  - Full Posterior: Draw samples 𝑦𝑖 ∼ 𝑝(𝑦|𝑥new).
8:  - Risk Assessment: Compute confidence or credible intervals.
9: return Predictive distribution parameters {𝜋, 𝜇, 𝜎}.

5.1. Dataset and preprocessing

The experimental evaluation is conducted on a large-scale
e-commerce advertising dataset comprising 160,621 campaign
instances spanning a 24-month timeframe. These campaigns encom-
pass a wide array of objectives, budget allocations, and user seg-
ments, offering a comprehensive representation of digital advertising 
complexities.

5.1.1. Data source and collection
The proprietary dataset used in this study was collected from the 

Amazon Advertising API (v3.2) and comprises daily performance logs 
for 160,621 Sponsored Product and Sponsored Brand campaigns. The 
data spans a 24-month period from July 1, 2023, to June 30, 2025, 
a timeframe that includes multiple major shopping events (e.g., Black 
Friday, Cyber Monday) and diverse market conditions. Initial ingestion 
and aggregation were performed in a Snowflake data warehouse hosted 
on AWS. For modeling, we filtered out low-activity campaigns (fewer 
than 50 clicks over their lifetime) and removed records with clear data 
anomalies (e.g., non-zero clicks with zero impressions) to ensure data 
quality.

5.1.2. Feature engineering
The raw data includes 20 features related to campaign metadata 

and performance. We engineered the following key attributes and 
performed preprocessing steps to create the final feature set:

• Derived Metrics: Core performance indicators were computed, 
including Click-Through Rate (CTR) = Clicks/Impressions, and 
the target variable, Return on Advertising Spend (ROAS) =
Sales/Spend.
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Table 4
Model hyperparameter configuration.
 Hyperparameter configuration
 Architecture Value Training Value  
 Embedding Dim. 256 Optimizer AdamW  
 Attention heads 8 Batch size 128  
 Transformer layers 4 Learning rate 1e−4  
 Feed-forward dim. 1024 Weight decay 0.01  
 Dropout rate 0.1 Max epochs 200  
 Gaussian mixtures 5 Early stopping 15 epochs 
 SWA: Start = 150, LR = 5e–4

• Target Transformation: To mitigate the high skewness typi-
cal of financial return metrics, we applied a natural logarithm 
transformation to the target variable, modeling log(ROAS + 1).

• Numerical Standardization: All numerical input features were 
scaled using a ‘StandardScaler’ to have a zero mean and unit 
variance, which is essential for stable gradient descent during 
training.

5.1.3. Dataset splitting
To ensure the model is evaluated on its ability to forecast future 

performance, we employed a strict chronological split. The data from 
the first 20 months (July 2023–Feb 2025) was used for the training set. 
From this training set, the last 15% (approx. 3 months) was held out as 
the validation set for hyperparameter tuning and early stopping. The 
final 4 months of data (March 2025–June 2025) served as the unseen 
test set. This approach prevents any look-ahead bias and simulates a 
realistic deployment scenario.

5.2. Neural network architecture and hyperparameter tuning

The design of the network architecture was determined through 
a systematic tuning process. We began with a grid search over key 
parameters (e.g., number of layers, hidden units) and refined the final 
configuration using Bayesian optimization to fine-tune the learning 
rate, batch size, and regularization strength. Performance was evalu-
ated on the validation set using NLL. The final architecture consists of 
three hidden layers with 256, 128, and 64 neurons, respectively, of-
fering the best trade-off between model complexity and generalization. 
The complete hyperparameter configuration used for all experiments is 
detailed in Table  4.
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Table 5
Conditional Probability Tables (CPTs) for ROAS conditioned on impressions 
and spend.
 Condition Range ROAS binned custom
 Low High 1 2 3 4 5  
 
Impressions

−398.28 79,656.0 5.21% 7.38% 10.14% 3.68% 73.59% 
 79,656.0 159,312.0 12.24% 24.89% 20.32% 15.21% 27.34%  
 159,312.0 238,968.0 0.00% 12.11% 15.47% 65.32% 7.10%  
 238,968.0 max 0.00% 0.00% 0.00% 0.00% 0.00%  
 
Spend

−2.062 416.40 4.52% 8.92% 12.24% 0.70% 73.62% 
 416.40 832.79 8.14% 18.33% 21.12% 14.57% 37.84%  
 832.79 1665.57 2.61% 10.24% 26.88% 45.15% 15.12%  
 1665.57 2081.96 0.00% 0.00% 0.00% 63.64% 0.00%  

5.3. Uncertainty calibration via temperature scaling

While our Bayesian framework provides robust uncertainty esti-
mates, for critical engineering applications such as automated bud-
get allocation, ensuring that a model’s predictive confidence is well-
calibrated is paramount. A well-calibrated model is one whose prob-
abilistic forecasts can be directly interpreted as true likelihoods. To 
this end, we introduce a final enhancement to our framework: a post-
processing calibration step using temperature scaling (Guo et al., 2017). 
This technique is applied after the main model has been trained. A 
single scalar parameter, the temperature 𝑇 > 1, is optimized by min-
imizing the Negative Log-Likelihood (NLL) on the held-out validation 
set. For our Mixture Density Network, the scaling is applied to the logits 
that determine the mixture component weights, 𝜋𝑖(𝑥). This ‘‘softens’’ 
the categorical distribution over the components, reducing the model’s 
overconfidence without altering its accuracy (i.e., the expected value 
of the prediction). This simple, yet powerful, step produces a more 
reliable and trustworthy predictive distribution. The results for this 
enhanced model are presented as ‘Proposed Model (Calibrated)’ in the 
comparative analysis.

5.4. Bayesian Belief Network (BBN) for exploratory causal analysis and 
dependency modeling

Prior to developing our deep learning model, we first constructed 
a Bayesian Belief Network (BBN) as an exploratory tool to model the 
high-level probabilistic dependencies among key advertising variables. 
The BBN, shown in Fig.  5, provides an interpretable, graphical repre-
sentation of the causal funnel, from bidding strategies to final ROAS. 
This initial analysis was instrumental in feature selection and validating 
the core relationships that our subsequent deep model would need 
to learn. However, BBNs are limited by their reliance on predefined 
conditional probability tables and struggle to capture the complex, non-
linear interactions present in large-scale data. Our final deep learning 
model, with its MDN output, was therefore designed to overcome 
these limitations by learning these relationships directly from data in a 
scalable, end-to-end manner.

The BBN provides a structured model for understanding how factors 
such as bidding strategies, impressions, clicks, cost, sales, and conversion 
rates (CVR) interact to determine ROAS. By explicitly capturing these 
dependencies, the BBN facilitates a probabilistic way to bid selection 
and budget allocation in digital advertising, shown in Fig.  5. The joint 
probability distribution over all variables in the BBN follows the chain 
rule of Bayesian networks and is expressed as:

𝑃 (Campaign, Keywords, Bid, Impressions, Clicks, CTR, CVR, Cost, Sales,
 AOV, ROAS) =
𝑃 (Campaign) ⋅ 𝑃 (Keywords|Campaign) ⋅ 𝑃 (Bid|Keywords)

⋅ 𝑃 (Impressions|Bid)

⋅ 𝑃 (CTR|Impressions,Clicks) ⋅ 𝑃 (Cost|Bid,Clicks) ⋅ 𝑃 (Clicks|Impressions)

⋅ 𝑃 (CVR|Clicks) ⋅ 𝑃 (Sales|CVR,AOV) ⋅ 𝑃 (AOV|Clicks) ⋅ 𝑃 (ROAS|Sales,Cost)
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Fig. 6. Actual vs. Predicted ROAS with uncertainty estimates. The strong 
linear trend suggests the model effectively captures underlying relationships. 
The uncertainty gradient highlights areas of higher variability.

Each term in this equation represents a key relationship in the ad-
vertising funnel. The probability of selecting a campaign, 𝑃 (𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛), 
influences the keyword selection probability, 𝑃 (𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠|𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛), 
which determines the likelihood of choosing specific search terms 
for targeting. The bid value 𝑃 (𝐵𝑖𝑑|𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠) subsequently impacts 
the probability of obtaining impressions, 𝑃 (𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠|𝐵𝑖𝑑), which 
dictates the visibility of the advertisement. As impressions accumulate, 
their effectiveness in driving engagement is quantified by the CTR, 
𝑃 (𝐶𝑇𝑅|𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠, 𝐶𝑙𝑖𝑐𝑘𝑠), which reflects the probability of a user 
clicking on an ad given its number of impressions. The associated 
cost of advertising is modeled through 𝑃 (𝐶𝑜𝑠𝑡|𝐵𝑖𝑑, 𝐶𝑙𝑖𝑐𝑘𝑠), capturing 
the impact of bidding strategies on incurred expenses. Additionally, 
conversion efficiency is represented by 𝑃 (𝐶𝑉 𝑅|𝐶𝑙𝑖𝑐𝑘𝑠), describing how 
successfully clicks lead to purchases. The final ROAS computation 
is defined by 𝑃 (𝑅𝑂𝐴𝑆|𝑆𝑎𝑙𝑒𝑠, 𝐶𝑜𝑠𝑡), establishing the ratio of revenue 
generated to advertising expenditure.

5.5. Conditional probability analysis for ROAS estimation

To quantify these relationships, Conditional Probability Tables (CPTs)
were constructed for key dependencies affecting ROAS, specifically 
focusing on impressions and ad spend, Table  5. The probability dis-
tribution of ROAS-given impressions demonstrates significant trends. 
For campaigns with low impressions (below 79,656), there is a 73.59% 
probability of achieving high ROAS. However, at moderate impression 
levels (between 79,656 and 159,312), the ROAS probabilities become 
more distributed across different bins, indicating greater variability in 
campaign performance. In contrast, campaigns with extremely high 
impressions (above 238,968) exhibit a sharp drop in ROAS probabil-
ities, suggesting either diminishing returns at high visibility levels or 
insufficient data in this range.

Similarly, the relationship between advertising spend and ROAS 
highlights the impact of budget allocation on return. Campaigns with 
low ad spend (under $416) exhibit a 73.62% probability of attaining 
high ROAS. However, as spending increases, the probability distri-
bution shifts. Moderate spending levels ($416–832) yield more bal-
anced ROAS outcomes, whereas high-budget campaigns (above $1665) 
tend to concentrate in mid-range ROAS categories, with a 63.64% 
probability of achieving only moderate returns.

5.6. Transition to Bayesian deep learning

The Bayesian Belief Network (BBN) model initially provided valu-
able insights into ROAS prediction by modeling the probabilistic de-
pendencies among campaign factors. However, it faced significant chal-
lenges when handling large-scale, high-dimensional advertising data. 
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Table 6
Comprehensive model performance comparison.
 Model MSE ↓ NLL ↓ ECE ↓ R2 ↑ TT (s) ↓ IL (ms) ↓ Uncertainty 
 Traditional baselines
 Linear regression 0.24 – – 0.79 1.2 0.5 None  
 Random Forest 0.18 – – 0.84 87.4 8.3 None  
 XGBoost 0.11 – – 0.89 124.6 2.9 None  
 Baseline MLP 0.09 – – 0.91 256.8 3.8 None  
 Ablation studies
 Attention only 0.06 – – 0.94 329.4 4.7 None  
 Bayesian only 0.05 2.18 0.11 0.95 301.2 4.1 Moderate  
 Probabilistic baselines
 DeepAR (Salinas et al., 2020) 0.14 2.45 0.15 0.91 145.2 7.8 Moderate  
 Prophet (Taylor and Letham, 2018) 0.17 2.89 0.18 0.89 131.4 6.9 Moderate  
 NGBoost (Duan et al., 2020) 0.13 2.31 0.09 0.92 158.7 6.3 Good  
 MC dropout (Gal and Ghahramani, 2016) 0.28 – – 0.76 – 48.7 Moderate  
 Deep ensembles (Rahaman et al., 2021) 0.26 2.09 0.08 0.77 1610.5 37.9 Good  
 V-BNN 0.05 2.15 0.10 0.96 488.1 6.1 Good  
 Full bayesian networks (Chandra and He, 2021) 0.25 – – 0.77 – 287.6 Excellent  
 Proposed method
 Ours (Uncalibrated) 0.03 1.98 0.09 0.98 352.8 5.2 Good  
 Ours (Calibrated) 0.03 1.90 0.04 0.98 352.8 5.2 Excellent  
 
(a) Prediction uncertainty analysis.

  
(b) ROAS prediction confidence intervals.

 

Fig. 7. Comparison of prediction uncertainty and confidence intervals. (a) The plot visualizes uncertainty estimates for the predicted ROAS values. Higher 
uncertainty is observed for extreme values, indicating a well-calibrated Bayesian model. (b) The confidence intervals demonstrate that uncertainty increases for 
outlier cases, providing valuable insights for risk-aware decision-making.
The reliance on predefined Conditional Probability Tables (CPTs) lim-
ited the model’s adaptability to evolving campaign dynamics. As the 
number of dependent variables increased, maintaining and updating 
these tables became computationally prohibitive. Additionally, the as-
sumptions of conditional independence between variables in BBNs led 
to simplified representations, often missing the intricate relationships 
within real-world advertising data.

To overcome these limitations, the research transitioned to a
Bayesian Deep Learning model, incorporating Stochastic Weight Av-
eraging (SWA) for uncertainty quantification. SWA improves model 
generalization by averaging the model weights during training, helping 
the model approximate the posterior distribution of weights in a 
computationally efficient manner. Unlike the fixed-point predictions of 
the BBN, this deep learning model allows for probabilistic forecasting 
of ROAS, capturing complex, non-linear interactions between features 
that BBNs might overlook.

The proposed Bayesian Deep Learning model offers several advan-
tages: first, it is scalable and can handle high-dimensional data without 
the need for predefined CPTs. Second, the model continuously updates 
based on incoming data, making it adaptive to changes in market 
conditions and campaign strategies. Third, it accounts for uncertainty 
in predictions by providing not only expected ROAS estimates but also 
confidence intervals, aiding advertisers in making risk-aware decisions. 
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Integrating SWA and deep learning ensures more accurate, adapt-
able, and uncertainty-aware ROAS forecasts, supporting advertisers in 
optimizing bidding strategies and budget allocations effectively.

5.7. Performance evaluation

Fig.  6 illustrates the model’s actual and predicted ROAS with uncer-
tainty estimates. The strong linear trend demonstrates that the model 
effectively captures fundamental relationships, while the uncertainty 
gradient identifies areas of higher variability.

5.7.1. Convergence analysis
The convergence of the proposed model was assessed by monitoring 

its loss on both training and validation sets over 200 epochs, as visual-
ized in Fig.  10. The 𝑌 -axis represents the mean Negative Log-Likelihood 
(NLL) loss per sample, which serves as the optimization objective. The 
training process was configured with an early stopping mechanism 
based on the validation loss, a standard practice to prevent overfitting. 
As the figure demonstrates, the training loss (blue line) shows a steep 
and consistent decay. The validation loss (orange line) tracks this decay 
closely before beginning to plateau, with minimal improvement after 
approximately epoch 115. At this point, the early stopping criterion 
was triggered, halting the training to save the best-performing model 
and prevent it from memorizing the training data. The plot confirms 
that the model reached a stable, generalizable solution efficiently.
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(a) SymLog-scaled weight distribution across layers.

  
(b) SymLog-scaled bias distribution across layers. 

 

Fig. 8. (a) The plot shows that most weights are concentrated around zero, with some layers exhibiting a wider spread, indicating a greater impact in learning 
complex relationships.; (b) Bias values remain relatively small, ensuring that the model relies more on learned weights rather than static offsets.
Fig. 9. Violin plot of weight distributions across layers. Wider distributions indicate more expressive transformations, while narrower distributions show 
constrained weight values due to regularization.
5.8. Comparative performance analysis

To validate our architectural choices and establish model efficacy, 
we conducted comprehensive performance analysis against a wide 
range of competitors. Table  6 presents a complete comparison across 
traditional machine learning models, probabilistic baselines, and our 
proposed method. We validated our Gaussian Mixture Density Network 
(MDN) choice through ablation studies. Table  7 shows our MDN ap-
proach achieves superior Continuous Ranked Probability Score (CRPS 
= 0.148) compared to Quantile Regression (0.162) and Laplace Mixture 
(0.155), confirming it as the optimal output strategy. Our comprehen-
sive benchmark includes machine learning models (XGBoost, Random 
Forest), ablation studies (Attention-Only, Bayesian-Only), and leading 
probabilistic frameworks (DeepAR, Prophet, NGBoost, Deep Ensembles, 
V-BNN). The Proposed Model (Calibrated) demonstrates clear advan-
tages: while maintaining state-of-the-art accuracy (MSE = 0.03, R2 =
0.98), it achieves the lowest NLL (1.90) and reduces Expected Calibra-
tion Error to just 0.04. This 50% ECE reduction highlights temperature 
scaling’s effectiveness in producing reliable probabilistic forecasts for 
engineering applications.
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Table 7
Comparison of alternative probabilistic output layers.
 Output strategy (CRPS) ↓ 
 Gaussian mixture density network (Proposed) 0.148  
 Quantile regression (9 Quantiles) 0.162  
 Laplace mixture density network 0.155  

5.8.1. Scalability analysis
To evaluate the scalability of the proposed model, training time 

and memory usage were assessed for different dataset sizes. Table  8 
presents the results. The results indicate that the proposed model scales 
efficiently with increasing dataset sizes, maintaining stable compu-
tational requirements while achieving progressively higher accuracy. 
The performance gains diminish beyond 160K samples, suggesting an 
optimal trade-off between data size and predictive power.

5.8.2. Computational efficiency analysis
For a model to be viable in real-world advertising systems, par-

ticularly for applications like real-time bidding, it must be compu-
tationally efficient at inference time. To provide a clear assessment 
of our model’s practicality, we analyzed its computational footprint 
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Fig. 10. Training and validation loss curves. The 𝑌 -axis represents the mean 
NLL per sample. The training process terminates around epoch 115 due to 
an early stopping mechanism, which prevents overfitting by halting training 
when the validation loss ceases to improve.

Table 8
Computational efficiency analysis and ablation study results.
 Computational efficiency analysis
 Dataset size Training time (s) Memory (GB) R2 score  
 40K (25%) 98.2 1.3 0.9742  
 80K (50%) 174.6 2.1 0.9812  
 160K (100%) 352.8 3.7 0.9870  
 Ablation study on model components
 Component removed R2 Score MSE Uncertainty  
 Full model 0.9870 0.0353 Perfect (1.0000) 
 - Self-attention 0.9572 0.0544 Good (0.9241)  
 - Residual connections 0.9683 0.0421 Good (0.9532)  
 - Layer normalization 0.9412 0.0732 Poor (0.7863)  
 - Bayesian output 0.9751 0.0392 None  

Table 9
Computational efficiency analysis at inference.
 Model Params (M) ↓ GFLOPs ↓ Memory (MB) ↓ Latency (ms) ↓ 
 Baseline MLP 4.1 0.08 32 3.8  
 V-BNN 8.2 0.16 58 6.1  
 Deep ensembles (x5) 20.5 0.40 160 25.5  
 Proposed model 4.8 0.11 45 5.2  

against key deep learning baselines. We measured four key metrics: (i) 
the number of trainable parameters, (ii) the floating-point operations 
(FLOPs) required per inference, (iii) the peak memory consumption 
during inference, and (iv) the inference latency (time per campaign). 
The results are detailed in Table  9. Our proposed model maintains a 
parameter count comparable to a standard MLP and the V-BNN. Its 
computational complexity, measured in GFLOPs, is only marginally 
higher than the non-Bayesian MLP, demonstrating the efficiency of 
the self-attention mechanism. The primary advantage is seen when 
comparing against Deep Ensembles. While ensembles are a power-
ful baseline for uncertainty, they come with a linear increase in all 
computational metrics, making them impractical for latency-sensitive 
applications. Our model, in contrast, provides superior accuracy and 
uncertainty quantification at a fraction of the computational cost of 
ensembles. This analysis confirms that our proposed architecture is not 
only highly accurate but also computationally feasible for deployment 
in production environments.
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Table 10
Model performance under distribution shift.
 Test scenario RMSE ↓ NLL ↓ ECE ↓ Avg. Uncertainty ↑ 
 Seasonal covariate shift
 In-distribution (Q1-Q3) 0.038 2.05 0.04 0.21  
 Shifted distribution (Q4) 0.051 2.49 0.06 0.34  
 Out-of-distribution generalization
 In-distribution (Seen) 0.035 1.90 0.04 0.20  
 Out-of-distribution (Unseen) 0.082 3.15 0.07 0.45  

5.8.3. Ablation study
An ablation study was conducted to evaluate the contribution of 

key architectural components. The study involved removing different 
components such as self-attention, residual connections, Layer Nor-
malization, and Bayesian output layers, assessing the resulting impact 
on performance. The results are summarized in Table  8. The find-
ings from the ablation study reveal that self-attention plays a critical 
role in performance enhancement, as removing it significantly reduces 
predictive accuracy. The removal of residual connections and Layer 
Normalization resulted in diminished training stability and increased 
error rates. The absence of Bayesian output led to a complete loss of 
uncertainty estimation capabilities, further reinforcing its importance 
in achieving calibrated predictions (see Fig.  11).

5.8.4. Uncertainty calibration under distribution shift
A key advantage of probabilistic frameworks is uncertainty quan-

tification when data differs from training distributions. We evaluated 
model robustness under two scenarios: seasonal covariate shift (Q4 
holiday shopping vs. Q1-Q3 training) and out-of-distribution general-
ization (unseen targeting features). Table  10 shows the results. For sea-
sonal shift, while predictive performance degrades on Q4 data, average 
uncertainty increases by 60%, correctly signaling reduced confidence 
during volatile periods. For OOD scenarios with completely unseen 
campaign types (‘Targeting_keto friendly foods’ and ‘Targeting_vegan 
protein powder vanilla’), uncertainty more than doubles, providing 
reliable indicators for novel scenarios requiring manual review.

5.9. Case study: Risk flagging in extreme scenarios

To probe the model’s practical utility in an engineering context, we 
analyzed its predictive behavior on extreme and anomalous campaigns. 
A critical application is the automated flagging of high-risk assets, 
such as campaigns with high spend but volatile, poor returns. Fig.  12 
presents a comparative case study between a standard, high-performing 
campaign (Case A) and such an anomalous, low-performing campaign 
(Case B). In Case A, the model accurately predicts the high ROAS with 
a tight, low-variance confidence interval, reflecting its high confidence 
in the forecast for this stable campaign. In contrast, for Case B, the 
model’s predictive uncertainty is substantially higher, resulting in a 
much wider confidence interval. While the point prediction is imper-
fect, the large uncertainty is the critical, actionable insight. It signals to 
an advertiser that this campaign is highly unpredictable and performing 
outside of normal parameters, warranting immediate manual review or 
automated intervention. This demonstrates the model’s ability to act 
as a risk-detection mechanism, using uncertainty to flag problematic 
campaigns that might otherwise go unnoticed.

5.10. Early-warning system for performance degradation

A second practical application for a probabilistic forecasting model 
is its use as an automated early-warning system. To evaluate our 
model’s capability in this regard, we designed a simulation to test its 
response to a gradual decline in campaign performance. We selected a 
set of historically high-performing campaigns and synthetically intro-
duced a steady, day-by-day decrease in their true ROAS over a 30-day 
period.
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Fig. 11. Gradient-based feature importance. The most influential features include total sales, total orders, spending, clicks, and CPC, validating the model’s ability 
to capture key advertising metrics.
Fig. 12. Comparative case study of model predictions on extreme campaign scenarios. (a) For a stable, high-performing campaign, the model is accurate and 
confident, producing a tight, low-variance 95% confidence interval. (b) For a volatile, low-performing campaign, the model correctly expresses high predictive 
uncertainty through a wide confidence interval, flagging it as a high-risk asset requiring intervention.
The model’s response to this degradation is illustrated in Fig.  13. 
In the initial days of the simulation, the true ROAS remains close 
to its historical average, and the model provides confident predic-
tions with a narrow 95% confidence interval. However, as the cam-
paign’s performance steadily degrades and diverges from the histori-
cally learned patterns, the model’s predictive uncertainty consistently 
increases, causing the confidence interval to widen significantly. This 
widening uncertainty serves as a direct, quantifiable signal that the 
campaign’s behavior is no longer predictable and requires attention. 
This result demonstrates the model’s potential utility in automated 
monitoring systems for flagging underperforming advertising assets 
before significant losses accumulate.

5.11. Explainable model decisions

To ensure the framework is transparent and trustworthy, we inte-
grated a suite of explainability techniques. These can be divided into 
two categories: (1) actionable insights directly usable by advertisers 
for strategic decisions, and (2) internal diagnostics for data scientists 
to validate and debug the model. The model provides two primary 
forms of direct, actionable intelligence, as visualized in Fig.  14. First, 
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gradient-based feature importance (Fig.  14a) identifies the most influ-
ential predictors of ROAS. The high importance of fundamental metrics 
like Total Sales and Spend validates that the model has learned correct 
business logic. More tactically, the prominence of specific ‘Targeting_’ 
features allows advertisers to confirm or challenge their audience se-
lection strategies. Second, the model’s uncertainty estimates serve as a 
direct, quantifiable risk flag (Fig.  14b). As shown in our case study (Fig. 
12), the model assigns high uncertainty to volatile, low-performing 
campaigns. This allows an advertiser to implement automated rules, 
such as pausing a campaign when its predicted uncertainty exceeds a 
threshold, directly translating the model’s output into an operational 
decision to prevent wasted spend. Attention mechanisms reveal how 
the model dynamically weighs features, which can help a data scientist 
identify potential data leakage or discover novel feature interactions. 
Furthermore, analyzing weight distributions (Figs.  8(a), 8(b), and 9) 
offers a diagnostic view of model complexity. The observation that 
deeper layers exhibit a wider weight spread, for example, confirms that 
they are learning more complex representations. These tools are crucial 
for data scientists to maintain, trust, and refine the model over time.
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Fig. 13. Simulation of the model’s response to gradual performance degradation. As the true ROAS (black line) systematically deviates from the historically 
expected behavior over 30 days, the model’s predicted uncertainty (shaded blue area) consistently widens. This demonstrates the framework’s capability to serve 
as an early-warning system by translating performance decay into a quantifiable uncertainty signal.
Fig. 14. Actionable insights for advertisers. (a) Feature importance identifies key business drivers. (b) Predictive uncertainty quantifies campaign risk, enabling 
automated flagging of volatile assets.
6. Conclusion

In this paper, we presented a hierarchical Bayesian Self-Attention 
model to address the significant uncertainty in forecasting Return on Ad 
Spend (ROAS) in e-commerce advertising. Our architecture leverages 
self-attention layers to capture intricate campaign dependencies and a 
Mixture Density Network head to output a full probability distribution 
of ROAS, a design motivated by an initial exploratory analysis with 
a Bayesian Belief Network. Evaluations on a large-scale dataset of 
over 160,000 Amazon PPC campaigns show that our model achieves 
state-of-the-art accuracy with an R2 of 98%, a 47.9% lower RMSE, 
and a 9.1% better NLL compared to established baselines. These re-
sults are achieved with a 5.2 ms inference latency, confirming the 
model’s suitability for real-time bidding environments. By moving be-
yond deterministic point-estimates, our probabilistic approach provides 
deeper insights into campaign variability, enabling risk-aware budget 
allocation and more intelligent bidding strategies.
Broader applicability and future work. While validated on Amazon Ads 
data, the proposed framework is fundamentally platform-agnostic, as 
it learns from universal advertising primitives like impressions, clicks, 
and conversions. We therefore posit that the model can be readily 
adapted to other auction-based ecosystems, such as Google Ads or 
Walmart Connect. Future work should focus on empirically validating 
this generalizability, as well as extending the framework to differ-
ent ad formats like sponsored display or video ads. Further research 
could also incorporate causal inference techniques to better isolate the 
impact of campaign variables, and explore extending the model to 
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enable cross-channel budget optimization in multi-platform advertising 
environments.
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