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Abstmct 

Concatenative Speech Synthesis: A Framework for Reducing Perceived Distortion when 

using the TD-PSOLA Algorithm 

Author Jennifer Ann Longster 

This thesis presents the design and evaluation of an approach to concatenative speech synthesis 

, using the Titne-Domain Pitch-Synchronous OverLap-Add (I'D-PSOLA) signal processing 
algorithm. Concatenative synthesis systems make use of pre-recorded speech segments stored in 

a speech corpus. At synthesis time, the `best' segments available to synthesise the new utterances 
are chosen from the corpus using a process known as unit selection. During the synthesis process, 
the pitch and duration of these segments may be modified to generate the desired prosody. The 
TD-PSOLA algorithm provides an efficient and essentially successful solution to perform these 
modifications, although some perceptible distortion, in the form of `buzzyness', may be 
introduced into the speech signal. 

Despite the popularity of the TD-PSOLA algorithm, little formal research has been undertaken 
to address this recognised problem of distortion. The approach in the thesis has been developed 

towards reducing the perceived distortion that is introduced when TD-PSOLA is applied to 
speech. 

To investigate the occurrence of this distortion, a psychoacoustic evaluation of the effect of pitch 
modification using the TD-PSOLA algorithm is presented. Subjective experiments in the form of 
a set of listening tests were undertaken using word-level stimuli that had been manipulated using 
TD-PSOLA. The data collected from these experiments were analysed for patterns of co- 
occurrence or correlations to investigate where this distortion may occur. 

From this, parameters were identified which may have contributed to increased distortion. These 
parameters were concerned with the relationship between the spectral content of individual 

phonemes, the extent of pitch manipulation, and aspects of the original recordings. 

Based on these results, a framework was designed for use in conjunction with TD-PSOLA to 
minimise the possible causes of distortion. The framework consisted of a novel speech corpus 
design, a signal processing distortion measure, and a selection process for especially problematic 
phonemes. Rather than phonetically balanced, the corpus is balanced to the needs of the signal 
processing algorithm, containing more of the adversely affected phonemes. The aim is to reduce 
the potential extent of pitch modification of such segments, and hence produce synthetic speech 
with less perceptible distortion. 

The signal processing distortion measure was developed to allow the prediction of perceptible 
distortion in pitch-modified speech. Different weightings were estimated for individual 
phonemes, trained using the experimental data collected during the listening tests. The potential 
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benefit of such a measure for existing unit selection processes in a corpus-based system using 
TD-PSOLA is illustrated. Finally, the special-case selection process was developed for highly 

problematic voiced fricative phonemes to minimise the occurrence of perceived distortion in 
these segments. 

The success of the framework, in terms of generating synthetic speech with reduced distortion, 
was evaluated. A listening test showed that the TD-PSOLA balanced speech corpus may be 

capable of generating pitch-modified synthetic sentences with significantly less distortion than 
those generated using a typical phonetically balanced corpus. The voiced fricative selection 
process was also shown to produce pitch-modified versions of these phonemes with less 

perceived distortion than a standard selection process. The listening test then indicated that the 
signal processing distortion measure was able to predict the resulting amount of distortion at the 
sentence-level after the application of TD-PSOLA, suggesting that it may be beneficial to include 

such a measure in existing unit selection processes. 

The framework was found to be capable of producing speech with reduced perceptible distortion 
in certain situations, although the effects seen at the sentence-level were less than those seen in 
the previous investigative experiments that made use of word-level stimuli. This suggests that the 
effect of the TD-PSOLA algorithm cannot always be easily anticipated due to the highly dynamic 

nature of speech, and that the reduction of perceptible distortion in TD-PSOLA-modified speech 
remains a challenge to the speech community. 
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1.1 Area of Research and Motivation 

1.1.1 Area of Research 

Text-to-Speech (M) is the art of designing talking machines, whereby arbitrary sentences in a 

textual format are automatically transformed into the spoken word. Speech technology potentially 

provides an efficient mode of communication between human and computer, and has a wide 

range of applications from reading machines for the visually impaired, to hands and eyes free 

operations of controls in avionics. In recent years, many text-to-speech systems have been 

developed that are able to provide intelligible, unlimited vocabulary output, however it is still 

possible to distinguish the resulting synthetic speech from natural speech (Sproat et al. 1999, 

Black 2002). Text-to-speech synthesis is a complex interaction between two very different fields 

of research, namely Natural Language Processing (NLP) and Digital Signal Processing (DSP). 

Syrdal et ah (1998b) suggest that text-to-speech systems may be improved in terms of naturalness 

by addressing the three areas of linguistic analysis, prosody modeling, and speech synthesis 

models. There remain aspects needing attention in all stages of the text-to-speech process but it is 

the domain of speech synthesis that is the focus of this work. A major issue in speech synthesis 

research is concerned with maintaining the resulting speech quality at the digital signal processing 

stage, and it is this challenge that provides the motivation for the thesis. 

1.1.2 Statement of Problem 

There are three main speech synthesis approaches: articulatory, forrnant, and concatenative 

synthesis. Concatenative synthesis is currently the most promising approach, providing intelligible 

speech output in an efficient manner. Its main drawback is in the use of pre-recorded speech 

segments stored in an inventory, which makes this approach somewhat inflexible in terms of 

spectral modifications. When synthesising a new utterance, such modifications are often 

necessary if segments with suitable prosody cannot be found to exist in the inventory. To 

increase flexibility, corpus-based approaches to concatenative synthesis store multiple versions of 

speech segments. These segments are extracted from different phonetic and prosodic contexts 
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and hence have varying voice qualities and prosody (pitch and durations). During synthesis, the 

`best' segment is selected from the corpus, in terms of criteria such as phonetic context, position 

in syllable, word and phrase, and pitch and duration using a process known as unit selection. 

However, the prosody of these segments may still not be suitable when synthesising arbitrary 

sentences; it is not possible to store every combination of pitch and duration due to the 

variability of speech. Whilst the corpus-based approach reduces the distance (m Hz and seconds) 

of the candidate values of the segments in the corpus to the target values of pitch and duration, a 

signal processing algorithm may still be necessary to perform small modifications. The Time- 

Domain Pitch-Synchronous OverLap-Add (TD-PSOLA) algorithm provides an efficient and 

generally successful solution, although certain modifications introduce distortion in the form of 

`buzzyness' into the speech. During the thesis, the perceptible distortion that occurs in speech 

after the application of the TD-PSOLA algorithm will be termed `buzzyness'. Unless otherwise 

stated, the term distortion is defined as subjective perceived distortion, as opposed to objective 

signal distortion. 

In a corpus-based approach to concatenative synthesis, the design of the speech corpus is usually 

phonetically balanced, not balanced to the additional needs of the signal processing algorithm. 

This lack of consideration may lead to the introduction of increased perceptible distortion in 

certain circumstances when signal processing algorithms, such as TD-PSOLA, are used for 

prosodic modifications. Indeed, research often reports results for TD-PSOLA modified speech 

as ̀ success in the main' or as giving `the best and worst' results. 

For corpus-based systems, unit selection algorithms arc used to select the best candidate segment 

from the corpus during synthesis. Current unit selection processes that take into account the cost 

of signal processing in terms of the distortion that may be introduced, often do so by calculating 

the distance of the candidate values available in the corpus to the target values of the construct to 

be synthesised. The distance can be defined as the amount in Hz or seconds that the signal 

processing algorithm must modify the pitch or duration of the speech segments. This cost is 

estimated as an absolute distance for all segments, rather than weighting the distance according to 

the peculiarities of the particular algorithm. This neglect may lead to increased perceived 

distortion. 
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The thesis is concerned with maintaining the speech quality at the digital signal processing stage 

of the speech synthesis process, by minimising the perceptible distortion in the output 

1.1.3 Research Aims & Objectives 

The thesis attempts to address the specific problem of the introduction of distortion, perceived 

as `buzzyness', when speech is modified in pitch using the TD-PSOLA algorithm. The aim of the 

research is to develop a framework, which will facilitate the synthesis of speech using TD- 

PSOLA with reduced distortion. The framework will consist of a speech corpus design, tailored 

to the needs of the TD-PSOLA algorithm, and a signal processing distortion measure, weighted 

according to the effect of the algorithm on individual speech segments. The design of the corpus 

and signal processing measure will be guided by the results of investigative experiments 

undertaken to determine the effect of TD-PSOLA on speech. This will allow the development of 

an approach to speech synthesis which best minimises perceived distortion. The implementation 

of the speech corpus design and signal processing measure will be formally evaluated to 

determine whether the framework reduces distortion when speech is modified using the TD- 

PSOLA algorithm. To this end, the work has the following research objectives: 

1. Identify extant speech synthesis models: The first objective is to identify and critically 

evaluate the popular models for the generation of synthetic speech. The remainder of this 

chapter reviews the entire speech synthesis process to set the work in context, provides 

the terminology and background required, and ends by identifying the main speech 

synthesis models in existence to meet this objective. The model considered most 

potentially successful for the future of speech synthesis is identified and justified as the 

choice for further investigation during this thesis. 

2. Analyse the effect of the TD-PSOLA algorithm: The second objective is to identify some 

of the potential distortions associated with the algorithm. Chapter 2 begins by presenting 

the operation of the TD-PSOLA algorithm mathematically and then describes the 

implementation of the algorithm to be used during the research. Throughout the thesis, 

the Praat speech software (Boersma & Weenink, 1999) is used to analyse speech samples 

and provides the implementation of TD-PSOLA under investigation (see Section 2.3 for 

an introduction to this software). The basic distortions TD-PSOLA introduces into 

abstract signals, such as pure sine waves and single formant signals, are then investigated. 
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The distortion referred to here is in the form of objective signal distortion, rather than 

subjective perceptible distortion. The chapter then attempts to determine whether the 

objective distortions observed are perceptible, and whether they may be perceptible in 

more complex signals such as natural speech. To this end, extant research concerning 

TD-PSOLA is reviewed, identifying parameters that may lead to the occurrence of 

perceptible distortions. 

3. Review speech assessment techniques: Chapter 3 presents a review of current, popular 

subjective techniques and practices for the assessment of intelligibility and quality of 

speech. This is used to inform the design and procedure of experiments carried out 
during this work. 

4. Investigate the effect of TD-PSOLA on natural speech: Chapter 4 documents a series of 

subjective listening experiments undertaken to investigate the effect of the TD-PSOLA 

algorithm on resulting distortion levels, when used for pitch-modification of natural speech. 

The results of these experiments are used to suggest parameters that may contribute to 

perceptible distortion. 

5. Develop a framework for producing synthetic speech with less perceived distortion: 

Chapter 5 documents how the results of the investigative experiments were analysed to 

inform the development of a novel speech corpus, tailored to the needs of the TD- 

PSOLA algorithm. The data were also analysed to develop a signal processing distortion 

measure. The measure is weighted according to the phonetic identity of the individual 

speech sounds to reflect how each segment responds to the algorithm in terms of 

perceived distortion levels. Finally, a special-case selection process was developed for 

highly problematic voiced fzicative phonemes. 
6. Evaluate the framework: Chapter 6 describes an experiment to deterniine the success of 

the speech corpus at producing synthetic speech, with less perceived distortion than a 

standard approach. It also evaluates the validity of the signal processing distortion 

measure to justify the need for such a measure in standard unit selection procedures. 
Finally, the special-case voiced fricative selection process is evaluated in terms of its 

ability to produce TD-PSOLA-modified versions of these phonemes with less perceived 
distortion. 
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The following introductory material in Chapter 1 explains the context for the work and provides 

the necessary conceptual underpinning. Initially, an overview of human speech production and its 

physical and phonetic representation is given, followed by an introduction to the overall text-to- 

speech process. Following this, a detailed and critical examination of some current, more popular 

techniques used at the speech synthesis stage is presented. The chapter then discusses the 

selection of concatenative synthesis, using a corpus-based approach in conjunction with the TD- 

PSOLA algorithm, as a promising direction for speech synthesis and for further investigation 

during this research. Finally, the chapter reiterates the structure of the remainder of the thesis. 

1.2 Overview of Speech Production and its Representation 

Speech synthesis is a complex research field. To fully appreciate this complexity and the 

challenges of speech synthesis research, knowledge of the human speech production process is 

essential. It is also necessary to understand the physical representation of the resulting speech 

signals and be conversant with phonetics to be able to describe speech in an abstract symbolic 

representation. 

1.2.1 Speech Production 

Phonation or human speech is produced by the vocal organs, which are depicted in Figure 1.1. The 

respiratory organs of the lungs and the diaphragm produce and force air up the trachea and 

through the vocal cords (or folds) to the main cavities of the vocal tract: the pharynx, and the 

oral and nasal cavities. 

The opening between the vocal cords is called the glottis. Air flows freely through the glottis 

during breathing or unvoiced speech such as /s/ or /f/, but during voiced speech, such as /I/ or 

/E/, the cavity containing the vocal cords (the larynx) is obstructed. 
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hard palatc 

*-- -- nostrils 

Ups 

FIGURE 1.1. THE SPEECH PRODUCTION ORGANS (FROM DUTOIT, 1997) 

Increasing air pressure forced upwards causes the vocal cords to open to release this air, leading 

to a pressure drop and the closure of the glottis. In this way, the vocal cords modulate the airflow 

by rapidly opening and closing, causing a vibrating sound. This is in the form of a glottal waveform 

or a sequence of pulses that are fed into the vocal cavities, from which voiced speech is 

produced. The frequency of this sound depends on the mass and tension of the vocal cords, and 

is known as the fundamental frequency. Average fundamental frequencies (f0) range from 70 to 200, 

150 to 400, and 200 to 600Hz for men, women and children respectively (Dutoit, 1997). 

During unvoiced speech, the airflow in the vocal cavities is turbulent due to several constrictions 

in the vocal tract, which may occur anywhere between the glottis and the mouth. Some speech 

sound production requires both this turbulent noise and a glottal waveform to be present at the 

same time, for example during the production of the voiced fricative /v/. Alternatively, the air 

from the lungs may be stopped totally by the closure of the vocal cords, called a glottal stop or by a 

closure somewhere in the vocal tract, such as the lips. 

The pharynx and oral cavity are used for most sounds, although nasal sounds (/m/ or /n/) 

require the nasal cavity to be shunted with the oral cavity by lowering the velum. The size and 

shape of the oral cavity are altered by movements of the palate, tongue, cheeks, lips and teeth, 

which determine the timbre of the sounds produced. 

, ter 
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1.2.2 Physical Representation qf Speech 

The perceptual aspects of speech such as pitch, rhythm, loudness, and timbre have acoustic 

correlates of fundamental frequency, duration, intensity, and spectral energy distribution that can 

be represented diagrammatically in the time and frequency domain. 

In the time domain, the basic representation of a speech signal is the wavefornm, which depicts the 

speech signal as a series of pressure changes in air as a function of time. Figure 1.2 shows a time- 

domain waveform of the word "kit" recorded by a female voice. 

FIGURE 1.2 TIME-DOMAIN WAVEFORM OF THE WORD "KIT" 

The acoustics of the speech originate from the production. Voiced speech has a fundamental 

frequency (f0), produced by the opening and closing of the vocal cords, and the harmonic 

components of this frequency. Unvoiced speech has no fundamental frequency and no harmonic 

structure; it may be viewed as white noise caused by air forced through the constricted vocal 

tract. The waveform in Figure 1.2 shows the periodic, or voiced parts of speech (/I/), and the 

noisy, or unvoiced parts of speech (/k/ and /t/) in the word "kit". It also shows the loudness or 

intensity of the speech as the amplitude of the pressure changes from the resting value. 

The frequency domain representation of a speech signal, or spectrum, can be generated by 

calculating the Discrete Fourier Transform (DFT) of the time-domain signal. As most speech 

sounds are bounded in time, or are only quasiperiodic, meaning they vary slightly from one period 
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to the next, the spectrum of a speech signal is usually calculated at one particular point in time. 

This is achieved by applying an analysis window, such as a Hamming or Hanning window, which 

makes the small portion of sound of interest fade in and out and renders the rest of the signal 

zero. The window is usually of 1 Oms to 30ms duration, over which time the signal is assumed to 

be stationary. 

FIGURE 1.3. SPECTRUM OF PHONEME /I/ 

In Figure 1.3, the spectrum of the phoneme /I/ clearly shows the many different frequency 

components, and the intensity of these components, that make up a complex signal at a particular 

instant. The first spike or narrow peak at 240 Hz represents the fundamental frequency, with the 

other spikes representing the harmonics of this frequency. The timbre of speech depends on the 

overall spectral shape, called the spectral envelope, which appears as a series of broad peaks showing 

higher energy levels. The peaks and troughs in the spectral envelope are determined by how the 

vocal tract modifies the excitation signal due to its resonant frequencies, causing formants (poles) 

and sometimes antiformants (zeros). The first, second and third formants (fl, f2 and f3) are 

visible, with their bandwidths and amplitudes, at approximately 500Hz, 2400Hz and 3000Hz 

respectively. These values were confirmed using the Praat software (Boersma & Weenink, 1999) 
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and found to he within the typical ranges for the female production of /I/. The formant 

frequencies depend on where and to what extent the vocal tract is constricted (Flanagan, 1972). 

For speech applications, it is not always convenient to view only one particular instant of the 

signal in the frequency domain. Spectro grams (Koenig et al., 1946) provide both a time and 

frequency domain representation of speech and are composed of a collection of spectra. 

Frequency is shown on the vertical axis and time on the horizontal, with a third dimension of 

amplitude represented by shade of grey. The speech sounds may be shown as the temporal 

evolution of the spectral components and their varying intensity. 

FIGURE 1.4 SPECTROGRAM OF THE WORD "KIT" 

Figure 1.4 shows a spectrogram of the word "Idt". Voiced sounds can be seen to have more 

energy focused at lower frequencies with each formant centre frequency, bandwidth and 

amplitude evolving over time. Unvoiced consonants are more silent, having lower energy levels 

usually focused at higher frequencies. Unvoiced sounds are also less steady involving rapid 

changes. 
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1.2.3 Phonetics 

Phonetics is concerned with transcribing written text into the correct pronunciation of the 

spoken word using a symbolic representation. Each language has its own phonetic alphabet that 

describes every possible phoneme. A phoneme is an abstract unit that may be defined as the 

smallest contrastive unit in a language (Crystal, 1987) or alternatively as a group of sounds 

classified as the same by native speakers of that language. An example given by Gelfand (1998) 

illustrates the phoneme /p/ in "pipe" is recognised as a /p/ in both positions in the word, 

although in fact they are produced differently (the first is accompanied by a burst of air, the 

second is not) leading to two allophones of that phoneme, or dissimilar members of the same 

phonemic class. The acoustic realisation of a phoneme is often called a phone. There are 

approximately 40 phonemes in the English language (Breen et al 1996, Donovan 1996) although 

the number cannot be determined easily due to the complexity and variability of speech. 

The IPA (International Phonetic Alphabet) notation (IPA, 1949) has been developed to associate 

phonetic symbols to sounds using Greek letters, which unfortunately do not lend themselves to 

processing with computers not in possession of correct character sets. The SAMPA (Speech 

Assessment Methods Phonetic Alphabet) notation (Wells et aL, 1992) provides a machine- 

readable phonetic transcription. The SAMPA notation will be used throughout the thesis to 

describe the speech under investigation. 

It is often useful to group speech sounds into phonetic classes (articulatory phonetics) according 

to manner of articulation i. e. the type of articulation needed to produce the speech sound. The 

English language is comprised of two main classes: vowels and consonants. 

English vowels can be grouped as either checked (of short duration) or free (of longer duration). 

The free vowels are made up of monothongs (one vowel sound in a single syllable, such as /i: / in 

"ease") and diphthongs (two vowel sounds in a syllable, such as /U@/ in "cures") although it is 

often difficult to classify them as such. There is also one unstressed vowel /@/, occurring for 

example at the beginning of the word "another". A review of vowel perception may be found in 

Kent & Read (1992). 
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Consonants may be described as fricatives, affricatives, plosives or stops, nasals, and semi-vowels 

(glides and liquids). Their manner of articulation is described below and examples are given in 

Table 1.1. 

" Fricatives and Affricatives (Hughes & Halle, 1956): during the production of ffiicatives, 

the vocal tract is constricted at various places such as the glottis, hard palate, teeth or lips 

making the airflow turbulent. Aff icatives begin as plosives, but when the vocal tract is 

released, a fricative sound emerges. 

" Plosives (Halle et at., 1957): the vocal tract is closed causing a build-up of pressure. When 

it reopens, a burst of sound is released. 

" Nasals (Fujimura, 1962): when the vocal tract is dosed and the velum is lowered, air flows 

out through the nasal cavity. 

9 Semivowels (O'Connor et al., 1957) consist of two groups: glides and liquids. Production 

of glides involves a fast transition from a vowel-like open position, producing a frication. 

Liquids involve vowel-like articulations, which are produced in conjunction with partial 

closure of the vocal tract with the tongue. 

English consonants can be further grouped into obsuuents (plosives, affiicatives and fricatives) 

and sonorants (nasals, liquids and glides). The obstruents may be loosely classified as voiced or 

voiceless although this depends heavily on their context. O'Shaughnessy (1987) provides a more 

detailed classification. 

Table 1.1 describes the speech sounds in the English language, grouped according to manner of 

articulation. The SAMPA notation, an example word, and the transcription of this word are 

given. In the final column, consonants are classified as either voiced or unvoiced, and vowels 

(which are all voiced) are classified as either monothongs or diphthongs. 
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Manner of 
Articulation 

SAMPA 

Symbol 

Example 

Word 

Transcription Additional 

Information 

Plosives p pin 
in unvoiced 

b bin bIn voiced 

t tIn unvoiced 

d din dIn voiced 

k kin kIn unvoiced 

g give gIv voiced 

Affricatives tS chin tSIn unvoiced 

dZ gin ýIn voiced 

Fricatives f fin fin unvoiced 

v vim vim voiced 

T thin TIn unvoiced 

Nash- 

D 

s 

z 

S 

z 

h 

m 

this 

sin 

shin 

measure 

hit 

mock 

is 

sIn 

zIN 

gin 

meZ@ 

hIt 

mQk 

voiced 

unvoiced 

voiced 

unvoiced 

voiced 

unvoiced 

voiced 

n kn nQb voiced 

Liquids 

N 

r 

g 

wrong rQN 

voiced 

voiced 

1 long 1QN voiced 

Glides w wasp wQsp voiced 

yacht jQt voiced 

Checked vowels I pit pIt monothong 
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ý 
E pet pEt monothong 

mmmmmmm { pat p ft monothong 

Q pot pQt monothong 

V cut kVt monothong 

U put pUt monothong 

Unstressed @ another @nVD@ monothong 

Free vowels i: ease i: z monothong 

eI raise reiz monothong 

aI rise ratz diphthong 

01 noise nOIz diphthong 

u: lose lu: z monothong 

@U nose n@Uz monothong 

au rouse raUz diphthong 

3: furs f3: z monothong 

A: stars stA: z monothong 

O: cause kO: z monothong 

I@ fears fI@z diphthong 

e@ stairs ste@z diphthong 

U@ cures kU@z diphthong 

Table 1.1. Phonemes of the English Language 

Speech sounds may also be described by place of articulation i. e. the location of primary constriction 

needed to produce the speech sound, depending on whether the sounds are produced at the 

front or back, with an open or closed mouth etc. The more common places of articulation are 
listed here: 

" Labial: lips e. g. /p, b, m/ 

" Dental: teeth e. g. /T/ as in "thin" 

" Labio-dental: lower lip and upper teeth e. g. If, v/ 

" Alveolar. blade/ tip of tongue with dental ridge e. g. /t/ 
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" Palatal: tongue and roof of mouth e. g. /dZ/ as in "jam" 

" Palato-alveolar: as alveolar but tongue tip is lowered e. g. /S/ as in "shoe" 

" Velar: back of tongue and roof e. g. /k, g/ 

" Glottal: momentary closure of throat e. g. "go' a lo' o' bo'lle" 

Vowels may be described from front to back in terms of tongue elevation and lip rounding. 

Front vowels (/i:, I, eI, E, {/) are produced with the lips retracted while back vowels (/u:, U, 

@U, 0:, Q, A: /) require rounded lips. Middle vowels (/V, @, 3: /) are produced when the tongue 

elevation is in the vicinity of the hard palate. Vowels may also be described as tense or lax 

depending on the degree of muscle contraction e. g. /i: / (`peat") is tense and /I / (`pit") is lax. 

1.3 The Text-to-Speech Process 

A Text-to-Speech (ITS) system automatically converts textual input into audible speech. Figure 

1.5 shows a general TTS system, consisting of a Natural Language Processing (NLP) module and 

a Digital Signal Processing (DSP) module. 

TEXT= 

NATURAL 
LANGUAGE 

TEXT PROCESSING 

FIGURE 1.5 GENERAL TTS SYSTEM 

The NLP module takes the textual input and produces a phonetic transcription of the sounds 

that are to be produced. It also predicts prosodic information from the text, describing how the 
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sounds are to be produced in terms of rhythm and intonation. The DSP module synthesises the 

required speech by transforming this symbolic information into a physical waveform. 

In the following sections, a brief description of each process that occurs in these two modules is 

given. This illustrates the complexity of text-to-speech and sets the topic of this research of speech 

ynthesis at the DSP stage in context. 

1.3.1 The Natural Language Processing Module 

Figure 1.6 shows a more detailed diagram of a general Natural Language Processing (NLP) 

module. The NLP stage is extremely difficult, as mere text does not contain all of the information 

needed to produce speech. 

PHONETIC 
UNITS 

TEXT 

PROSODIC 
PARAMETERS 

The first block of the NLP module converts the text to phonetic information and may be further 

broken down into a text norrnaliýation process and a word pronunciation process. The second block 

produces prosody information from the text and from the output of the word pronunciation 

process. It is broken down into smaller processes that determine accenting, phrasing, duration, and 
intonation. For a review, see Edgington et al. (1996a). 

15 

FIGURE 1.6. NATURAL LANGUAGE PROCESSING MODULE 



1.3.1.1 Text No rmali Zatio n 
A text normalization module, or text preprocessor, allows any ambiguous text, such as numbers, 

dates, abbreviations, acronyms and idiomatics, in any format to be resolved. It parses the text 

into sentences and organizes these into lists of smaller units such as words. 

1.3.1.2 Word Pronunciation 

Once the sequence of words has been generated, their pronunciation can be determined. Where 

words are pronounced as they are written, a simple set of letter-to-sound rules may be applied. 

Where this is not the case, a morpho-syntactic analyser may be used to tag the speech with 

various identities, such as prefixes, roots and suffixes, and organizes the sentences into 

syntactically related groups of words, such as nouns, verbs, and adjectives. The pronunciation of 

these can then be determined using a lexicon. Finally, a phonetizer provides the sequence of 

phonemes to be pronounced. 

1.3.1.3 Prosody Prediction 

The naturalness of speech can be described mainly in terms of prosody. Prosody may be defined as 

the linguistic use of pitch, loudness, tempo and rhythm (Crystal, 1987), although these aspects are 

usually accompanied by variations in phonation and voice quality. 

The pattern of prosody is used to communicate the meaning of sentences (Sonntag & Portele, 

1996). For example, the sentences "Open the window. " and "Open the window? " have very 

different prosody. In terms of intonation contour, the first sentence is declarative and has a 

relatively flat pitch contour, whereas the second is questioning and exhibits a rise in pitch at the 

end of the phrase. 

The naturalness of a TTS system is a function of prosody (Dutoit, 1997). Prosody prediction is 

performed by the Text-to-Prosody module, which determines the accenting, phrasing, intonation 

and duration for each sentence. Intensity variations are perceptually the least important aspect of 

prosody (Howell, 1993), and are often ignored. 

Accenting. Accent or stress assignment is based on the category of the word e. g. context words 

(nouns, adjectives and verbs) are typically accented and function words (prepositions and 
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auxiliary verbs) are usually not. This information is used to help predict the intonation and 

duration. 

Phrasing. Sentences are broken down into phrasal units and phrase boundaries are assigned to the 

text. These boundaries indicate pauses and the resetting of intonation contours. 

Intonation: Intonation clarifies sentence type and hence its meaning such as questioning, 

declarative etc. In addition, pitch variations convey information about stress, emphasis, gender 

and emotion. 

The intonation module generates a pitch contour for the sentences. Pitch contours may be 

stylized; not all variations of pitch seen in natural speech are perceptible (`t Hart et at, 1990). The 

contour acts across complete phrases and can be split into a hierarchical pattern (Sagisaka, 1990) 

down to single pitch targets associated with syllables or parts of syllables. 

This module requires information from the phonetic, accent, duration and phrasing modules. 

Text can be labeled using the Tones and Break Indices (ToBI) formalism (Silverman et al., 1992). 

Pertinent prosodic events are marked with one of four tone labels: initial boundary tones, pitch 

accent tones, phrase accent tones, and final boundary tones. Two tones are recognized: a high 

tone (H) and a low tone (L), which are relative to each other. 

Fundamental frequency target values corresponding to these tone labels can then be calculated. 

Pitch variations occur between declination lines, which define the maximum and minimum pitch of 

the speaker. Sets of rules Qilka et at, 1999) are used to calculate a percentage of this pitch range to 

give physical fO values, which are then assigned to the voiced parts of speech. Transitions 

between target values are specified as either linear interpolations or more complex transitions 

such as exponentials, to provide a stylized pitch contour. The pitch movements can be 

characterized by direction (rise and fall), rate of change (slow or fast) and size (half or full) and 

timing (early, late, very late in the syllable). 

Duration: Segmental duration is an essential aspect of prosody (Carlson et al, 1979) that affects the 

overall rhythm of the speech, stress and emphasis, the syntactic structure of the sentence, and the 
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speaking rate (Klatt, 1979). Many factors contribute to the duration of a speech segment, such as 

the identity of the phone itself, the identity and characteristics of neighbouring phones, the 

accent status of the syllable containing the phone, its phrase position and the speaking rate and 

dialect of the speaker. Duration prediction is usually achieved using a rule-based model, wbich 

takes these factors into account (Klaff 1979, Bartkova & Sorin 1987). For a complete review of 

prosody prediction, see Edgington et al. (1996b). 

1.3.2 Digital Signal Processing Module 

Once the phoneme list has been generated from the text-to-phonetics stage, and the prosody has 

been predicted in terms of duration and frequency values, the physical speech may be 

synthesised. The required speech sounds are extracted from an inventory and joined together. 

The extracted speech segments may already have the desired prosody or it may be imposed on 

the segments using signal processing techniques to fit the new utterance. 

The following section describes the existing approaches to speech synthesis, which forms the 

broad area of this research. The advantages and disadvantages of each approach are discussed to 

determine the currently most promising synthesis strategy for further investigation. 

L4 Speech Synthesis Strategies 

There are currently three main approaches to synthetic speech production: articulatory synthesis, 

synthesis by rule (also known as formant synthesis), and concatenative synthesis. Before 

discussing each of these, the sore. falter model of speech is introduced, upon which articulatory 

synthesis, formant synthesis, and Linear Predictive (LP) synthesis (a form of concatenative 

synthesis) are based. 

1.4.1 Soun-e-Filter Model of Speech 

The source-filter theory of speech production (Fant 1960, Velhuis 1998) is based on the 

assumption that human speech can be modeled as an excitation source and a vocal tract response 
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that are independent of each other. During synthesis applications, the excitation signal is modeled 

by two sound sources; one to model the vibration of the vocal folds that occurs during voiced 

speech, and one to model the turbulent noise caused by air pushed through the vocal tract during 

unvoiced speech. These consist of a quasipeiiodic train of pulses and a noise signal respectively. 

A filter models the frequency response of the vocal tract and the radiation characteristics of the 

lips and nostrils. The resonance characteristics of the vocal tract are caused by many factors but 

the most important are the length of the vocal tract and the cross-sectional area profile. 

1.4.2 Articulatory synthesis 

Articulatory synthesis (Kröger 1992, Rahim et aL 1993) models the movement of the speech 

organs themselves based upon the source-filter model of speech described above. Articulatory 

control parameters may be lip aperture, lip protrusion, tongue-tip height and position, tongue 

height and position, and velic aperture. Excitation parameters may be glottal aperture, cord 

tension and lung pressure. Articulators are modeled as a set of mathematical functions between 

glottis and mouth for each phonetic segment. 

Whilst modeling the speech organs provides intelligible synthesis (Klatt, 1987), its main drawback 

is the difficulty in determining the control parameters. The parameter data are historically derived 

from X-ray analysis of the production of natural speech. Unfortunately this does not provide 

sufficient data for the complex articulatory movements. The second drawback is that it is 

computationally expensive (Kröger, 1992) and hence remains essentially a research tool rather 

than finding applications in commercial speech synthesis systems. As analysis methods progress 

and computational power increases, articulatory synthesis may eventually provide the way 

forward to more natural synthetic speech. 

1.4.3 Synthesis by Rule 

Synthesis by rule, or formant cyntheric (Holmes 1983, Allen et al. 1987), models the speech signal 

itself based on the source-filter model of speech. 
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Speech is synthesised using a data table of up to 60 continually varying acoustic parameters for 

each speech sound (Stevens, 1990). Examples of such parameters are voicing f0, degree of 

voicing in excitation, formant frequencies, antiformant frequencies, bandwidths, and amplitudes ; 
etc. It is difficult to determine these parameters and the rules governing their dynamic evolution, 

which are found by laborious analysis of natural speech. At synthesis time, these rules are 

matched to the phonetic input and a parametric speech signal is generated, which is fed into s 

bank of filters, representing each formant frequency. 

A fundamental frequency control determines the frequency of the pulses generated and a mixer 

controls the amount of voiced/unvoiced excitation signal. An amplitude control is used to vary 

the loudness at the input to the filters. 

Formant synthesis is infinitely flexible in terns of prosody generation and speaker independence. 

Formant synthesisers e. g. JSRU (Holmes et al., 1964), Klattalk (Ilatt, 1982) (the predecessor to 

the Digital Equipment Corporation's DECtalk) and MITALK (Allen et a1,1987), provide 

intelligible speech, although the resulting speech has an inherent buzzy sound that makes it sound 

synthetic (Edgington et al., 1996b). A more detailed description of rule-based synthesisers can be 

found in Holmes (1983) and Allen et al. (1987). 

1.4.4 Concaknative Synthesis 

Concatenative synthesis has been in e stence since the late 1970's and is capable of producing 

highly intelligible speech (Dutoit & Leich, 1994). It is the synthesis strategy chosen for this 

research because it gives rise to significant advances in terms of simplicity and lack of inherent 

buzzyness when compared to articulatory and formant synthesis respectively. This is mainly 

because concatenative synthesis makes use of pre-recorded segments of speech and hence does 

not model either the way humans generate speech or the speech signal itself. A typical 

concatenative synthesis system is shown in Figure 1.7. 

Concatenative synthesis takes pre-recorded segments of natural speech and joins them together, 

or concatenates them, to produce new utterances. A concatenative speech synthesis system uses 

small speech segments extracted from natural speech, which are stored in either a parametric 
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form, as waveforms in an inventory, or as continuous speech in a corpus. To provide the 

required synthetic output, the appropriate segments are selected from the inventory at run-time 

and concatenated. 

Phonetic 
transcription 
and prosody 

Segment List 
Generation 

Segment 
Inventory 

Segment 
Concatenation 

Speech 

FIGURE 1.7 A TYPICAL CONCATENATIVE SYNTHESIS SYSTEM 

The major drawback of concatenative synthesis is its limited flexibility due to the use of pre- 

recorded speech, which may not allow necessary prosody variations when synthesising novel 

constructs. The synthetic voice is also restricted to the voice of the speaker used for the 

recording. Concatenation at segment boundaries may be a problem when segments are extracted 

from different contexts due to spectral differences, and prosody modification is more difficult. 

Such issues can be addressed by choice and size of speech segments to be stored in the inventory, 

and the careful design and creation of the inventory. These issues and possible solutions are 

discussed in the following sections. 
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1.4.4.1 Choice of Speech Segment 

The type of speech segment stored in the segment inventory has great bearing on the flexibility 

and quality of the resulting synthetic speech. Such decisions often involve trade-offs between 

storage requirements, performance, and the extent to which signal processing is required. For 

example, fewer segments require less storage, but may lead to poorer quality speech and require 

more signal processing to achieve adequate flexibility. Storage requirements are becoming less of 

an issue with the advent of cheaper memory and greater processing power, however the time to 

record, segment and annotate a speech inventory is still an issue. Semi-automatic annotation 

systems (Wightman & Talldn, 1996) are becoming available although manual correction is still it 

necessity. 

Various types of speech segment have been used in concatenative speech synthesis systems. 

Phonemes, the smallest contrasting unit in the language, are an attractive choice (Witten 1982, 

Chappell & Hansen 1997) due to the small number of units required (approximately forty for the 

English language), keeping storage requirements to a minimum. The greatest disadvantage is the 

coarticulation problems that occur at boundaries between phonemes. Coarticulation describes the 

way in which humans produce continuous speech as a result of articulating a series of isolated 

words. The articulatory movements are adjusted for different contexts to minimise the effort 

needed to produce the speech. Coarticulation occurs as each articulator moves continuously from 

the production of one phoneme to the next and appears in even the most careful speech. 

Complex rules are needed to deal with this (Linggard, 1985). An additional problem of the use of 

phonemes is that all joins occur at the least stable part of the waveform where one phone 

changes to the next, which may cause audible discontinuities. 

The use of the diphons provides a solution (Lenzo & Black, 2000). A diphone consists of the 

transition from the centre of one phoneme to the centre of the following one (Dixon & Maxey, 

1968). In this structure, the transitional information between phonemes is captured. A set of 

diphones for the English language numbers approximately 1600, since there are 402 possible 

combinations of phoneme pairs. Simple diphone speech synthesis requires slightly more storage 

than phoneme synthesis and still has the disadvantage of a high density of concatenation points 

(one per phoneme). A large number of concatenation points produces the perception of 

unnaturalness (Donovan & Woodland, 1999) as spectral discontinuities may occur when 
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segments are selected from different contexts. This places heavy reliance upon smoothing 

algorithms, which may also degrade quality (Chappell & Hansen 1998, Wouters & Macon 2000). 

A variation of the basic diphone system makes use of polyphones such as triphones, half 

syllables, or even quadraphones and pentaphones (Boeffard et al., 1993). Multiphon constructs 

of varying length may be included in the segment inventory to deal with highly coarticulated 

speech. 

Larger constructs such as yl/ables or xvrds deal with problems of coarticulation as most 

coarticulation occurs within syllable boundaries (Fujimura & Lovins, 1978). The disadvantage is 

the large amount of storage necessary for such inventories; there are approximately 10,000 

syllables for the English Language. These approaches are usually valid for limited vocabulary 

systems, or closed domain applications, such as train timetable systems, talking clocks etc. Here 

the necessary word variations are recorded and the required word may be slotted into a standard 

sentence. This approach often suffers from a lack of coarticulation at the word boundaries, 

resulting in unnaturalness. Mismatches in loudness, tempo, pitch and voice quality may also lead 

to disfluent speech if the recordings have not been carefully controlled. 

More recent research has extended the simple diphone approach to n-diphone synthesis 

(Gabbers & Veldhuis, 2001). In n-diphone synthesis, more than one example of each diphone 

may be stored. This takes into account various coarticulation effects that can occur over a syllable 

or further over several syllables. The `best-fit' diphone is selected at synthesis time to minimise 

spectral differences between adjoining segments. Klabbers & Veldhuis (2001) extend the diphone 

inventory with additional context-sensitive diphones to reduce the occurrence of audible 

discontinuities. 

The latest developments to improve the flexibility of concatenative synthesis involve corpus- 

based speech synthesis systems. During natural speech, prosody varies for speech sounds in 

terms of fO and duration and also in terms of voice quality. Acoustics of speech sounds vary due 

to their position in the phrase and the context of the utterance. If all segments are uttered in a 

neutral manner as in typical diphone systems, these variations are lost. Corpus-based synthesis 

overcomes these limitations by storing hours of continuous natural speech. This approach also 
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minimises the large number of concatenations; segments of longer length are selected if they exist ; 
together in the corpus. Large prosody manipulations are also reduced by storing and selecting 

segments having acoustic characteristics that are closer to the target values. The corpus-based 

approach has been chosen for further research due to its ability to increase the flexibility of 

concatenative speech synthesis. Corpus-based synthesis introduces its own problems and is 

discussed further in Section 1.5.5. 

1.4.4.2. Creating a Speech Inventory 

Creating a large speech inventory is a long process. It involves choosing the phone set, designing 

the carrier material, generating prompts, recording, segmentation, labeling, pruning and quality 

control. Designing the optimal speech inventory is one of the most important research issues 

(Möbius, 2000); it has a huge impact on quality. 

The most important criterion is that the inventory must provide adequate phonetic coverage; all 

segments should be represented. Phonetically rich inventories, used for diphone systems, contain 

every possible diphone transition, where even the rarest combinations are represented. 

Inventories for corpus-based synthesis are often designed to contain sets of phonetically balanced 

sentences e. g. CHATR (Black & Campbell, 1995), where the phones appear in the same 

distribution as they appear in normal language. This may be achieved by recording radio news 

sentences (Black & Campbell, 1995) or a short story of the speaker's choice (Campbell, 1999) for 

example. This is perhaps contrary to the opinion that it is important to design a database 

including all relevant realizations of phonemes. 

Corpora can be designed specifically for limited-domain applications, such as a speaking clock 
(Black & Lenzo, 2000b), or it may be enough to record only the required words for applications 

using a ̀ slot filler' approach, where the relevant word is inserted into a standard sentence. 

Speech segment inventories require carrier material for the segments to be recorded. The choice 

of carrier material should reflect the application of the synthesiser. It may be important to keep a 

fixed spealdng rate, durations, and perhaps monotone speech for a simple diphone inventory. To 

achieve this, segments can be extracted from nonsense syllabic sequences (logatoms), or isolated 
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words. The use of logatoms ensures coverage although there may be a loss of naturalness due to 

the abstract nature of the material and boredom of the speaker. The recording of segments only 

in word stress positions in carrier sentences, not providing any reduced segments, may lead to 

over-articulated speech. 

For greater prosodic coverage, natural sentences, of possibly longer passages are used. The use of 

such text means the speaker is more relaxed; overall quality may be less consistent failing to 

produce exactly the desired speech segments. It also gives rise to greater variability of the speech, 

which may cause greater spectral discontinuities between joining segments during synthesis. 

The recording of the segments should be performed in a quiet room, preferably an anechoic 

chamber. Audio settings for the recording process must be fixed, and the speaker should be at a 

fixed distance from microphone, which can be achieved using a head-worn microphone. 

Problems occur due to the time gaps between successive recordings; the emotional state and 

health of the speaker may vary, leading to changes in speaking style and voice quality. Inter- 

session variations arise due to the increasing boredom of the speaker over a long session. 

Once recorded, speech units are segmented from the carrier material. This is performed either 

manually, or semi-automatically (usually involving manual corrections). The units are stored as 

segments extracted from logatoms or natural speech, or as part of a speech corpus from which 

they are extracted at runtime. The segments are tagged with the information required for segment 

selection, prosody modifications and synthesis. Such labels may be the segment identity, duration, 

pitch, internal phoneme boundaries, position in phrase etc. The segments may be coded or given 

a parametric form as a temporal sequence of vectors of parameters. Coding reduces memory 

loads and may be required for speech models that use a parametric form to allow concatenation 

and prosody matching. The speech model used in the synthesis system obviously determines the 

storage and tagging formats. 

1.4.5 Summary 

The three main existing approaches to synthesis have been presented. Articulatory synthesis 

provides high quality speech but is extremely complex. It may well be the preferred approach in 
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the future as processing power increases, but is essentially a research tool at the present time. 

Formant synthesis has the advantage of great flexibility, but suffers from an inherent `buzzynes^s' 

that cannot be avoided due to its parametric nature. The concatenative approach currently 

provides better quality synthetic speech than form=t synthesis in terms of buzzyness, although it 

does not have the flexibility of parametric speech models. Additionally, concatenative synthesis 
does not suffer from the complexity of articulatory synthesis, making it an attractive choice for 

many successful commercial systems such as BT's Laureate (Page & Breen, 1996) and the AT&T 

Next-Gen system (Beutnagel et al., 1999a). 

The aim of this thesis is to design a framework that provides high quality speech for open 

domain applications. To this end, it should provide adequate phonetic coverage and also be 

capable of producing a prosodically rich output. As a result of its high quality output and 

efficiency, concatenative synthesis was chosen for further investigation. As previously stated, 

concatenative synthesis does not possess the flexibility of parametric speech models, in terms of 

the ability to synthesise various types of phonation and with a wide range of prosody. With the 

advent of cheaper memory and processing power, increasing the size of the inventory from a 

simple diphone approach can reduce this inflexibility. The development of the corpus-based 

approach retains details such as variations in phonation and also provides greater ability to 

achieve the desired prosody when creating novel utterances by storing multiple versions of 

segments. However, even the largest inventory cannot contain every possible combination of 

segments in every prosodic context due to the high variability of speech. In order to increase 

flexibility further and ensure a robust output, whereby all prosodic targets can be met, it may be 

advantageous to employ a speech synthesis model to concatenate the segments and allow 

prosodic modifications. The following section describes and analyses the current, popular 

concatenative synthesis speech models used to concatenate segments and facilitate prosody 

modifications. 

LS Speech Models for Concatenative Synthesis 

Concatenative synthesis speech models must be able to concatenate a sequence of segments, and 

adjust them for new prosody when creating arbitrary sentences. The model must maintain high 
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speech quality with minimal introduction of artifacts or reduction in naturalness. There are many 

models in use and the more popular ones are discussed in turn in the following sections, leading 

to a discussion on the choice of the model chosen for this research that provides the most 

promising approach to concatenative speech synthesis. 

1.5.1 Linear Prediction 

The Linear Prediction (LP) model (Markel & Gray, 1976) was originally designed for speech 

coding, providing accurate estimates of speech parameters, but can be used successfully for both 

coding and synthesis (Sproat & Olive, 1995). It is based on the source-filter model of speech; 

human speech is modeled as the response of a time-varying digital filter to a periodic or random 

excitation signal. 

For Linear Prediction coding purposes, the natural speech signal is separated into the response of 

the vocal tract and the excitation signal. The response of the vocal tract, in terms of its formant 

frequencies, is removed from the signal to be stored as digital filter coefficients i. e. the digital 

filter coefficients are estimated automatically from frames of natural speech. LP theory assumes 

the current speech sample y(n) can be approximated or predicted from a linear combination of 

p previous samples y(n -1) to y(n - k) with an error term e(n) , called the residual signal. 

y(n) = e(n) +± a(k) y(n - k) 
k-1 

Eqn 1.1 

and e(n) = y(n) - a(k) y(n - k) = y(n) Y(n) Eqn 1.2 

where y(n) is a predicted value, p is the linear predictor order, and a(k) are the linear 

coefficients. The coefficients are found using as adaptive algorithm such as the Least Mean 

Square (LMS) algorithm which minimises the mean-square error between the predicted signal and 

the actual signal. Autocorrelation or covariance methods are often used for this (Markel & Gray, 

1976). 

These effects are then removed from the speech signal and if the predictor coefficients are 

accurate, only the pure excitation signal remains (a harmonic structure and/or white noise), the 
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intensity and frequency of which can be calculated. This process is known as inverse filtering and 

the remaining excitation signal is called the residue. The values of the formants and the residue are 

stored in an inventory. 

LP synthesis reverses this process using a synthetic excitation or the residue to create the source 

signal and the formant values to create the filter. During synthesis, the speech information stored 

in frames (usually representing 25 ms of speech and characterized by 10 or 12 LP parameters) is 

fed to the synthesiser every 25ms. The frame parameters are used to update the digital filter 

coefficients and select the excitation source and amplitude. 

The excitation, which is filtered with the digital filter having the coefficients a(k), may have a 

different fundamental frequency, therefore providing a new harmonic structure. The filter 

requires an order (number of coefficients) of 10 to 12 at 8kHz sampling rate and 20 to 24 at 
22kHz sampling rate. To obtain intelligible speech and smooth spectral transitions, the 

coefficients are updated every 5-10ms by interpolating between the previous and current frame 

parameters. 

The main drawback of LP synthesis is that it is inherently buzzy due to its parametric nature, and 

this degrades speech quality (IQatt, 1987). LP is an all-pole model; phonemes such as nasals and 

nasal vowels that contain antiformants are not modeled sufficiently thereby decreasing 

intelligibility. A more detailed explanation may be found in Markel & Gray (1976). 

Variations of the basic LP model have been developed to improve the quality although these are 

computationally more expensive. The excitation signal may be more complex and the source and 

filter may not be treated as separate. Multipulse LPC (MI. PC) (Moulines & Charpentier, 1988) 

uses a complex excitation constructed from a set of several pulses. Residual Excited LP (RELP) 

(used in Lernout & Hauspie's commercial TTS system) uses the error signal as an excitation 

signal. Code Excited LP (CELP) (Campos & Gouvea, 1996) uses a number of excitations that are 

stored in a code-book. 
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1.5.2 Sinusoidal Models 

Sinusoidal models are based on the assumption that all signals can be composed of a sum of sine 

waves with various phases, amplitudes and frequencies (McAulay & Quatieri, 1986). This is 

expressed in Equation 1.3. 

s(n)=2: A, cos(w, n+O, ) 
r-I 

Eqn 1.3 

where L is the total number of sinusoids, A, (n) and 01 (n) are the amplitudes and phase of 

each component with frequencies w, . 
Parameters A, (n) and 01 (n) are found by taking the 

Discrete Fourier Transform (DFT) of the windowed signal. Frequencies w, are estimated by 

peak picking of the DFT magnitude. 

Synthesis reverses this process. Duration modifications are achieved by modifying the parameters 

corresponding to the vocal tract, so they evolve faster or slower, and the excitation can be 

stretched or compressed whilst maintaining the same pitch. Pitch modification is achieved by 

scaling the frequency of the excitation function. The vocal tract is unmodified, which may not 

model actual human speech production where the vocal tract characteristics alter during higher or 

lower pitch speech. 

Sinusoidal models (Macon & Clements 1996, Crespo et aL 1996) perform well for periodic 

signals; they are particularly adept at synthesising singing speech, which is characterized by 

elongated vowels. They do not perform so well for unvoiced speech. Sinusoidal approaches make 

use of glottal closure instants, which does not always provide successful concatenation and may 
lead to poor quality due to phase mismatch at segment boundaries. Similar models have been 

developed, such as the hybrid Harmonic plus Noise model (Laroche et aL, 1993), which propose a 
different noise model for unvoiced speech whilst maintaining the harmonic model for speech. 
These models are discussed in the following section. 
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1.5.3 Harmonic plus Noise Models 

The Harmonic plus Noise Model (HNM) (Stylianou, 1998) assumes that speech is composed of 

deterministic and stochastic components. The harmonic part models the periodic parts, or voiced 

speech, and the noise models the stochastic, or unvoiced, parts of speech. The deterministic 

component is modeled by sums of harmonically related sinusoidal components with various 

amplitudes. The stochastic part comprises the residual signal when the sinusoidal components 

have been extracted from the original signal i. e. rather than modeled purely in the frequency 

domain, the stochastic part is obtained from real parts of speech, for example from plosives or 

fricatives etc. 

A 
The synthesis signal s(t) is modeled as the sum of harmonic components and a noise signal as 

shown in Equation 1.4. 

S(t)= 
K(r 

Ak(t) exp(jktw. (t) + e(t)) 
k--K(t) 

Eqn 1.4 

where Ak (t) is the complex harmonic amplitude at time t, wo (t) is the fundamental frequency 

and e(t) is the stochastic component. These parameters are updated at specific time-instants. 

The parameters are estimated as follows: 

9 Fundamental frequency W. (t) is estimated using a standard time-domain pitch detection 

algorithm, such as Hess (1983). 

" On voiced parts of speech, the values of the amplitudes and slopes of pitch harmonics 

are estimated using a weighted. least-squares method (Laroche, 1989). 

" The residual signal is obtained by subtracting the deterministic part from the original 

signal in the time-domain. 

At synthesis time, the deterministic and stochastic components are synthesised separately then 

added together. The deterministic part is synthesised by overlap-adding a stream of ST-signals 

5 (t) at time-instants t, in a PSOLA synthesis manner (Moulines & Charpentier, 1990). The ST- 

signals are obtained from the harmonic parameters by applying a Hamming window centered at 

ti. The stochastic component is obtained by filtering Gaussian noise. Time-scale modifications 
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are achieved by determining the number of synthetic pitch-periods that need to be generated 

from the parameters at time t, . 

The mixed voice segments are free from any buzzy quality as the stochastic and deterministic 

components are dealt with separately. As it is a parametric model it is very flexible allowing 

modification of speaker voice qualities and timbral aspects of speech quality (Syrdal et al., 1998b). 

1.5.4 Pitch-Synchronur OrkrLap-Add 

The family of Pitch-Synchronous Overlap-Add (PSOLA) techniques (Charpentier & Stella, 1986) 

was developed by France Telecom. The PSOLA algorithm and its variants do not synthesise 

speech themselves, but allow pre-recorded segments of speech to be concatenated and can 

modify the prosody (pitch and duration) of the speech signal, which may be necessary when 

creating novel utterances. This technique avoids parameterization of the speech; parameterization 

inherently degrades the segmental quality. This is opposed to LP and sinusoidal models, which 

decompose the signal into separate source and vocal tract models. 

The PSOLA algorithm involves three stages: analysis, modification and synthesis. The three 

stages are illustrated in Figure 1.8. Speech waveforms are first ana#sed, the speech signal is broken 

down into a sequence of Short-Term (ST) signals by windowing it at successive intervals with a 

sequence of pitch-synchronous windows, such as Harnring windows. The Hanging window is a 

symmetrical window that restricts the analysis to the section of waveform under the window by 

rendering the rest of the signal zero. The Hanning windows are centred pitch-synchronously on 

pitch markers (which are placed at the glottal closure instant during voiced portions of the signal, 

and at a constant rate for unvoiced parts). The length of the Hanning window is set so that 

adjacent ST-signals overlap. Generally, each window's length is set to be twice the local pitch 

period. If the window is short enough, the signal under the window can be considered stationary. 
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ANALYSIS 

MODIFICATION 

SYNTHESIS 

FIGURE 1.8 THE PSOLA OPERATION 

Prosodic modifications can then be imposed on this intermediate representation. Pitch 

modifications are produced by altering the spacing between the ST-signals; the original pitch 

period is altered to a new period. Duration modifications are achieved by repeating or deleting 

the ST-signals. 

Synthesis is achieved by the recombination of the modified intermediate representations to 

produce the final synthetic signal using an overlap-add (OLA) operation (Moulines & 

Charpentier, 1990) that adds the new ST-signal sequence together. 

The family of PSOLA algorithms for manipulating the prosody of speech waveforms all use this 

three stage technique, although the above explicitly describes Time-Domain PSOLA. The 

PSOLA variations are described in the following section. 

1.5.4.1 PSOLA variations 
Several variations of the PSOLA operations are available, such as Time-Domain (TD), 

Frequency-Domain (FD), Linear-Prediction (LP), and Multi-Band Resynthesis (MBR) PSOLA. 
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Time-Domain (TD) signal processing algorithms, such as the Time-Domain Pitch-Synchronous 

Overlap-Add (TD-PSOLA) algorithm (Hamon et at. 1989, Moulins & Charpentier 1990), are of 

particular interest as they are computationally inexpensive. 

TD-PSOLA generates natural speech with minimal effect on segmental quality (Bigorgne et at 
1993, Moulins et al. 1990), although some perceptible distortion is introduced for certain 

prosodic modifications. TD-PSOLA provides limited smoothing capabilities between 

concatenated speech segments; pitch and spectral mismatches at segment boundaries are not 

minimised, which may lead to audible discontinuities. It would be ideal to eliminate such 

mismatches before applying the TD-PSOLA algorithm. 

One such solution involves resynthesising the voiced parts of the segment inventory with a 

standard pitch, as performed in the Multi-band Resynthesis PSOLA (MBR-PSOLA or MBROLA 

for short) algorithm (Dutoit & Leich, 1993). Additionally, all of the harmonics in the voiced 

instances of speech are given fixed initial phases for each period. Fiitnination of pitch 

mismatches is achieved inherently by the resynthesis process. As the two segments to be 

concatenated have the same pitch and identical harmonic phases, spectral mismatches can be 

eliminated by simple time-domain interpolation. 

MBROLA provides a speech signal with minimal mismatches between segments upon which the 
TD-PSOLA algorithm can be applied to generate the required prosody. MBROLA has good 

segment smoothing capabilities and good prosody matching, producing a natural speech output. 
This is at the expense of much greater distortion, in the form of buzryness, introduced during the 

resynthesis process. 

A Linear Predictive Pitch-Synchronous Overlap Add (LP-PSOLA) approach has also been 

developed (Moulins & Charpentier 1990, Edgington & Lowry 1996). LP analysis is performed 

on the speech signal to separate the signal's source and filter components; at each time instant the 

spectral envelope is estimated and used to extract the excitation. TD-PSOLA pitch and duration 

modifications can then be applied directly to the LP filter's excitation or residual signal. After 

modifications, the new signal is produced by recombining the modified source with the spectral 

33 



envelopes. Moulines & Charpentier (1990) report that LP-PSOLA produces perceptibly less 

distortion when applied to the residual waveform than conventional TD-PSOLA, although this is 

at the expense of far greater complexity. 

A frequency-domain version of PSOLA has also been proposed (Moulines & Charpentier, 1990). 

In FD-PSOLA, the Short Term Fourier Transform (STFT) for each analysis window is calculated 

to provide a frequency-domain representation of the short-term signals; the signal is separated 

into source and filter components. The pitch and duration modifications are performed in the 

frequency domain, allowing better control over the spectral envelope, by altering the spacing 

between the pitch harmonics. The modified representation of the signal is then converted back 

into the time-domain by taking the inverse Fourier Transform. FD-PSOLA is more flexible than 

TD-PSOLA and also supports modifications of voice quality (Valbret et al., 1992), by alteration 

of the speech signal's spectral characteristics. The main drawback is that FD-PSOLA is much 

more complex. 

1.5.4.2 Drawbacks of PSOLA 

The PSOLA method requires the use of small Hanning windows (Linggard, 1985), which must 

contain only a single pitch pulse for the signal to be considered stationary. If this is not the case, a 

mismatch occurs during synthesis between the new synthesis frequency and the frequency 

inherent to each short-term signal. Conversely, when too small a window is used, formant 

bandwidths are broadened due to the poor estimation of the spectral envelope for each ST-signal. 

This results in some alteration of the amplitude of pitch harmonics for voiced speech, and can 

cause a reverberation to be heard. It is therefore important that the implementation of PSOLA 

uses a robust pitch detection algorithm. 

Even when the correct sized window is used, PSOLA can introduce artifacts, described as 

`hoarseness and roughness' by Korte aas & Kohlrausch (1997a) and `buzzyness' during this 

thesis, into the signal. Kortekaas and Kohlrausch state that these artifacts are often difficult to 

predict, and even if modification with PSOLA does not lead to the perception of artifacts, it does 

affect its spectral content. 
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PSOLA maintains good quality for moderate modifications. Problems can occur when increasing 

the durations of unvoiced sounds. Slowing speech involves repeating the unvoiced short-term 

signals, which for modifications of greater than a factor of two can result in tonal noise or 
`buzzyness'. This can be avoided for unvoiced sounds by removing this local periodicity through 

reversing the time axis for repeated short-term signals. Voiced fricatives also suffer similar 

problems for increasing duration and increasing pitch, but this solution cannot be applied here 

due to the voiced component. Buzzyness qualities may also appear for large pitch modifications 

especially for female and children's voices. 

1.5.5 Corpus-bared Techniques 

Simple diphone speech synthesis systems store only one segment per phonetic type in a 

waveform inventory, which have usually been excised from prosodically neutral speech and so 
fail to model the dynamic characteristics of prosody. Prosodic parameters, such as fundamental 

frequency, duration and intensity, can be manipulated by algorithms such as TD-PSOLA, but 

these parameters may not be the only important aspects of prosody (Campbell & Black, 1996). 

Spectral effects, which cannot be modeled by TD-PSOLA, are responsible for other additional 

aspects, such as variations in phonation or changes in voice quality (breathy voice, pressed voice 

etc). The corpus-based approach aims to preserve these aspects by storing one segment for each 

phonetic and prosodic context (Campbell & Black, 1996) in a corpus of prosodically : ich, 

continuous speech, leading to tens or hundreds of instances of each segment. The key issue then, 
is to select the longest available string of segments that will sound natural in a given phonetic 

context. This non-uniform approach was first investigated by Sagisaka (1988) and Takeda et at 
(1990) for rule-based synthesis. Later parallel research was carried out, known as unit selection, by 

Black & Campbell (1995) for concatenative synthesis. Ideally the whole of the required utterance 

would be found and simply played back requiring no concatenation points and no prosodic 

modifications. This is extremely unlikely, although constructs longer than diphones may be found 

and less signal processing may be required. Automatic segment or unit selection (Hunt & Black, 

1996) from the corpus is achieved by minimising distance measures (Gray & Markel, 1975) 

between target segments (predicted by preceding modules of the synthesis system) and segments 
in the corpus. 
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Storing such diverse segments may give larger potential pitch and spectral mismatches between 

joining segments, leading to possible audible discontinuities. A synthesis specification is 

generated giving phoneme identities, target durations and fundamental frequencies. All phonemes 

with the same name in the inventory are selected. A trade off between good prosody matching 

and good segment concatenation is necessary. Campbell and Black (1996) achieve this by 

balancing two sets of distance measurements. The first is the objective distance between features 

of the selected segment and the target segment, and the second is a measure of the quality of the 

join between a selected segment and its previously adjoining segment. To compute the target 

vector, only features that can be computed by analysing the input text are available. To compute 

the continuity or join vector, all features are available that have been computed during the offline 

annotation of the speech segments. Their distance measures are calculated using weighted vectors 

of features such as phonetic context (neighbouring phonemes, position in phrase, direction of 

pitch/power change etc), duration, log power, and mean fundamental frequency. A network is 

constructed and the costs are assigned to each unit and to the links between each unit. The 

lowest cost path through the network is then selected. 

Labelling such a large speech corpus with so many features is labour intensive, but the main 

drawback of this approach lies in finding the relevant features for the distance measures and the 

correct weighting between them (Möbius, 2000). Research by Boeffard et al. (1992) and Campbell 

& Black (1996) indicates that minimising certain distances between segments does not necessarily 

lead to perceptually better speech output; little is known about the perceptual relevance of such 

distance measures (Wouters & Macon, 1998). Problems arise due to the fact that human 

perception cannot be measured objectively and additionally, acoustic properties that can be 

measured are sometimes imperceptible (Dutoit, 1997). 

Distance measures used in synthetic speech remain difficult to assess in terms of human 

perception. The most common way to test them is to measure participants' perceptions of the 

synthesised speech using a particular speech corpus. Unfortunately, such conclusions about a 

certain measure may not be valid when applied to a different corpus. 

Finally, the speech corpus cannot be infinitely large, implying that even the best segment 

selection technique will not provide an exact prosodic match for the desired utterance. The 

36 



CHAIR TTS system (Black & Taylor 1994, Campbell et al., 1998) uses no signal modification. It 

performs better for dosed-domain synthesis as increasing quality is only achieved by substantially 
increasing the amount of source data. Conkie (1999) concludes that signal processing may be 

applied selectively alongside the corpus-based strategy. Though some signal processing may be 

required, the manipulation of pitch and duration of the segments is minor, introducing minimal 

distortion. 

Deb-etelaere et al. (2001) state that the corpus-based approach is a promising technique and is 

possibly the future of speech research, although quality is achieved with extremely high storage 

requirements. They provide an example of the AT&T NextGen system, which requires several 
hours of speech and runs over a server via the Internet, making such systems unusable for 

current low-cost or hand-held electronic devices. 

L6 Choice of Synthesis Model 

Current speech models available for concatenating speech segments and imposing prosody have 

been critically evaluated. 

TD-PSOLA (Moulines & Charpentier, 1990) is currently one of the most popular concatenation 

methods (Syrdal et al., 1998b). It involves very low computational loads and provides high quality 
synthesis in the main. TD-PSOLA does not suffer from the inherent buzzyness of LP synthesis 
as it is not a parametric model. TD-PSOLA also retains fine spectral details without the 

smoothing or distorting effects of formant or LP approaches. Moulines & Charpentier (1990) 

claim all PSOLA algorithms (TD-, LP-, FD-) are comparable in quality of output, and all are 
better than LP synthesis in formal listening tests. 

TD-PSOLA has limitations being a non-parametric method; only the voice of the speaker may be 

synthesised and spectral mismatches may occur at concatenation boundaries unless units are 
chosen carefully. Finally, a buzzy quality may be perceived when some prosodic modifications are 
applied. 
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Sinusoidal approaches (Macon & Clements, 1996) and hybrid stochastic approaches (Stylianou, 

2001) are more flexible than TD-PSOLA and MBROLA for compression, modification and 

smoothing but are ten times more computationally expensive. 

Many alternative methods to PSOLA have been developed (Syrdal et al. 1998b, Violaro & 

Boeffard 1998). Laroche et aL (1993) use a Harmonic and Noise Model (HNM), which they 

found to eliminate many of the artifacts that occur during duration modification with PSOLA. 

HNMs also eliminate the buzzyness that occurs during modification of mixed-voice segments. 

Breen (1998) and Stylianou et al (1995) conclude that although these models perform better on 

voiced fricatives and unvoiced frames, and provide better spectral control, they are 

computationally more expensive, not as robust, and produce speech of a slightly lower quality 

than PSOLA overall. 

Dutoit & Leich (1994) compared an LP model, TD-PSOLA, a pitch-asynchronous hybrid 

Harmonic and Noise model and the MultiBand Resynthesis PSOLA (MBROLA) in terms of 

naturalness and intelligibility. MBROLA was considered comparable with TD-PSOLA, with the 

HNM and LP model third and fourth. Violaro and Boeffard (1998) compared TD-PSOLA and a 

HNM and found their quality to be similar but judged naturalness to be better for unvoiced 

speech using the HNM method. Charpentier & Stella (1986) compared PSOLA and LP and 

concluded that PSOLA provides a more natural output than both an LP and a multipulse coding 

system (Stella & Charpentier, 1985). Overall, TD-PSOLA compares comparably and often 

favourably in terms of intelligibility and naturalness, with other models. 

The corpus-based approach provides concatenative synthesis with greater flexibility by storing 

more diverse speech units and threatens to eliminate the need for signal processing in the future. 

Currently, although it does reduce the amount of modification, signal processing may still be 

necessary as it is not possible to store every combination of segments in every prosodic context. 

Conlde (1999) using a corpus-based approach found that synthetic sentences were preferred 

when no prosodic modifications were performed, although limited prosodic modification did 

appear to be beneficial in terms of improved naturalness by smoothing mismatches at segment 
boundaries and allowing suitable prosodic modifications for new utterances. 
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Portele (1998) advocates that TD-PSOLA should be used in conjunction with a corpus-based 

approach, and currently this combination appears to provide the most promising solution to 

generating high quality, natural synthetic speech. The use of a speech corpus increases the 

flexibility of concatenative speech by retaining details, such as variations in phonation or changes 
in voice quality, that simple diphone approaches cannot model. Unfortunately, even the largest 

corpus cannot provide every prosodic combination of pitch and duration. The use of a signal 

processing algorithm such as TD-PSOLA, has the advantage of producing a less distortion 

output due to its non-parametric nature. Conversely, this lack of a parametric representation 

means it is inflexible when required to model spectral aspects of speech such as variations in 

phonation and voice quality if used with a simple diphone system. The use of a corpus and TD- 

PSOLA together provide the most flexible approach to concatenative synthesis; TD-PSOLA 

allows small prosodic modifications if such values are not present in the corpus, and the corpus 

retains spectral details of speech that TD-PSOLA cannot model. 

The TD-PSOLA algorithm is of great interest to the speech synthesis community due to its 

overall simplicity and success for moderate modifications. Its main drawback is the introduction 

of perceptible distortion into speech, in the form of buzzyness, for some modifications, and it is 

this issue that is addressed in the thesis to improve the quality of the speech output. 

The research investigates the effects of the application of the TD-PSOLA algorithm on natural 

speech when used for small prosody modifications that may be necessary in a corpus-based 

system. The aim is to develop a framework that minimises the introduction of perceived 
distortion and thus retains the quality of the speech output. This may be achieved by careful 
design and use of a speech corpus tailored to the needs of TD-PSOLA. 

L7 Summary 

In this chapter, a brief description of human speech production, its physical representation and 

phonetics, used to describe the speech in an abstract format, was presented. During the thesis, 

the speech under investigation will be described using the SAMPA notation and waveforms, 

spectra and spectrograms will be used to depict and analyse the speech. 
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A description of a general TTS system was then given. Speech synthesis, the main area of this 

research, was set in context as part of the whole TTS process, and the complex interaction of the 

modules in a TTS system was illustrated. 

The three main synthesis strategies were then described and their advantages and disadvantages 

discussed. Articulatory synthesis, although capable of producing high quality synthesis, is deemed 

too complex for current applications. Formant synthesis is inherently buzzy and relies on the 

careful choice of parameters, which is a notoriously difficult process. Concatenative synthesis 

performs well in terms of intelligibility and quality although it suffers from inflexibility due to the 

use of recorded speech. 

Concatenative synthesis is currently a very popular approach and the issue of inflexibility may be 

overcome by the choice of synthesis strategy employed. The more common synthesis strategies 

used during concatenative synthesis were then examined. The corpus-based approach shows 

promise in terms of efficiency and flexibility and currently appears to be one of the more 

attractive strategies. The corpus stores multiple versions of segments in many contexts and hence 

retains details such as varying phonation and voice qualities. Due to the variability of natural 

speech, it is not possible to store all speech segments in every prosodic context, and so a signal 

processing algorithm may still necessary. LP models were found to be inherently buzzy, 

sinusoidal models were found to perform poorly for unvoiced speech, and some of the PSOLA 

family (FD- and LP-PSOLA) were found to be complex operations. TD-PSOLA does not suffer 

the inherent buzzyness of the parametric models although this leads to some inflexibility when 

spectral aspects need to be modelled if used with a simple diphone inventory. The strategy of 

employing TD-PSOLA in conjunction with a corpus-based approach provides greater flexibility; 

the corpus provides aspects of speech that TD-PSOLA cannot model, and TD-PSOLA ensures a 

robust output if segments in the corpus do not have suitable prosody for arbitrary sentences. 

TD-PSOLA is a very popular and efficient algorithm, but its main drawback is the introduction 

of perceptible distortion, in the form of buzzyness, into the signal during some prosodic 

modifications. This research focuses on developing a framework to reduce such distortion and 
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retain the resulting speech quality when TD-PSOLA is used for moderate modifications in a 
corpus-based system. 

The remainder of the thesis is structured as follows. Chapter 2 describes the TD-PSOLA 

algorithm in greater detail and reviews previous research into the effect of the algorithm on 

speech quality in terms of the introduction of perceptible distortion. The aim is to suggest 

parameters that may contribute to the occurrence of this distortion. These may then be 

investigated further to determine how to design a framework to remove or reduce such artifacts. 
Chapter 3 describes existing subjective listening tests and procedures used to evaluate the 

performance of various aspects of speech synthesis systems. These tests and practices are applied 

where possible in the listening tests documented in Chapter 4. The listening tests are undertaken 

to determine the perceptual effects of the TD-PSOLA algorithm when used for pitch 

modification of natural speech. Chapter 5 analyses data for patterns of co-occurrence and 

proposes a framework to reduce distortion. This is in the form of a novel corpus design tailored 

to the requirements of TD-PSOLA, a signal processing distortion measure that may be used to 

select a segment from the corpus that will result in less distortion, and a special selection process 
for highly problematic phonemes. Chapter 6 documents a listening experiment that evaluates the 

performance of such a framework. In Chapter 7 the findings of the research are discussed and 

possible future work is recommended. 
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Chapter 2. The TD-PSOLA algorithm and previous research 

2.1 Introduction 

Many commercial speech synthesis systems such as the ProVerbe 1TS system (Flan 

Informatique) incorporate the TD-PSOLA algorithm with great overall success. Speech, which 

has been pitch and duration modified using the algorithm, is reportedly of high intelligibility and 

quality in the main (Moulines & Charpentier 1990, Donovan & Woodland 1999, Laroche et at. 

1993, Dutoit & Leich 1994). The research does indicate though that PSOLA may introduce 

perceptible distortion into the speech signal in the form of buzzyness for certain modifications. 

This chapter describes the operation of the algorithm in greater detail using a mathematical 

model and then illustrates the Praat software (Boersma & Weenink, 1999) implementation of the 

algorithm. The next section seeks to identify some potential problems associated with TD- 

PSOLA. To this end, existing research concerning the algorithm is documented, and some of the 

work is replicated to illustrate the basic objective signal distortions introduced by the algorithm 

on pure sine waves and then more complex single formant signals. Such signal distortions may 

not always be perceptible, especially for more complex signals such as natural speech. Possible 

causes of perceptible distortion are then discussed. These consist of incorrect pitch marling by 

the algorithm, the influence of the choice and size of the analysis window used by the algorithm, 

the extent of manipulation applied to the speech, and the speech type upon which the algorithm 
is acting. Finally, the chapter concludes with a discussion of these issues raised by existing 

research, and how they may be addressed to inform the design of a framework to reduce 

perceptible distortion. 

2.2 The TD-PSOLA Algorithm 

This section describes the operation of the algorithm based on Moulines & Charpentier (1990). 

The TD-PSOLA algorithm involves three steps; analysis, modification and synthesis. 
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2.2.1 Analysis 

An original speech signal x(n) is analysed to produce an intermediate representation. This 

representation is non-parametric and consists of a series of short-term signals x'^ (ný 
. These are 

obtained by multiplying the original signal with a sequence of pitch-synchronous analysis 

Windows 
hm 

`n) 

x. (n) = hm (tm - n)x(n) Eqn 2.1 

The analysis windows are positioned at successive instants on pitch marks tm , which are located 

at pitch-synchronous intervals on the voiced parts of speech and at a constant rate on unvoiced 

parts. The windows are Hanning windows and have a length determined by the local pitch 

period. They are longer than one pitch period so that there is some overlap between adjacent 

short-term signals and may range from twice the local period to four times, giving 50% and 75% 

overlap respectively. 

2.2.2 Modification 

This sequence of analysis short-term signals Xm (n) is modified into a new sequence of synthesis 

short-term signals zq (n), which are repositioned on a new set of synthesis pitch marks 
t4 

. Pitch 

modification requires modifying the delays between the short-term signals and duration 

modification requires the modification of the number of short-term signals; increased pitch 

requires decreasing the delays, and increased duration involves the repetition of some of the 

short-term signals. 

2.2.3 Synthesis 

Several overlap-add (OLA) methods exist that may be used to recombine the short-term signals 

to give the modified synthetic speech signal Z(n). Moulins & Charpentier (1990) describe the 

least-square overlap-add synthesis method (Griffin & Lim, 1984) and a more simple overlap-add 
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procedure (Allen, 1977). The overlap-add operation is at its simplest when the synthesis window 
is twice the local pitch period and may be reduced to a linear combination of the modified short- 

term signals: 

X (n) = Xq (n) 

Q Eqn 2.2 

The basic operation of the TD-PSOLA algorithm has been presented, and the following section 
describes the Praat software (Boersma & Weenink, 1999) implementation of TD-PSOLA that 

will be used during this work. 

23 The Praat Software Implementation of the TD-PSOLA Algorithm 

Praat (Boersma & Weenink, 1999) is a system for doing phonetics, developed by Paul Boersma 

and David Weenink in the Phonetic Science Department at the University of Amsterdam. It is a 

shareware program, which provides a flexible tool for speech research allowing pitch analysis, 

spectrographic analysis and speech synthesis amongst many other functions. For more 
information, see http: /www. fon. hutn. uva. nl/praat/ or contact Dr Boersma: 

paul. boersma@hum. uva. nl. 

The following sections describe how the stages of analysis, modification and synthesis for the 
TD-PSOLA algorithm are achieved using this software. 

2.3.1 TD-PSOLA Analysis 

Pitch analysis is performed on the time domain waveform using an acoustic periodicity detection 

algorithm based on an autocorrelation method (Boersma, 1993). This method is reported to be 

more accurate, robust and noise-resistant than methods using cepstnun or combs, or original 
autocorrelation methods. The minimum default pitch is set at 75Hz; any candidates below this 
level will be ignored. 

A pitch contour results from this analysis, giving frequency values and voiced/unvoiced 
decisions. The pitch contour is converted to a frequency of points structure representing glottal 
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pulses which are positioned on the voiced intervals on the waveform. Figure 2.1 shows the Praat 

software editor window. In the top section, the time domain waveform is seen with glottal pulses 

(shown as vertical lines) positioned on the voiced parts of speech. The middle section shows the 

original pitch contour of the voiced parts of speech, which in this example, is flat or static and 

has a fundamental frequency of 223.8Hz. The bottom section facilitates the modification of the 

duration of the speech. 

E N. 

L 

1 
000 

FIGURE 2.1 PRAAT SOFTWARE EDITOR WINDOW 

2.3.2 TD-PSOLA Modification 

The pitch contour when converted to the point structure may then be viewed or edited in the 

editor window. The editor in Figure 2.2 shows the original sound with the point structure 

representing the glottal pulses. The pitch points in the middle section may be simplified by 

removing certain points, and can be edited by moving them up or down to increase or decrease 

the resulting pitch. In the duration window points can be added and edited to manipulate the 

relative durations of parts of the waveform. 
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FIGURE 2.2. TD-PSOLA PITCH AND DURATION MODIFICATION IN PRAAT 

2.3.3 TD-PSOLA Synthesis 

The modified sound waveform is obtained from the analysis phase by taking the new pitch 

contour information (consisting of a time-stamped pitch contour without voiced/unvoiced 

information) and generating new points along the entire time-domain waveform. 

The new acoustic pitch contour is interpreted as the frequency of occurrence of points 

representing the sequence of glottal closures during vocal fold vibration. The points are generated 

along the entire waveform as the voiced/unvoiced information is not taken into account yet. 

The period information in the pulses is used to remove all points that he in voiceless regions of 

the time-domain waveform. This is judged to be places where the distance between adjacent 

points in the original pulses is greater than 20ms. 

The voiceless parts are then copied from the source waveform to the target waveform, repeating 

some ST-signals or deleting some ST-signals if the local duration is greater or less than 1. 

For each new target point, the nearest source point is identified and the ST-signal centred on the 

source point is copied to the target sound and positioned at the target point. The window used is 

bell-shaped, called a Hanning window, whose left-hand length is the minimum of the left hand 
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periods adjacent to the source and the same for the right-hand side giving a window size of 2P, 

where P is the local period of the signal. The ST-signals are then overlap-added together. 

This section has described the operation of the Praat software implementation of the TD- 

PSOLA algorithm. The following section investigates some of the basic distortions that the 

application of this TD-PSOLA implementation introduces by illustrating its effect on pure sine 

waves. 

2.4 The Basic Distortions introduced by TD-PSOLA in Pure Sine Waves 

Kortekaas & Kohlrausch (1997a) pitch manipulated a single pure tone to illustrate the basic signal 

distortions produced by the PSOLA operation. The pure tone may be thought of as a component 

of a harmonic spectrum e. g. a 1000Hz sine wave may be assumed to be the 10th harmonic of a 

100Hz fundamental, or the 4th harmonic of a 250Hz fundamental. 

Their work has been replicated here using the Praat software (Boersrna & Weenink-., 1999) to 

illustrate these distortions and to deters-nine whether such distortions are perceptible. The following 

terminology will be used: TQ the analysis rate (ms) or the rate at which the signal is decomposed, 

T, the synthesis rate or the rate at which the signal is recombined, F. the fundamental 

frequency of the original signal, and F,,,, the fundamental frequency of the synthesised signal. 

Initially, a 1000Hz sine wave was generated with the Praat software using the formula 

'/s*sin(2*pi*1000*x). This signal was analysed as described in Section 2.2.1 to produce an 

intermediate representation of a series of Short-Term (ST) signals. In Praat this involved setting 

the maximum pitch to be considered in the analysis to 120Hz (found by trial and error) so that 

Praat pulses are positioned every 10th cycle of the 1000Hz waveform; assuming the pure tone is a 

harmonic of a1 00Hz fundamental, pulses are positioned on each hypothetical cycle of the 100Hz 

fundamental. As a result, the signal will be windowed or decomposed every 1Oms (Ta =10ms). 

The window length was set to 0.02 seconds, which represents 2*local pitch length of a 100Hz 

fundamental. 
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This signal was then TD-PSOLA modified by OF=-2.44% using the following relationship: 

AF= 
FF, -Fx� x100% F. 

Eqn 2.3 

giving a value of 
F- 

=97.56 Hz. 

This was achieved using the Praat editor window by removal of existing pitch points and addition 

of a new pitch point at the synthesis frequency of 99.56Hz. The original waveform shown in 

Figure 2.3 (a) was decomposed at intervals of 
T°=10ms, 

then TD-PSOL N modified to 

FH 
=97.56 Hz at 

T' 
=10.25ms to produce the waveform in 2.3 (b). The TD-PSOLA modified 

waveform shows amplitude modulation (AM) in its envelope when compared to the original 

waveform. 

(a) original waveform (b) '11)-PS0l.: 1 modified waveform 
FIGURE 2.3 TD-PSOLA DISTORTIONS: AMPLITUDE MODULATION 

The distortion can also be seen in the frequency domain by calculating the Fast Fourier 

Transform (FFT) of the signal using a Hanning window (FFT size 4096). Figure 2.4 (a) shows the 

spectrum of the unmanipulated 1000Hz signal, and 2.4 (b) shows the TD-PSOL A modified 

version. The spectrum of the signal in Figure 2.4 (b) shows frequency modulation (FM) in the 

fine structure. Broadening of the spectral envelope due to the addition of side components in the 

form of harmonics of the assumed 100Hz fundamental is evident. 
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(b) spectrum of TD-PSOLA modified signal 
FIGURE 2.4 TD-PSOLA DISTORTIONS: FREQUENCY MODULATION 

These images illustrate some of the basic TD-PSOLA signal distortions on a pure sine wave. This 

distortion may be perceptible; the timbre of sound is determined by the shape of the spectral 

envelope and informal listening finds the modified version very rough or `hoarse' sounding in 

comparison to the unmodified pure tone. The investigation in the following section extends to 

more complex single formant signals. 

2.5 TD-PSOLA Distortions in Single Formant Stimuli 

Kortekaas & Kohlrausch (1997a) investigated the effect of TD-PSOLA pitch manipulation on 

single formant stimuli and the work is recreated here to illustrate the effect of the algorithm on 

more complex waveforms. Initially, a signal was generated with a fundamental frequency of 87Hz 

and a formant frequency of 1000Hz with a bandwidth of 50Hz. A second signal was generated 

with a fundamental frequency of 100Hz and a formant frequency of 1000Hz, with a bandwidth 

of 50Hz. This signal was then TD-PSOLA modified to produce a signal with a fundamental 

frequency of 87Hz. 

Kortekaas & Kohlrausch (1997a) also investigated the effect of incorrect marking of glottal 

closure instances. This was achieved by altering the position of the pitch markers and hence the 

position of the analysis windows on the 100Hz signal to an offset of 50%. This signal was then 

pitch-modified to 87Hz. 
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The single formant signal was created using the Praat software by generating a source (pulse 

train) at 87Hz and a filter, having a passband at 1000Hz with a 50Hz bandwidth. The single 

formant signal was created by filtering the pulse train. 

Figure 2.5 (a) shows the spectrum of the unmanipulated single formant signal composed of a FO 

of 87Hz and a formant frequency of 1000Hz, formant bandwidth 50Hz, 2.5 (b) the TD-PSOLA 

manipulated signal generated with an FO of 100Hz, formant frequency of 1000Hz, decomposed 

at 
F"" 

=100Hz and resynthesised with a fundamental frequency of 
F"T 

=87Hz, and 2.5 (c) a 

signal synthesised with the window offset by 50%. 

s IAMINä'llfi11ii: 
tIl liffi I111111tIHIIIIIIIil 

- .4-i 71 

mommosawas 

monamommad 

(bi 11J-I'SU1_\ muüdtcd sigma I truth tu l ()t r! I, to 6 11z 

(c) I'D I'S()I.: A modihcd siglial with 50°, ý utndm offsct 

FIGURE 2.5 SPECTRA OF TD-PSOLA DISTORTIONS IN SINGLE FORMANT STIMULI: FM 
MODULATION 

Figure 2.5(b) shows that the shape of the spectral envelope remains almost unaffected. The 

spectrum of the signal with the pitch markers set to a 50% offset in Figure 2.5(c) shows 
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pronounced notches in the spectral envelope, which is very discontinuous. These modifications 

may produce perceptible distortions; informal listening finds the timbre of the signal in 2.5(b) 

slightly modified, and the signal generated with the 50% analysis window offset in 2.5 (c), 

extremely `hoarse'. 

2.5.1 Thrrsholdr for Discrimination of TD-PSOLA, Modied Single Formant Stimuli 

Kortekaas & Kohlrausch (1997a) performed experiments to determine the thresholds for T. D- 

PSOLA discrimination of modified single-formant stimuli. 
F5 

was varied according to 

F'. =i Hz, where n=...... MS Eqn 2.4 

Using a subjective experiment, a non-monotonic behaviour was found for TD-PSOLA 

discrimination. More precisely, participants were less likely to perceive any distortion for fO 

manipulations when T, was set to integer multiples of the formant frequency. For example, for a 

signal of F,,,, =100Hz, fl=1000Hz, sub-threshold discrimination was found for T, = 12,11,9ms 

(lms=1 / 1000Hz) when T,, = l Oms (10nns=1 / 100Hz), giving 
F- 

values of 83.33,90.9, and 

111.11Hz. Similarly, for a signal of F,,, =250Hz, fl=500Hz, sub-threshold discrimination was 

found for T, = 8,6,2ms (2ms=1 /500) when Ta = 4ms (4ms=1 /250Hz), giving 
F"s 

values of 

125,166.7, and 500Hz etc. 

There appeared to be a relationship between the degree of manipulation and the first formant 

value. Setting TS 
to a multiple of the forrnant period results in in-phase addition of the fine 

structure of adjacent windows, resulting in minireal distortion of the temporal envelope. In 

spectral terms, a harmonic is produced which coincides with the centre of the formant frequency. 

The waveforms in Figure 2.6 show (a) a waveform synthesised with f0 90.90Hz, fl=1000Hz and 

(b) a waveform synthesised with ff) 100Hz, f1=1000Hz which has been TD-PSOLA modified to 

give a signal with a fundamental frequency of 90.9Hz. 
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FIGURE 2.6 WAVEFORMS OF SYNTHESISED AND TD-PSOLA MODIFIED VERSIONS OF 90.9HZ 
FUNDAMENTAL SIGNAL 

Figure 2.6 shows there is little difference in the shape of the temporal envelope of the two 

signals. The corresponding spectra are shown in Figure 2.7. The spectral slope remains 

unchanged and the harmonic energy levels have suffered little attenuation. 

FIGURE 2.7 SPECTRA OF SYNTHESISED AND TD-PSOLA MODIFIED VERSIONS OF 90.9HZ 
FUNDAMENTAL SIGNAL 

Figure 2.8 shows a magnified view of the first formant region. A harmonic has been produced 

which corresponds to the centre of the first formant at 1000Hz, resulting in minimal signal 

distortion. This does not appear to produce perceptible distortion; informal listening indicates it 

may be impossible to discriminate between the unmodified and modified signals. 
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FIGURE 2.8 MAGNIFIED VIEW OF THE FIRST FORMANT REGION 

The following set of diagrams in Figure 2.9 show an instance where 
TS is not a multiple of the 

formant frequency period but has been set to 10.5ms resulting in a 95.24Hz fundamental 

frequency signal. The strongest harmonic is not at the centre of the first formant and a new 

harmonic is introduced. The diagrams on the left represent the signal synthesised at 95.24Hz, and 

the diagrams on the right show the TD-PSOLA signal modified from 100Hz to 95.24Hz. 
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FIGURE 2.9 WAVEFORMS, SPECTRA AND FIRST FORMANT REGION OF SYNTHESISED AND TD- 
PSOLA MODIFIED VERSIONS OF 95.24HZ FUNDAMENTAL SIGNAL 

This distortion may be perceptible; informal listening can detect a very slight difference in timbre. 

The spectra show attenuation of harmonics around the first formant centre frequency of 2-3dB, 

although the spectral shape remains unaffected. Changes in the intensity of the spectral 

components that occur in the spectral region of the formant could be the cue for discrimination; 

formant frequency JNDs Oust Noticeable Differences) for harmonic level differences at 500, 

1000 and 2000Hz formant values have been identified at 2,2.5 and 4dB respectively (Zera et a1., 

1993). 

This section has illustrated the acoustic distortions that pitch modification with TD-PSOLA 

introduces into simple signals under certain conditions. Some of the distortion may be 

perceptible although, as Kortekaas & Kohlrausch (1997a) note, it is not known whether these 

conditions could be used as cues for TD-PSOLA discrimination in more complex signals, such as 

natural speech. 

2.6 The Influence of Pitch Marker Position 

The effect of incorrect pitch marker position on single formant stimuli was illustrated in Section 

2.5. Moulines & Charpentier (1990) found that minimum phase distortion is achieved when pitch 

periods and hence windows are synchronized on the instants of glottal closure. Failure to do so 

results in distortions of the formant amplitudes (Moulines et al., 1989). Improper synchronization 
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affects amplitudes of higher frequency formants more, which have larger bandwidths. They 

report that speech sounds hoarse when the shift exceeds 30% of the pitch period. 

Kortekaas & Kohlrausch (1997a) conducted a subjective experiment using single-fomzant stimuli 

to investigate the influence of the position of pitch marks. The discrimination threshold for 

incorrect pitch marking (measured from the instance of glottal closure) was determined as 25% 

for signals with an f0 of 100Hz. Although the results were not experimentally verified, Kortekaas 

& Kohlrausch measured the discrimination threshold to be 10% for signals with an fly of 250Hz. 

This suggests that higher fundamental frequency speech (for example female voices) may be 

more susceptible to small pitch marking errors. 

Kortekaas & Kohlrausch (1997b) investigated the effect of pitch marker position on natural, 

sustained vowel stimuli. When all pitch marks were shifted by a percentage, participants reported 

strong ̀ nasality' (timbral) cues, with detection thresholds of 15%. For single pitch marker shifts, 

participants reported roughness as a cue for discrimination, with pitch shift thresholds as low as 

2-5% of the local pitch period. For jittered pitch marking sequences (the random varying of the 

temporal position), roughness or unsteadyness were reported as cues, with thresholds of 0.5-1% 

jitter. The conclusion was that constancy of pitch marking is more important than accuracy for 

introducing minimal distortion. 

2.7 The Influence of Analysis Window Size and Type 

Moulines & Charpentier (1990) say that a PSOLA algorithm should modify the periodic part of 

the signal without affecting the spectrum of the stochastic component. They investigated this 

using an idealized mathematical model of a stationary voiced sound, consisting of a deterministic 

periodic signal and a stochastic component. The periodic signal represents the component in 

voiced speech that is the same from one pitch cycle to another, and the stochastic component 

models the variations from cycle to cycle that occurs during natural speech due to irregularities in 

the vocal cords or turbulent airflow from the lungs. The stochastic component may be dominant 

in certain speech, such as voiced fricatives, or during certain phonation types, such as `breathy' 

speech. 
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The effects were analysed in both narrow-band and wide-band conditions, and it was found that 

the spectral envelope of the synthetic signal depends critically on the spectral resolution of the 

analysis window. 

Narrow-band refers to the condition when the bandwidth of the analysis window is less than the 

fundamental frequency i. e. the length of the window is greater than 4 times the local pitch period. 

Considering the deterministic part of the signal, TD-PSOLA pitch modifications may cause 

attenuation of certain pitch harmonics due to the difference between the inherent periodicity of 

the Short Term signals and the synthesised pitch. A pitch harmonic remains unaffected if its 

frequency corresponds exactly to a pitch harmonic of the original signal. The amplitude of the 

synthesis pitch harmonics is affected more as it departs from the original pitch harmonics. The 

worst case occurs when the synthesis harmonic falls between two adjacent original pitch 

harmonics; the synthesis harmonic amplitude will be almost zero. This was illustrated in Figure 

2.9(b). Moulines & Charpentier (1990) described this to be perceived as reverberation. 

TD-PSOLA pitch-modification also affects the stochastic part of a signal under narrow-band 

conditions; it is no longer white noise. The stochastic signal is altered into a "pseudo-periodic 

structure" (resembling the output of a comb filter). Moulines & Charpentier (1990) described this 

structure as tonal noise, like whistling. Charpentier & Moulines (1989) and I. arreur et aL (1989) 

state that narrow-band conditions are inappropriate for TD-PSOLA manipulations. 

Wide-band conditions may be defined as situations where the bandwidth of the analysis window 

is greater than fO i. e. the length is less than 2 pitch periods. Deterministic signals suffer as the 

Short Term spectra appear as a smoothed estimate of the true spectrum. The bandwidth is 

greater than the frequency spacing between pitch harmonics so the window cannot resolve the 

individual pitch harmonics. The bandwidth of a forrnant is usually much less than the bandwidth 

of the analysis window so the estimates of forrnant bandwidths are not good and consequently 

the bandwidths of the formant resonances are broadened. This problem appears more severe for 

higher fO voices as the spectral resolution of the analysis window has to be reduced to meet the 

wide-band analysis conditions. In a worst case, fusion of closely spaced formants is observed. 

This may not be perceptible most of the time as the difference limen for the perception of 
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formant bandwidth modification is high (40% for steady vowels and larger for continuous speech 

(Flanagan, 1972)). Some modification of the overlap between frequency regions dominated by 

harmonics and those dominated by noise-like energy may also occur. 

Moulins et al. (1990) state that achieving maximum quality is dependent upon the size and choice 

of analysis window. Window length should be 2P where P is the local pitch period and the 

window type should adhere to the desired properties of any spectral analysis window (Harris, 

1978). Hanning windows are a popular choice although Kawai et al (1994) advocate the use of a 

Tukey window that has a flat portion in its centre. This is reported to be more successful than a 

Hanning window when reducing pitch. 

2.8 Extent of Manipulation 

Much research reports that pitch and duration modifications with TD-PSOLA can introduce 

unacceptable degradation into speech. Laroche et al. (1993) say PSOLA allows high quality pitch 

and time modifications for moderate transformations. Breen (1998) and van Santen (1997) also 

report that the resulting speech quality is dependent upon the size of the modification performed 

and Black & Campbell (1995) found that using a corpus-based system where less signal 

processing was required introduced less perceptible distortion. 

Some research has been performed to quantify the acceptable extent of manipulation, before 

distortion is perceived. Moulines & Charpentier (1990) reported that acoustical distortions are 

negligible for moderate duration factors. The slowing of unvoiced speech by factors greater than 

2 introduces `a short term correlation' that is perceived as tonal noise or buzzyness, due to the 

repetition of the ST-signals. This may be minimised in certain cases by reversing every repeated 
ST-signal. 

Kawai et al. (1994) determined an "allowable modification ratio" at the word-level for pitch and 

duration manipulations without "significant loss of naturalness". These ratios are 55% to 149% 

for pitch modifications, and 45% to 122% for duration modifications, tested over a range of 0.4 

- 2.0 modification factors in steps of 0.2. Significant loss of naturalness was judged to correspond 
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to a MOS score of less than 4/5. Hirokawa & Hakoda (1990) for sentence level stimuli gave 

values of fO modification of 80% to 125% for a 75% acceptability rate of 13 listeners. Blouin & 

Bagshaw (2000) evaluated French vowels embedded in a CVCV (C=Consonant, V=Vowel) 

structure over 50% to 200% in 25% steps for both duration and pitch modifications. They found 

that greater modification appeared to cause greater distortion for averaged values of all vowels 

and report similar "acceptable" values to Kawai et al (1994). Kortekaas & Kohlrausch (1997a) say 

that although not experimentally verified, TD-PSOLA discrimination for ß) modification of pure 

tone stimuli may be as low as 2%. 

Breen (1998) notes that the type of modification affects perceived distortion levels; TD-PSOLA 

suffers when large abrupt pitch changes are necessary. Blouin & Bagshaw (2000) found the 

worst-case scenario occurred when static pitch contours, as opposed to dynamic contours, were 

imposed on speech. 

Table 2.1 summarises the extent of `acceptable' modifications. 

Researcher Stimuli Max FO Max duration 
modification modification 

Breen (1998) - <1 octave (pitch doubling) <twice original length 

Hirokawa & Hakoda Sentence-level 800/6-125% - 

(1990) 

Kawai et di (1994) Word-level 55% - 149% 45%-122% 

Moulins & Mathematical model - Slowing of unvoiced 

Charpentier (1990) speech < factor of 2 

Kortekaas & Pure tones 2% 

Kohlrausch (1997a) 

Blouin & Bagshaw CVCVC French States similar values to States similar values to 
(2000) vowels Kawai et aL (1994) Kawai et aL (1994) 

Donovan & Woodland - Good for factor of 1.2, Good for factor of 0.5 - 
(1999) moderate for 0.5 - 2.0 1.5 

Table 2.1 Summary of Acceptable Extent of TD-PSOLA Modifications 
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The following sub-sections examine the effects of positive versus negative pitch modifications, 

and the original fundamental and forrnant frequencies on the amount of perceived distortion 

introduced into TD-PSOLA modified stimuli. 

2.8.1 Positive versus Negative Pitch Shifts 

Kortekaas & Kohlrausch (1997a) found for that for pure tones, participants were less able to 

discriminate negative pitch shifted stimuli. Kawai et al (1994) determined the allowable range of 

fl) modification to be larger when pitch is decreased rather than increased, and the allowable 

range of duration modification to be much larger for compression than stretching. Blouin & 

Bagshaw (2000) found negative and positive manipulations produced similar amounts of 

perceptible distortion. 

2.8.2 Original Fundamental Frequency and First Formant Frequencies 

Kortekaas & Kohlrausch (1997a) reported discrimination ceiling effects for the 250142 single 

formant stimuli, suggesting that higher fO voices may suffer more. Blouin & Bagshaw (2000) tested 

both high-tone and low tone starting frequency stimuli and found high-tone frequency French 

vowels suffered more perceptible distortion for duration and especially pitch modifications. 

Kortekaas & Kohlrausch (1997a) also noted that formant roving may explain the success of TD- 

PSOLA; foanant roving lessened distortion discrimination especially for lower fO and/or low fl 

values although stimuli of higher fO (e. g. 250Hz) or higher first formant (e. g. 2000Hz) were not 

greatly affected by roving. 

2.9 Speech Type 

Breen (1998) states that TD-PSOLA cannot cope well for breathy or creaky voices that have a 

long or short open phase in the larynx cycle. Also, it does not perform duration modification 

satisfactorily for unvoiced sounds such as fricatives, or complex sounds such as affricates and 

plosives. 
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Moulines & Charpentier (1990) say slight tonal noise or buzzyness may be perceptible for voiced 

fricatives when raising the pitch since this involves time-scale modifications. The buzzyness is 

due to local periodicity caused by the repetition of Short-Term (ST) signals. This may be avoided 

for unvoiced speech by reversal of some ST-signals; voiced fricatives suffer as their spectrum 

may combine both voiced and unvoiced regions, making ST reversal impossible due to the 

voiced components. 

Blouin & Bagshaw (2000) evaluated the effect of TD-PSOLA on French vowels and showed that 

the vowels may be grouped according to their first forrnant frequency (fl). Those that had 

formants less than 250Hz, such as front vowels, were perceived to be less distorted overall. Nasal 

vowels suffered more than oral vowels when lowering ff). 

2.10 Analysis of Previous Research 

This research concentrates on pitch modification as this also inherently requires duration 

modification; increasing pitch requires repetition of ST-signals, and decreasing pitch requires 

deletion of ST-signals. The existing research into the effect of the TD-PSOLA algorithm when 

used for pitch modification raises several issues. These are discussed below: 

1. Extent of manipulation. Various `acceptable' levels for pitch modification have been 

reported, ranging from ±2% to -50%. The discrepancy between these values may be 

dependant on the individual implementation of TD-PSOLA, stimulus choice and 

definition of `acceptable'. Kortekaas & Kohlrausch (1997a) are able to discriminate pure 

tone stimuli that have undergone modifications of as low as 2% of the original R). The 

fact that TD-PSOLA modified stimuli can be discriminated from unmodified stimuli may 
be deemed unacceptable. At larger modifications, TD-PSOLA may cause changes in 

voice quality leading to unnaturalness, which may also be defined as ̀ unacceptable'. 

2. Increasing versus decreasing pitch shifts. Kawai et aL (1994) and Kortekaas & Kohlrausch 

(1997a) state that pitch modification performs better when decreasing rather than 
increasing pitch, although Blouin & Bagshaw (2000) report similar effects in either 
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direction. This may be dependent on the implementation of the algorithm or on the range 

of manipulation under investigation. 

3. Type of modification. Breen (1998) found TD-PSOLA cannot cope well with rapid pitch 

changes, and Blouin & Bagshaw (2000) found that imposing static pitch contours onto 

speech was more problematic in terms of increased perception of distortion, than 

imposing dynamic contours. 

4. Fundamental frequency. Kortekaas & Kohlrausch (1997a) report that higher fO single 
formant stimuli suffer more perceived distortion than lower fO stimuli. Blouin & Bagshaw 

(2000) and Moulines & Charpentier (1990) both state that stimuli with higher starting 
frequencies suffer more. Conclusions are drawn that female voices may suffer more than 

male voices. 

5. F"" F", 
and f1 relationship. Kortekaas & Kohlrausch (1997a) found a relationship 

between the original fO, F.,,,, 
the target ß), F, 

and the first formant, f1, in single 

formant stimuli. Basic distortions were illustrated such as harmonic attenuation, formant 

broadening and the influence of the position of the new synthesis harmonic at fl. 

Sommers & Kewley-Port (1996) state that level changes of the three harmonic closest to 

the formant frequency are most important Although these distortions were visible in the 

spectra in Figure 2.8 (b), informal listening found the change in quality between the 

modified and unmodified signals to be perceptually minor. As Kortekaas & Kohlrausch 

note, it is uncertain as to whether they will be perceptible at all during more complex 

signals such as natural speech. They also determined that single formant stimuli with 

unresolved harmonics (e. g. fO 200Hz, fl 500Hz as opposed to ff) 200Hz, f1 1000Hz) 

performed better. This may not be an issue for natural speech, as it is highly dynamic in 

nature and formants do not often remain steady, making such situations improbable for 

any appreciable duration. 

Extant research also suggests several situations or parameters that may cause distortion to 

occur. These are discussed below. 

I. Pitch marking. Moulines & Charpentier (1990) found that pitch shifts of 30% may cause 

speech to sound `hoarse' and distort formant amplitudes. This was especially so for high 

frequency formants which have larger bandwidths. Kortekaas & Kohlrausch (1997b) report 
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the thresholds as 25% for stimuli with an fD of 100Hz, and 10% for stimuli with an f0 of 

250Hz stimuli. When all pitch marks are shifted by a percentage, participants report 

`nasality' as a timbral cue. For single shifts, roughness was reported as a cue, with thresholds 

of 2-5% shift. tittered pitch marker sequences (the random variation of temporal positions 

of glottal pulses) cause roughness or unsteadyness to be reported, with thresholds of 0.5- 

1% shift. Overall, constancy of pitch marking was found to be more important than 

accuracy. 

2. Phonation type. Different phonation types are caused by changes in the excitation pulse or 

glottal waveform by varying the tension and position of the vocal cords. Breathy voice is 

characterized by a longer fall phase, a more symmetrical pulse and a lower f0. Breathy voice 

is also dominated by a stochastic component. Creaky voice (or vocal fry) is characterized by 

a short rise time, irregular pulses and a very low fO. Both types of phonation have been 

reported as problematic for TD-PSOLA. 

3. Speech type. The phoneme type was reported to have a marked effect on the success of 
TD-PSOLA. Aspects of various speech types are discussed below. 

The following points outline the major characteristics of speech types grouped according to their 

manner of articulation: 

1. Duration. Stops have the shortest duration and diphthongs the longest. Checked vowels 

are shorter than diphthongs which have longer steady states, and tense vowels have a 
longer duration than lax vowels. Vowels have longer durations than sonorants, 

affricatives are longer than stops, unvoiced obstruents are longer than voiced, and 

unvoiced fricatives are much longer than voiced fricatives. 

2. Intensity. The intensity of speech sounds varies greatly e. g. the /A: / in "airs" is 700 

times more powerful than /T/ in "think". In order, vowels are loudest, followed by 

liquids, nasals, affricatives, fricatives, and finally stops. Tense vowels have a higher 

intensity than lax vowels. 

3. First formant frequency. Fl is a function of tongue height determined by the size of the 

back cavity behind the tongue hump; front tongue elevation produces a larger volume in 

the back cavity associated with lower fl frequencies (e. g. /i: / in "see"), whereas back 

tongue elevation decreases this volume and raises fl frequencies (e. g. /Q/ in "top"). 
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4. Speech sound category. There are three types of speech sound category: frication, plosion 

and voicing. All speech sounds are made up from one category or from more than one 

category, either simultaneously or in sequence. 

Fricatives are produced by turbulent air streams causing noise-like signals. The strident 
fricatives /s/ and /S/ have higher amplitudes than non-strident fricatives such as /f/ and 
/T/. 

Plosives consist of a silence and then a release burst. The release burst shows a split 

second of turbulence resembling the fricative with the same place of articulation e. g. a /t/ 

looks like a brief /s/. As the vocal tract moves from the consonant to the position for the 

following vowel, there are brief influences on the formants of the vowel. There would 

also be influences on the formants at the end of preceding vowels. Voiced plosives are 

periodic whilst the vocal tract is closed and the release burst is less prominent. 

The voiceless affricative AS/ begins as plosives with a silence, but when the closure in 

the vocal tract is released a Ecative sound is produced. The voiced affricative /dZ/ has 

an initial part that is periodic and a second part that is a mixture of periodic and aperiodic 

signals. Moulines & Charpentier (1990) say there can be some modification of overlap 

between frequency regions dominated by harmonics and those dominated by noise-like 

energy, which may cause problems for the TD-PSOLA algorithm and produce distortion. 

Vowels and voiced consonants contain voiced speech. Phonemes such as voiced 
fricatives may combine both voiced and unvoiced parts simultaneously. Vowels may 

often consist of both voiced and unvoiced speech due to the occurrence of large amounts 

of glottal induced noise that may be superimposed on their basic periodic waveform. 

2.11 Summary 

TD-PSOLA is a highly successful and popular algorithm used to modify the pitch of speech 

segments when required to create new utterances during the speech synthesis process. Chapter 2 
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initially described the operation of the TD-PSOLA algorithm, which involves the three stages of 

analysis, modification and synthesis. The Praat software implementation of the algorithm, which 

is used during this research, was then presented. 

It is well documented that the main drawback is the occurrence of perceptible distortion when 

TD-PSOLA is applied to speech which, although less than for parametric speech models, is 

nonetheless seen as detrimental. The research concentrates on the effect of pitch modification 

using TD-PSOLA, as pitch modification inherently requires duration modification. Some of the 

basic signal distortions introduced when the algorithm is used for pitch modification were 

investigated by examining its effect on pure sine waves and then on more complex single formant 

stimuli. 

As these distortions are not always perceptible especially with more complex natural speech 

stimuli, extant research was reviewed and suggested some possible situations of when this 

perceptible distortion may occur. These possible contributions consisted of incorrect pitch 

marking, the influence of the analysis window size and type, the extent of manipulation, and the 

speech type. The review of existing literature highlighted some issues requiring further 

investigation, which may inform the design of a framework for a speech corpus approach used in 

conjunction with TD-PSOLA that results in an output with less perceptible buzzyness. Part of 

the framework consists of the design of a corpus containing optimised segments which when 

TD-PSOLA is applied, result in minimal introduction of perceptible distortion. Issues which may 

affect the corpus design include the various `acceptable' levels of pitch modification cited, 

ranging from 2 to -50% of the original pitch, the issue of whether increasing or decreasing pitch 

modifications is preferable, the type of modification (static versus dynamic and abruptness of fO 

changes), and a possible relationship between the starting f0, the target fO and first formant value, 

and the speech type. The issue of choosing a speaker to record the speech segments for the 

corpus may be dependant on the effect of the starting ß) of speech (female voices may suffer 

more), the phonation type of the speaker, and possible noise on the periodic parts of the speech. 

Some parameters of the various speech types were identified, when the phonemes were grouped 

according to their manner of articulation, of duration, intensity, first formant values, and speech 

sound category (frication, plosion, voiced). These parameters may lead to increased distortion. 
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Finally, some situations where anomalous, or increased amounts of distortion may occur ante 

identified. These consisted of incorrect pitch marking, phonation type, analysis window size, 104 

extraneous noise on periodic waveforms. If these were found to be possible contributions to the 

occurrence of distortion, segments exhibiting such aspects could be removed from the corpus. 

To address these issues, a series of experiments will be carried out to investigate the effect of the 

TD-PSOLA algorithm on natural speech. The results of the experiments will then be used to 

suggest a design for the speech corpus. The following chapter reviews existing speech assessment 

techniques and experimental practice to aid the design of these investigative experiments. 
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Chapter 3. Evaluation of Synthetic Speech Output 

3.1 Introduction 

Rapid progress has been made in the field of speech synthesis, but it is still possible to identify 

the output of any commercial speech synthesiser as non-human sounding. Although synthetic 

speech may be perfectly intelligible, listeners often report synthetic voices as irritating (Cowley & 

Jones, 1993) and find more natural speech easier to process (Hawldns et al., 2000). While this 

remains the case, it is important to evaluate synthetic speech effectively to highlight areas where 

further improvements are necessary. 

There are two main forms of assessment diagnostic tests and overall performance assessments. 

Diagnostic tests evaluate the synthesiser performance at individual levels. Such levels may be the 

intelligibility or naturalness of the speech, and subsets of these such as speaker style, emotion, 

accentuation etc. Overall or global performance assessments provide judgements on the quality 

or fitness of a synthesiser for a certain application. They may be used to evaluate more than one 

quality aspect at a time. Overall performance tests often involve field-testing, using real situations 

and listeners. For example the synthesiser may need to produce intelligible output in a noisy 

environment or over a low communication bandwidth medium, such as for telephony 

applications. 

Major applications of synthesis systems are to provide user-friendly interfaces between human 

and machine. It is therefore important that the synthetic output is easy to listen to, and as 

intelligible and natural as possible to prevent listener fatigue (Morton, 1991). It is necessary to 

identify the application of the synthesiser to decide upon the most relevant aspects to be tested. 

For example, intelligibility would be of paramount importance for applications such as speaking 

timetables or clocks. For applications such as electronic mail or web page readers, it may be 

additionally desirable to generate expressive or emotional speech, with natural prosody. 
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There are two approaches to evaluating the quality of either parts of or the whole of, a speech 

synthesis system: objective and subjective evaluation. Objective approaches attempt to measure 

physical features of a speech signal that are related to the quality of the speech. Subjective 

measures rely on human perception to judge speech quality. The branch of science concerned 

with the perception of sound is known as psychoacoustics. 

Speech is one of the most complex signals in existence (Deketelaere et al, 2001); it does not lend 

itself easily to acoustic measures of quality. Due to the difficulty in establishing a link between 

physical factors of a speech signal and the resulting perceptual quality required for objective 

assessments, this research relies on evaluations based upon the perception of speech quality by 

human listeners. 

The drawback to perceptual-based, qualitative measures is that they require careful design. There 

are many factors that may influence the results of an evaluation and it is imperative to eliminate 

factors that are not part of the desired evaluation. Factors of influence may be the test methods 

and test material chosen, the criteria for evaluation, the selection of participants, and the 

intention of the assessment Qekosch & Pols, 1994). Each of these issues will be discussed in the 

following sections. 

3.2 Existing Test Procedures 

Due to the nature of speech, and the difficulties in quantifying terms such as quality, intelligibility, 

and naturalness, it is important to determine appropriate criteria for assessment and develop 

appropriate test procedures. There are currently no existing standards for these, although there 

are many popular individual tests in existence, with various accuracy and validity Qekosch 1993, 

van Bezooijen & van Heuven, 1997). 

Some of the existing tests are listed. These can be used for intelligibility, or overall quality 

evaluations. Such features can be assessed at various levels such as segmental or phoneme, word 

and sentence-level. 
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For segmental intelligibility: 

9 the Diagnostic Rhyme Test (DRT) 

" the Modified Rhyme Test (MRT) 

9 the CLuster IDentification tests (CLID) (consonant-vowel-consonant (CVC) or vowel- 

consonant-vowel (VCV)). 

For sentence-level intelligibility: 

" the Semantically Unpredictable Sentences test (SUS) 

For Overall Quality. 

9 the Paired Comparison (PC) 

" the Mean Opinion Score (MOS) tests 

0 the ITU-T Overall Quality Test 

Aspects of speech such as intelligibility and naturalness are not completely independent of one 

another, and it is almost impossible to predict which test procedure will give the more valid 

results. Several reports have been compiled containing recommendations on assessing speech 

using these tests, such as the ESPRIT `SAM' project (Pols & SAM-Partners, 1992), the EAGLES 

project (Expert Advisory Group on Language Engineering Standards) (Gibbon et al., 1997), and 

the JEIDA report (Japan Electronic Industry Development Association) Qeida, 1995). 

Additionally a PC based package `SOAP' (Speech Output Assessment Package) (Howard Jones et 

al., 1992a) has been implemented to simplify and standardise test procedures. 

3.2.1 Segments! Intelligibility Tests 

The Segmental Intelligibility Tests evaluate the intelligibility of single phonemes only. The more 

popular segmental intelligibility tests are the rhyme tests (DRT and MRT) and the CLID test. 

3.2.1.1 The Diagnostic Rhyme Test (DRT) (Voiers, 1983) 

The DRT is a widely used phonemic intelligibility test. Stimuli are constructed as meaningful, 

monosyllabic CVC (consonant-vowel-consonant) words. Participants are acoustically presented 

with a pair of words and asked to identify which is which from a list of two words (dosed 
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response). Each stimulus differs only in variation of a single acoustic feature of the initial 

consonant, for example, "dune" and "tune". The total number of stimuli presented to the 

participant is 96 word pairs. 

Six contrasting speech sounds are represented; voiced/unvoiced, nasal/oral, sustained/ 
interrupted, sibilant/non-sibilant, graveness/acute, and compactness/diffuse. For example, the 

stimuli "veal" and "feel", for voiced/unvoiced speech. Each of these contrasts is represented 32 

times, with a combination of 8 vowels. 

The total time for such a test averages 15 minutes, with 3 seconds between each stimulus 

presentation. 

Intelligibility is expressed simply as the percentage of correctly identified initial consonants 

overall and for each contrast. 

3.2.1.2 The Modified Rhyme Test (MRT) (House et al, 1965) 

The MRT is also a phonemic intelligibility test, although less widely used than the DRT, perhaps 

due to the larger stimuli set required by the MRT. Stimuli are meaningful CVC words that can 

differ in both their initial or final consonants, but not both simultaneously. The MRT is a closed 

response test, with six possible alternatives. 50 sets, each consisting of 6 stimuli, are presented 

during the test. The first 25 sets have different initial consonants and the second have different 

final consonants. An example of a response list may be "peas, peak, peal, peace, peach, and peat". 

Participants are played one word at a time, and asked to identify it in such a list of six words. 

The average time for such a test is 25 minutes, with an interval of 4 seconds between each 

stimulus 

Intelligibility is expressed as the percentage of correctly identified initial and final consonants, or 

as an overall consonant correctness. 
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3.2.1.3 Advantages and Disadvantages of the DRT and MRT 

Both the DRT and MRT tests allow the phonemic identity of those speech sounds that are 

generated less successfully by the synthesiser to be easily identified. Both these test procedures 

have proven reliability Qekosch 1993). A minimal set of stimuli is necessary, giving short test 

runs. Naive listeners need no training, as the test employs meaningful stimuli, allowing listeners 

to respond with familiar spelling. Reliable results can be gathered with a small number of 

participants (10 - 20) malting these tests easy and economic to implement Qekosch, 1993). The 

measure of intelligibility is simply the number of correctly identified stimuli. Confusion matrices 

can provide data on misidentified phonemes, and how they are confused with one another, to 

highlight aspects of the synthesiser requiring attention or further development. For the DRT, 

large amounts of previous test data are readily available. 

The drawbacks are that only the initial consonant for the DRT and initial and final consonants 

for the MRT are tested. Additionally, there are only a limited number of meaningful, or 

semantically bearing, CVC combinations that fulfil the rhyme conditions. This means that not all 

possible confusions between phonemes can be evaluated. Additionally, they do not address any 

vowel intelligibility or prosodic features so they are not suitable for overall quality evaluation. 

3.2.1.4 The Cluster IDentifcation Test (CUD) Qekoseh, 1992) 

To overcome the problems of using a finite list of meaningful words, nonsense strings are also 

presented in this test. The stimuli consist of sequences of one or more consonants (consonant 

clusters) and sequences of one or more vowels (vowel clusters). This overcomes the limitations 

of testing only initial and final single consonants, when 40% of all monosyllabic English words 
begin, and 60% end, with consonant clusters (Speigel ei al., 1990). Example stimuli are `storp' 

(CCVCC) and `fast' (CVCC). The stimuli may also be- representative of the frequency of 

occurrence of phonemes in the language using Phonetically Balanced (PB) stimuli lists. 

An open response modality is employed. Participants are given the overall list of sounds they may 
hear during the test. They respond using normal spelling or simple notation. Jekosch (1992) 
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presented 900 stimuli, giving an overall test time of 2 hours, however, a smaller subset can be 

used. The SOAP software (Howard Jones et al., 1992a) implements this test, allowing stimuli to 

be automatically generated and scored, in terms of percentage correctness of initial, medial and 

final clusters separately or as whole constructs. Additionally, confusion matrices can be generated 

to investigate confusion between individual phonemes. 

The test is relatively fast. A small number of participants is required, 4 being typical. CVC tests 

have been recommended by the CCITT (CCITT, 1993), whereas a VCV version of the test is 

proposed as a standard for European languages by the SAM project (Pols & SAM-Partners, 

1992). One disadvantage of using both meaningful and nonsense stimuli is that participants 

expect them to make sense and naive listeners often need to adjust to this test. 

3.2.2 Sentence-level Intelligibility 

The drawback to testing intelligibility at sentence-level is that, for the sake of naturalness, 

prosody is included. Tests at sentence-level then become more like perception of normal 

communication and it becomes difficult to restrict the results to intelligibility only. If incorrect 

prosody occurs, it may affect the perceived content of the sentence. 

3.2.2.1 Semantically Unpredictable Sentences (Pols & SAM Partners, 1992) 

The aim of this test is to reduce contextual information present in a sentence available to the 

participant by using semantically unpredictable sentences. Simple grammatical sentence structures 

are used into which nonsense strings are inserted. 

Five grammatical structures are used (examples taken from Jekosch, 1993): 

Subject - verb - adverbial: "The table walked through the blue truth. " 

Subject - verb - direct object: "rhe strong way drank the day. " 

Adverbial - verb - direct object: "Never draw the house and the fact. " 

Q-word - transit. verb - subject - direct object: "How does the day love the bright word? " 

Subject - verb - complex direct object "The plane closed the fish that lived. " 
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During the test, listeners are presented with fifty sentences, 10 of each sentence structure in a 

random order. The response modality is open; participants record the sentence they perceive 

using normal spelling. 

Intelligibility is scored simply as the percentage of correctly identified sentences. Using 50 

sentences, with 15-second intervals between each, the average test time is 15 minutes. 

The main drawback to this test is that it may only be used as a comparative tool, rather than a 
diagnostic one. The intelligibility scores may not be based solely on phonemic identification but 

may be affected by prosody, and semantic content. 

3.2.3 Ownz11Quai y Tests 

Improving quality is an on-going problem in synthetic speech development. Research questions 

exist as to why people would rather listen to natural speech rather than synthetic speech. It is 

important to extract the qualities of speech that separate natural speech from synthetic speech. 

Conversely, it may be desirable to identify the aspects of synthetic speech which participants find 

most irritating. 

overall quality tests are desirable to test a larger, subtler range of speech synthesis properties. The 

following tests are often used to evaluate specific aspects of speech quality or can be used to 

assess overall quality. 

3.2.3.1 Paired Companson (PC) (Kraft & POO, 1995) 

participants are presented with a set consisting of two stimuli and must choose the one that 
fulfils the test criteria better, often referred to as a two-alternative forced choice (2AFC) test. 
Identical sets can be included to verify the participant reliability. Transitivity must be respected to 

avoid conclusions such as A is better than B which is better than C which is better than A. 
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3.2.3.2 MOS test (ITU-T, 1996) 

Mean Opinion Score (MOS) tests rate perception of quality on a scale, such as 1 to 5, where 1 

represents poor and 5 represents excellent. Participants simply rate individual aspects or the 

overall quality of the speech on this scale. This method provides information about which aspects 

of the speech need attention. A DMOS (Degradation MOS) may also be used to measure the 

magnitude of disturbances. 

The main drawback: of the MOS test is that a participant's score has meaning only relative to the 

scores from other respondents and the data should therefore be treated as ordinal rather than 

interval. 

Both the paired comparison and the MOS test can be used to evaluate intelligibility. 

3.2.3.3 TTU-T OverallQuality Test (JTU-T, 1994) 

This test evaluates aspects such as acceptability, overall impression, listening effort, 

comprehension problems, articulation, pronunciation, speaking rate and voice pleasantness. Four 

synthesis systems can be rated in such a test. 

33 Test Conditions 

Test conditions must be reported to allow experiments to be replicated. The chosen speech 

output device e. g. speakers, headphones or telephone, depends upon the application of the 

synthesiser. The acoustic environment, such as an office, train station etc. must be recorded and 

the type of background noise, if any, noted. The synthesiser specifications such as voice details, 

sampling frequency, and synthesis method are also required. 

3.4 Participants 

Human participants are inconsistent in their judgements or task performance (Eagles, 1996), 

hence it is important to use at least 5 participants or more Qeida, 1995). The number of 
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participants is also dependent on the statistical tests that will be employed to analyse the data to 

give the test adequate power (Clark-Carter, 1999). 

The participants' personality, motivation, education, attitudes and expectations Qekosch, 1993) 

can all affect the results. A listener's conclusions may be affected by variables such as speaker 

dialect, gender etc. It is advantageous to choose participants from both genders and from various 

regions to ensure that individual preferences for either male or female voices, or regional accents, 

do not greatly affect the evaluation. 

Howard Jones et al. (1992a, 1992b) investigated the reliability of participants with age. Little 

evidence was found to restrict age participation in subjective experiments. It is imperative though 

to establish that all participants of any age, participating in listening tests, are of normal hearing 

ability. Decibel-level perception tests can be administered to achieve this. 

Howard Jones et at (1992a, 1992b) also investigated variations in results when using experts, or 

participants with previous experience of synthetic speech, and naive listeners. Experts were found 

to score higher on intelligibility tests than inexperienced participants. It is therefore important to 

identify the end user of the synthetic speech (expert or naive listener) and reflect this in the 

choice of participant. 

Eagles (1996) recommend that the same participant should not be used more than once, due to 
learning effects, whereby the speech becomes more acceptable, and to use only participants 

speaking the same language as the test stimuli when performing diagnostic tests. 

3.5 Experimental Procedure 

The order of presentation of the stimuli to the participants should be randomised for each test 

run. The results may be influenced by a learning effect whereby synthetic speech becomes easier 

to understand and more acceptable in terms of prosodic patterns and naturalness with familiarity 

(Neovius & Raghavendra, 1993). Additionally, concentration may lessen over time, depending on 

the participants' motivation and length of experiment. 
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Some participants may have experience in listening to synthetic speech and carrying out 

qualitative testing. Unfamiliar participants should be familiarised with the testing method and the 

definitions of the criteria as applied to synthetic speech before the test. Due to this, preliminary 

training should be carried out to familiarise inexperienced listeners with synthetic speech, the 

terminology or criteria, and the test procedures. To prevent participants becoming familiar with 

synthetic speech, human speech can be used in training where possible Qeida, 1995). 

Where a MOS scale rating is used, examples of the range of speech quality should be given 
before the actual test, to give participants a baseline for evaluation. Examples should be few to 

minimise the learning effect. 

The stimuli are normally presented with an interval of approximately 5 seconds between test 

speeches. Each stimulus should be presented only once, or with one possible repetition (van 

Santen, 1993), and due to listener fatigue, the length of session should be 20 minutes maximum 

(ITU-T, 1996). 

3.6 Summary 

There are many procedures in use for the evaluation of both intelligibility and quality of synthetic 

speech. There is currently no standard, although this problem has been recognized in the speech 

synthesis community and various ideas have been proposed. Subjective assessment is a vast area 

of research in itself with many variables that must be taken into consideration. 

Perception of quality of speech is a complex relationship of many factors e. g. naturalness and 

intelligibility; speech may sound natural but not be understandable or it may be smooth with no 

audible jumps and have correct prosody, but be very buzzy. In applications, it is important to 

identify which aspects are most critical. 

The principal aim of this research is to investigate the occurrence of perceived distortion when 

speech is pitch manipulated using the TD-PSOLA algorithm. This research is not concerned with 

intelligibility; research has already ascertained that concatenative synthesis systems using the TID- 

PSOLA algorithm produce extremely intelligible speech. The research is concerned with the 
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evaluation of quality, by detecting perceived distortion in the form of buzzyness. The majority of 

the following five investigative experiments make use of MOS tests, which are reported to be 

sensitive to subtle differences (Blouin & Bagshaw, 2000). MOS tests were chosen as they allow 

differences in amounts of perceived buzzyness to be investigated for a relatively small data set. 

The use of MOS tests rather than Paired Comparison tests are discussed in more detail in Section 

4.2.2.2. MOS scale data will be treated as ordinal when testing for statistical significance as 

participants' scores are only meaningful relative to each other. 

The fifth experiment is concerned with determining whether any distortion is perceived at all, not 

with the magnitude of this distortion, therefore a yes-no categorical response modality will be 

employed. 

Guidelines for the documenting of test conditions, choice of participants, and experimental 

procedure outlined in this chapter were adhered to in the following experiments wherever 

possible. To allow the experiments to be replicated, the test conditions will be reported for each. 

These consist of the output device, the acoustic environment in which the experiment takes 

place, background noise levels, the PC running the experiment, and the speech specification 

(voice identity, gender of speaker, sampling frequency, type of stimuli and the algorithm under 
investigation). 

The participants are all university staff or students, and are relatively small in number, due to the 

constraints of expense and availability. This restricted sample population is acknowledged in each 

experiment as it may bias the results, although no aspects of the occupation (such as working in a 

noisy environment for certain occupations) are assumed to have any effect on hearing abilities. 

No restriction on age participation was imposed, but all will be asked if, to the best of their 

knowledge, they have normal hearing ability. All participants were known to the author, and so it 

was assumed that they may admit more readily to any known hearing defects when asked. It is 

expected that the majority will be naive listeners with little or no experience of taking part in 

synthetic speech experiments, and so full training and familiarisation with the criteria for 

evaluation will be provided before each test run commences. A set of instructions for each 

experiment will be prepared, giving a dear description of the procedure and criteria for 

evaluation. 
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The same participants may be required to take part in more than one experiment. As these 

ci, experiments were conducted with at least a month between each, the learning effect encounter. 

when listening to synthetic speech, was not expected to affect the results. 

The order of presentation of the stimuli will be randomised for each test run to reduce the, ' 
influence of the learning effect and potential loss of concentration as the experiment progresses' 
Due to the problems of listener fatigue, no test run will be longer than twenty minutes. Stimuli 

will be presented at a rate controlled by the participant and each stimulus may be presented once 

only, to minimise the learning effect. 

A MOS scale rating will be used, and examples of the possible range of speech quality to be 

encountered will be provided before the test. A minimal number of examples will be used in an 

attempt to avoid any learning effects. 
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Chanter 4. Investigative Experiments 

4.1 Introduction 

Concatenative synthesis makes use of pre-recorded units stored in an inventory or speech corpus. 

These units may not have the desired pitch and duration when used to create new, arbitrary 

sentences. TD-PSOLA is an efficient, successful and widely used algorithm capable of modifying 

the pitch and duration of such speech units. However, these modifications can degrade the signal 

by the introduction of unwanted perceptible distortion in the form of buzzyness. This chapter 

describes the experiments that were undertaken to investigate the behaviour of the TD-PSOLA 

algorithm in terms of the occurrence of this buzzyness. The results of these experiments will be 

used to guide the development of a framework for concatenative synthesis, which is capable of 

producing an output with reduced distortion. The framework consists of a speech corpus design 

for use with TD-PSOLA, a signal processing distortion measure to enable segments to be 

selected from the corpus that will result in minimal distortion, and a special selection process for 

especially problematic phonemes. 

In a speech synthesis system using TD-PSOLA, both pitch and duration modifications of speech 

are necessary to produce the desired prosody. To keep the extent of this study to manageable 

proportions, only the pitch modification deficiencies of the algorithm were explored during the 

following experiments. Pitch modification was chosen as it inherently requires duration 

modifications; increasing pitch necessitates repetition of ST-signals (simulating increasing 

duration), and decreasing pitch involves removal of ST-signals (simulating decreasing duration). 

In Section 2.8, previous research suggested that in general, the greater the distance a speech signal 

was pitch-modified, the greater were the perceptible levels of distortion. The first experiment 

undertaken here investigates this relationship between the degree of pitch manipulation and the 

resulting distortion levels in speech using vowel stimuli. The results from this experiment will be 

used to inform the design of the speech corpus by suggesting the maximum extent of pitch 

modification possible without the introduction of perceptible distortion. The identity of the 

individual phoneme stimuli used in the experiment appears to affect the levels of perceptible 
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distortion, and this is investigated post hoc. The results will be used to determine whether the 

content of the corpus should be balanced to take into consideration the effect of the algorithm 

on segment types, rather than just phonetically balanced. These results will also be used to 

develop a signal processing distortion measure for vowel phonemes reflecting the levels of 

distortion perceived for each phone class. 

Conflicting views on the effect of positive pitch shifts (signal modification to a highes 

fundamental frequency) and negative pitch shifts (signal modification to a lower fundamental 

frequency) were also presented in Section 2.8; a second experiment compares the effect of the 

algorithm on distortion levels when speech is pitch-modified positively versus negatively. The 

results from this experiment will be used to determine whether segments in the speech corpus 

should be represented at lower or higher pitches. They may also be selected having a ft) below or 

above the target pitch in order to be pitch-modified in a positive or negative direction, to result in 

minimal perceptible distortion. 

These two experiments evaluate the effect of the algorithm using stimuli consisting of isolated 

syllables, therefore a third experiment was designed to evaluate the effect of pitch modification 

on distortion at the sentence level. The results of this experiment will be analysed to determine 

whether the results of the previous experiments using word level stimuli may be generalised to 

the sentence level. This will indicate whether the data from the previous experiments, used to 

design the speech corpus, may provide a valid design when the corpus is used for synthesising 

new sentence level utterances. 

A fourth experiment evaluates the response of various voices (two male and two female) to the 

application of TD-PSOLA to determine whether conclusions for one voice may be generalised to 

others. In addition, consonant stimuli are used, and the effect of the individual phoneme identity 

of each stimulus on perceived distortion is investigated post hoc. These results will be used to 

inform the design of the speech corpus and signal processing distortion measure with regard to 

consonant phonemes. 

The results of these four experiments indicated that aspects of the original recordings of the 

stimuli have a large effect on the resulting perceived distortion levels. A fifth experiment explores 
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these issues. These aspects could then be eliminated from the speech corpus to reduce levels of 

perceived distortion when using TD-PSOLA to modify speech. 

The following sections document the investigative experiments undertaken during this research. 

For each experiment, the aims and hypotheses are identified, followed by the experimental 

design, which justifies chosen statistical tests, documents any pilot studies undertaken, and 

describes stimulus preparation, procedure, and participants. The resulting data are then analysed 

to determine statistical significance, and finally discussions and conclusions are presented. 
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4.2 Experiment 1. The Effect of Pitch Manipulation using the TD-PSOLA Algorithm on 

Distortion Levels in Speech Sounds 

Abstract 

A listening test was undertaken to determine the amount of distortion, in the form of buzzyness, 

present in TD-PSOLA pitch-modified speech. The stimuli had been modified by various 

standard distances from their original pitch. Participants were presented aurally with the stimuli in 

a random order and asked to judge on a scale of 1 to 5 the levels of distortion present in each. 

Significantly greater distortion was perceived for increasing degrees of pitch manipulation, with 

pitch modifications as small as 1% introducing perceptible distortion into the speech signal. The 

effect of the individual phoneme identity of the stimuli on distortion levels was investigated post 

hoc. 

4.2.1 Introduction 

The pitch and duration of speech units are the major contributors to the prosodic aspects of 

speech. The TD-PSOLA algorithm is used to successfully manipulate both the pitch and 

duration, although it can introduce distortion into the signal (Breen, 1998). It has been reported 

(van Saaten 1997, Breen 1998) that in general the larger the pitch modification, the more 

distortion that is introduced. Kortekaas & Kohlrausch (1997a) argue that although this may be 

true, their work with more abstract, single-formant stimuli indicates that the results may depend 

on a relationship between the values of the starting fundamental frequency, the target 

fundamental frequency and the first formant value. Various "acceptable" pitch manipulation 

levels have been cited in the literature ranging from 2 to -50%; this large variation is thought to 

be due to the definition of "acceptable". Studies citing the larger values may use changes in voice 

quality as a percept of unnaturalness and unacceptability, although it could be argued that even 

the smallest perceivable distortion is unacceptable. The variation in opinion may also be due to a 

lesser extent to the individual implementation of the TD-PSOLA algorithm evaluated. This 

experiment aims to address these issues by determining the relationship between the degree of 

pitch manipulation and the resulting distortion levels in speech, and determine the minimum 
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perceptible level of such distortion for the Praat (Boersma & Weenink, 1999) implementation of 

TD-PSOLA. 

4.2.2 Design 

This section states the experimental hypotheses, describes considerations in the design of the 

experiment to control or account for variables, and documents any biases that could influence 

the results, to allow reasonable conclusions to be drawn. 

4.2.2.1 Hypotherit 

Hypothesis 
HI: Increasing degrees of pitch manipulation using the TD-PSOLA algorithm 

introduce significantly increasing levels of perceptible distortion, in the form of buzzyness, into 

speech. 

4.2.2.2 Structure of experiment 

A listening test was designed to evaluate the amount of distortion introduced by TD-PSOLA 

when speech is pitch-modified. By systematically varying the degree of pitch manipulation, the 

behaviour of the TD-PSOLA algorithm can be described, in terms of resulting distortion levels. 

Initially, the range of pitch manipulation to be evaluated was chosen. Synthesis systems have 

progressed from simple diphone synthesis to more sophisticated systems, such as corpus-based 

strategies. These approaches make use of inventories or corpora containing speech units whose 

fundamental frequencies are closer to the target values. Hence, the chosen range of the 

independent variable degree of pitch manipulation does not reflect the possible variation of pitch 

during-natural speech, but has been chosen to reflect typical modifications required for corpus- 

based synthesis systems. The independent variable degree of pitch manipulation has a maximum level 

of 15% modification from the initial pitch. It should be noted that it is not suggested that 15% 

would be the maximum pitch modification required in such a speech synthesis system, but is one 

that would be required often; the segments are extracted form many prosodic contexts with 

various values of pitch, therefore potentially requiring less signal-processing to attain target 

values. 
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The method of measurement of the dependent variable distortion was then chosen. A possible 

option was to use a paired comparison test where participants would be presented with two 

stimuli and asked to judge the more distorted. Presentation of an unmodified stimulus paired 

with its TD-PSOLA modified version at one of the IV levels may lead participants to realise that 

the stimulus at the standard starting pitch was usually the less distorted of the pair. This could be 

avoided by having various starting frequencies but would involve larger amounts of stimuli. 

Alternatively, two identical frequency instances of the speech sound (Le. a stimulus recorded at 

the target frequency and a stimulus TD-PSOLA modified to the target frequency from the 

starting frequency) could be provided. However, the stimuli may differ due to variations in voice 

and recording quality, which could affect participants' judgement and make such tests invalid. 

Paired comparison tests would also not facilitate the determination of differences in perceived 

amounts of distortion between all levels of the IV without impractically large data sets. 

A Mean Opinion Score (MOS) test was adopted which made the measurement of different 

amounts of distortion between the IV levels possible with a manageable sized data set. The ITU- 

T recommendations (ITU-T, 1996) advocate the use of MOS tests when evaluating small 

impairments due to their sensitivity. The dependent variable distortion was measured on a MOS 

scale of 1 to 5. The stimuli were assessed using the amount of perceived distortion as the 

criterion for evaluation, where distortion was defined as busyness, or electronic sounding. 

Participants rated each stimulus using a number between 1 and 5, corresponding to the following 

definitions: 

1 no perceived distortion/ very natural 

2 quite undistorted/ quite natural 

3 distorted/ slightly unnatural 
4 quite distorted/ quite unnatural 
5 very distorted/ very unnatural 
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A within-subjects design was used to reduce the effect of differences in the level of response 

ratings between participants which would obscure the effect of the treatment; each participant 

rated the distortion at all levels of pitch manipulation. 

A statistical test was required to compare the differences between the medians of the IV levels to 

determine whether increasing pitch modification may have contributed to significant increases in 

distortion. The design was within-subjects but as the data were ordinal, the assumptions of the 

parametric ANOVA were not met. Hence a within-subjects Friedman test (corrected for ties for 

greater accuracy) was performed on the non-parametric data. The hypothesis stated that 

increasing pitch manipulation would lead to increasing distortion, so a one-tailed test was carried 

out. 

When the number of N levels is greater than three the Friedman test is conservative, increasing 

the likelihood of committing a Type II error (rejection of the Research Hypothesis when it is 

true). The power of the test determines the likelihood of avoiding a Type II error and depends on 

the number of N levels and the sample size. The greater the number of N levels the greater the 

power of the test. The probability that a Type I error will be made (rejecting the Null Hypothesis 

when it is true) is given by a. By convention a was set to 0.05, to avoid making the test too 

conservative. 

4.2.3 Stimuli 

The choice of stimulus type was important. Choices ranged from abstract synthetic signals to 

natural signals, from short to artificially long duration, and from isolated speech sounds, CVC 

mono-syllables, disyllabic CVCVC syllables, to sentences. 

Abstract synthetic signals, such as double formant stimuli (Kortekaas & Kohlrausch, 1999) 

provide greater control but it may not be possible to generalise these results to natural speech. 

Alternatively, natural speech stimuli mimic the input to the signal processing stage in a real 

synthesis system and hence contain variables that would be encountered in such a system. 
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It is difficult to produce an individual speech sound, for example a phoneme, in isolation at a set 

pitch (Lenzo & Black, 2000), although CVC syllables are easy to produce in isolation. CVC 

syllables are also more akin to human communication than isolated speech sounds, which do not 

represent natural communication structures. Participants are familiar with the linguistic structures 

of syllables and words, therefore no perceptual adjustment is necessary for such stimuli Qekosch, 

1993); presenting CVC stimuli would provide a less contrived and abstract framework for the 

perception of distortion. Furthermore, CVC stimuli would provide longer bursts of speech 

sound, which make the perception of distortion less difficult than for shorter bursts. Tones 

lasting a second or more may be viewed as infinite by the auditory system (Gelfand, 1998), 

whereas auditory perception is altered for sound bursts of less than one second. Exceptionally 

short durations of 10ms or less result in transients that spread energy across the frequency range, 

which may affect experimental results (Wright, 1960). 

Larger linguistic structures, such as bi-syllabic structures or sentences introduce many additional 

variables; the use of longer constructs such as sentences, may alter participants' perception due to 

the influence of ideals of prosody. Blouin & Bagshaw (2000) advocate the use of nonsense 

disyllables, as the judging of distortion in mono-syllables was reported to be difficult for 

participants. On the other hand, investigating phenomena in isolation, or with a minimum of 

factors present (the use of mono-syllabic structures as opposed to bi-syllabic structures 

containing many speech sounds, or sentences having prosody), provides greater control. 

This experiment was concerned solely with the evaluation of distortion present in the stimuli. 

The effect of TD-PSOLA on vowel sounds was investigated. Vowel sounds only were evaluated 

during this experiment, due to the large number of possible stimuli and corresponding lengths of 

test runs. A CVC structure was chosen in which to embed each of the vowel phonemes, which 

would provide a natural communication framework with no perceptual adjustment necessary for 

the participants. Whole CVC syllables were chosen rather than recording individual CV and VC 

diphones to be concatenated. The concatenation process itself may introduce unwanted variables 

such as potentially poor segment joins. 

A string list (Appendix B) consisting of 20 CVC (Consonant Vowel Consonant) syllables was 

generated. The vowel was varied for each syllable with the surrounding C*C structure kept 
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constant. The list is representative of most of the vowel sounds in the English language; it is 

commonly agreed that there are 14 pure vowels (IPA, 1949) although it is uncertain as to the 

number of combined vowels. The MBROLA (Dutoit el al., 1996) speech synthesiser for British 

English isolates 6 combined vowels and these, with the 14 pure vowels, were included in the 

string list. The majority of possible vowel sounds were used to model the general effect of the 

TD-PSOLA algorithm, in terms of introduced distortion levels. 

The string list contained both meaningful and non-meaningful CVC syllables. This mix has been 

encountered as a problem in existing speech assessment tests, for example the CLID test 

Qekosch, 1992) where it was reported that participants needed to adjust to this concept. In an 

attempt to minimise this effect, it was stressed to participants that the syllables were both 

meaningful and non-meaningful, but that the phonetic identities of the speech sounds were of no 

importance; the evaluation criterion was solely the amount of distortion. The string list was also 

designed to contain syllables that would not cause an emotive reaction in the participants. Efforts 

have been made to reduce bias due to the content of the string list, and it will be assumed for this 

experiment that the effects are negligible, although further investigation would be desirable. 

All vowel sounds to be evaluated were embedded between the same unvoiced consonants /k/ 

and /t/. 

e. g. kEt, k{t, kA: t 

The two short, unvoiced, plosive segments /k/ and /t/ were chosen as a contrast to the voiced 

vowel sounds to be evaluated. They also ensured the vowels' phonemic targets were reached by 

minimising coarticulation (Blouin & Bagshaw, 2000). They were standard for all the stimuli in the 

syllable set to minimise their influence on the results. 

The natural CVC reference syllables were all uttered and recorded at a pitch of 220 Hz by a 

female speaker. The reference syllables were spoken at a steady rate and pitch. This frequency, 

the neutral pitch of speaker's voice, was determined by frequency analysis of the production of 

the `schwa' sound and confirmed as the average fundamental frequency over three neutrally 

uttered sentences. The recordings were performed using the RPP (Reference Pitch Prompt) 

recording technique (Vine et al., 1999) where a tone of 220Hz was played prior to recording to 

guide the speaker. The CVC recordings were checked to ensure a fundamental frequency of 
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220Hz using the Praat software (Boersma & Weenink, 1999). The fundamental frequencies of the 

waveforms were also measured by hand and confirmed using alternative speech software (Cool 

Edit 96, Syntrillium Software Corporation). The stimuli were recorded at a standard volume level, 

which was achieved by positioning the microphone at a set distance from the speaker and using 

standard recording settings for the Volume Control options on the PC. 

To provide the modified stimuli for the levels of the IV, each of the CVC reference recordings 

was pitch-manipulated by various standard percentages using the Praat software implementation 

of the TD-PSOLA algorithm. This was achieved as described previously in Section 2.3. The 

fundamental frequency values were determined from the chosen percentages using the mel scale 

(Stevens & Voll mann, 1940), which provides a linear relationship between fundamental 

frequency and pitch: 

m =1125 log(0.0016 f +1) Fqn 4.1 

where m= frequency in mels, 
f= frequency in Hz 

The stimuli were presented to the participants via headphones to minimise any reverberations or 

other extraneous noises, caused by conducting the experiment in an office environment, which 

may affect participants' judgement. 

All stimuli were recorded in one session, using the same computer and software so any variables 

due to the recording process, such as background noise, would be similar for all stimuli. Clicks 

due to the starting and stopping of recording were minimised by fading the stimuli in and out. 

The female speaker used to record the CVC reference syllables, which have been modified to 

obtain the stimuli for the experiment, was the author of this work. This voice was chosen for 

practical reasons of cost and availability throughout the course of the research. This is not 

assumed to introduce bias for this experiment, as the author's voice is not compared to any other 

voice. The author recorded the several versions of each of the CVC reference syllables and 

selected the one that sounded most clear and consistent when replayed. 
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4.2.4 Pilot Study 

A small pilot study was carried out to test the experimental design and procedure. Stimuli 

consisted of 20 vowel sounds embedded within a constant CVC structure. Initially, 7 IV levels of 

-15, -10, -5,0,5,10 and 15% were used giving 140 stimuli. 

Three participants participated and were debriefed at the conclusion of the experiment. The 

instructions for the test were given verbally. An example of the distortion to be judged was 

provided by the presentation of two unmodified speech waveforms and their corresponding TD- 

PSOLA modified versions. Participants were told that the change in quality, in terms of the 

buzzyness introduced, was called distortion. 

During the experiment, the stimuli were presented via headphones in a random order using the 

C++ software in Appendix A. This software was written by the author to automate the 

experiment. Appendix A provides a brief description of the functionality of the code, shows 

screenshots of the interface and gives the code listing. Participants were asked to make their 

judgements using the 5-point MOS scale interface provided by the software. 

The data analysis was found to be unnecessarily complex with two independent variables: pitch 

modification and positive versus negative manipulations. It also raised issues that were 

unanswerable with the current size of dataset. It was decided to split the experiment in two to 

enable more stimuli to be evaluated so such issues could be investigated. The first, which forms 

the main experiment presented in this section, investigates purely positive pitch modifications, 

and a second experiment, presented in Section 4.3, investigates positive versus negative 

modifications. 

The data were analysed and the results indicated that increasing pitch manipulation led to greater 

distortion, supporting the research hypothesis. A large increase in distortion levels was found to 

occur between the 0 and -/+5% levels. The effect of the algorithm on distortion levels needed to 

be modelled for smaller pitch modifications, therefore an additional 1% modification level was 

introduced into the main experiment. 
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The size of the dataset (140 stimuli) seemed acceptable; participants reported slight boredom anä 

fatigue towards the end of the experiment It was concluded that stimulus numbers should be 

below this value for following experiments. 

The test time for this pilot study was approximately 10-15 minutes. This time was used as ant 

estimate of test duration to be given to participants for the main experiment. 

No actual range of distortion level that the participants would encounter was provided before the 

test. This was identified as a problem when judging the level of distortion using a MOS scale. 

Consequently, unmodified stimuli and those judged having most distortion for this study would 

be used in the main experiment as examples of the range of distortion the participants may 

encounter. 

It was discovered that without typewritten instructions, the participants were given varying 

descriptions of what was required from them. For the main experiment, a typewritten set of 

instructions was prepared, based on guidelines provided by the ITU-T recommendations for, 

subjective assessment of quality (ITU-T, 1996). 

The software interface was altered following the pilot study; it originally incorporated a stimulus 

number counter, but one participant noted it was distracting and this was removed from d'- 

interface. 

Participants reported that it was a little difficult to judge such small differences in distortion levels 

on the MOS scale but thought they had succeeded. Initial indications from analysis of the pilot 

study data suggest that the use of a MOS scale facilitated the judgement of these variations in 

perceived distortion. 

4.2.5 Choice of IV Leads for Main Experiment 

Five IV levels were adopted for the main experiment of 0, +1, +5, +10 and +15%, giving 5 

fundamental frequency levels of 220,223,233,246,259Hz. The 0% level (the unmodified 

version of each stimulus) was included as a "control" level to monitor the perceived quality of the 
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original recording of each CVC syllable. The 1% level allowed the effect of very small pitch 

manipulations on distortion levels to be evaluated. 1% represented a fundamental frequency 

change of -3Hz, where 1 JND Gust Noticeable Difference), the smallest perceivable frequency 

difference, is cited as 2-3Hz for frequencies below 1000Hz (Ladefoged, 1996). The 5,10, and 

15% levels illustrated the effect of the algorithm on increasingly larger pitch manipulations. 

Initially, the fundamental frequency of 220Hz (the speaker's neutral pitch) was converted to mels, 

then +1, +5, +10, and +15% mel values were calculated. These were then converted back into 

Hz. These values are shown in table 4.1. 

Frequency (Hz) frequency (reels) % pitch manipulation 

220 Hz 147 mels 0% 

223 Hz 149 mds l% 

233 Hz 155 mels 5% 

246 Hz 162 mels 10% 

259 HZ 170 mels 15% 

Table 4.1 % Pitch Manipulation and Corresponding FO Values in Mels and Hz 

Twenty CVC stimuli representing the majority of the vowel sounds in the English language were 

presented at five levels of pitch manipulation giving 100 stimuli. 

4.2.6 Pmcedui 

Participants were familiarised with the procedure and criterion via a fixed set of typed 

instructions (Appendix C). They were informed that they would be aurally presented via 

headphones with 100 stimuli each consisting of a CVC syllable. The CVC syllables were either 

non-meaningful or meaningful. It was made clear to the participants that the experiment was 

concerned solely on determining the amount of perceived distortion present rather that placing 

any importance on the phonetic identity, intelligibility, or meaning of the speech sounds. They 

were told that they would hear each stimulus once only and then must make a judgement. 
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To provide participants with a range for the MOS scale ratings and to familiarise them with the 

term distortion in the context of the effect of TD-PSOLA on speech, a short training session was 

conducted. This involved the aural presentation of two stimuli judged to be very distorted from 

the pilot study, and their non-modified versions to which TD-PSOLA had not been applied 

Listeners were instructed that the change in the quality of the stimuli, in the form of buzzyness, 

was called distortion. 
. 
Any further clarification of terms or procedure was given if necessary. 

Participants were asked to judge using the MOS scale the amount of distortion present in each 

stimulus. To minimise the `learning effect', the order of presentation of the stimuli was 

randomised for each test run. Additionally, judgement of a stimulus may be affected by the 

memory of the previous stimulus; this effect has also been minimised by the random 

presentation. The stimuli presentation, the randomisation of the stimuli, and the MOS scale 

interface was provided by the C++ software in Appendix A. Test-runs of 100 stimuli, with a 

delay of approximately 5 seconds between each stimulus presentation, lasted approximately 10 

minutes. 

All stimuli were presented at a standard volume level, which was achieved by using standard 

output settings for the Volume Control options on the PC. It should be noted that perceived 

loudness of a stimulus is frequency dependent; two auditory signals at different frequencies with 

equal power will have different perceived loudness. Under 500Hz lower frequency signals require 

more power to be perceived as having the same loudness as higher frequency signals (Robinson 

& Dadson, 1956). This has not been taken into consideration due to the small range of fl) 

manipulation (39Hz), although small variations in the recording or output level may be a factor. 

4.2.7 Participants 

Fifteen participants took part. All participants were university students or university staff, which 

makes use of a constrained sample population due to the issues of availability and cost 

Participants ranged from 23-52 years of age, and from both genders (10 male, 5 female). All had 

self-reported normal hearing. The participants were unfamiliar with speech test procedures and 

were introduced to the testing method and the definition of the criterion as applied to synthetic 

speech prior to the test. They were not paid to participate in the test. 
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4.2.8 Test Conditions 

Output Device: headphones 

Acoustic Environment: quiet office 

Noise Levels: Minimum background noise 

PC: Pentium, 133MHz 

Speech Spec: 

" Voice: J. Longster 

" M/F: F 

" Sampling Frequency: 44100Hz 

" Speech units: CVC syllables 

" Algorithm: TD-PSOLA, Praat Software (Boersma & Weenink, 1999). 

4.2.9 Results 

Table 4.2 Sim 

% pitch 

manipulation 

Median of distortion levels 

(MOS scale rating) 

0% 1.75 

1% 1.95 

5% 2.80 

10% 2.85 

15% 3.15 

nmarv Statistics: Distortion Levels for % Pitch 1 +Iodifications 

Table 4.2 shows the percentage pitch manipulation of the stimuli from their original pitch and the 

corresponding median distortion levels, as judged on the MOS scale. The most obvious effect is 

that the perceived distortion ratings increase for increasing degrees of pitch manipulation from 

the original pitch. 
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The results for the five pitch manipulation levels are presented in Figure 4.1 where the medians 

of the distortion ratings are plotted as a function of pitch manipulation using a boxplot, to show 

how the distributions differ for each level. 

Figure 4.1 also shows the spread of the data, illustrating that there is some overlap between the 

sets of results for each of the IV levels due to the variation in participants' level of judgement. 

5.0 

= 4.0 

O_ 
3.0 

O 
w 

9 

2.0 

1.0 

I 
__ 

__ 
I 

o' 7' s, -70 7s 
0 0 0 o ß 

oýý oý2s 

y y y A sy 9 y ýý 2ý ýJ rJ 2ý 

Pitch manipulation 

FIGURE 4.1 BOXPLOT OF PITCH MANIPULATION AND DISTORTION LEVELS 

A within subjects Friedman test (corrected for ties) was performed on the data to compare the 

differences between the resulting levels of distortion. Unless stated, all statistical analysis was 

performed using SPSS for Windows, Release 10.0.5. A large significant effect was found, 

indicating a strong increase in perceived distortion with increasing pitch manipulation 

(% . =56.564, df=4, N=15, p<0.01, one-tailed tesi). The test indicated that at least one of the 

medians of the five pitch manipulation levels differed and fi they analysis in the form of contrast 

tests was conducted to pinpoint the source of significance. 
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A set of Willcoxon Signed Rank tests was performed between the 0 and 1%, the 1 and 5%, the 5 

and 10%, and the 10 and 15% manipulation levels to measure the size of differences between the 

levels of the IVs. As, the contrasts were unplanned, the a-level was adjusted using a Bonferroni 

adjustment by dividing the (X-level by the number of contrasts to be carried out. For four 

contrasts, the error rate per contrast (EC) becomes: 

EC=0.05/4=0.0125 

Results of the set of contrasts are shown below: 

0% and 1% manipulation level: Z=-2.7, p<0.05 

1% and 5% manipulation level: Z=-3.4, p<0.01 

5% and-10% manipulation level: Z=-2.2, p<0.05 

10% and 15% manipulation level: Z=-3.4, p<0.01 

The differences in the distributions were significant for all contrasts, except that of the 5% and 

10% contrast when the Bonferroni adjustment is taken into account. The differences between the 

distributions for the 0% and 1% levels indicated that distortion may be introduced for even the 

smallest perceivable pitch modification. Observing Figure 4.1, it appears that distortion per unit 

percentage increase was greatest between 1 and 5% manipulation levels, which may be a critical 

pitch modification region in a corpus-based system. 

A barthart (Figure 4.2) shows the average distortion ratings provided by the 15 participants for 

each of the five levels of pitch manipulation. All agreed in general, that there is an association 

between the extent of pitch manipulation and resulting levels of perceived distortion in the 

stimuli, although there was a variation in the level of response. 
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4.2.10 Discussion 
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  15% (2591-x) 

The experiment evaluated the effect of pitch manipulation using the TD-PSOLA algorithm on 

perceived distortion levels, or buzzyness, in speech. Significantly greater distortion was found to 

occur with increasing levels of pitch manipulation supporting the claims of Breen (1998), van 

Santen (1997), Black & Campbell (1995) and Blouin & Bagshaw (2000) that there may be an 

association between the extent of pitch manipulation and the resulting levels of perceived 

distortion. 

This experiment evaluated distortion levels occurring due to small pitch modifications, unlike the 

works of Kawai et al. (1994) and Hirokawa & Hakoda (1990), who determined "thresholds of 

acceptability" over a larger range of pitch modifications. They cited large "acceptable" 

modifications of up to -50% although it is argued for this work, that any perceived distortion is 

unacceptable. Such large modifications degrade voice quality leading to unnaturalness, which may 

be a larger perceptual cue for discrimination than distortion. 

The work of Kortekaas & Kohlrausch (1997a) found a relationship between original fundamental 

frequency, target fundamental frequency, fl value and resulting distortion for single formant 

stimuli. It was not possible to verify this as the sub-discrimination target fundamental frequency 
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values were outside the pitch manipulation range of this experiment. Although not 

experimentally verified, it appears that results for single formant stimuli could not be generalised 

to natural speech as major unnatural changes in voice quality occur at these larger pitch 

modifications, providing larger discrimination cues than distortion. 

Kortekaas & Kohlrausch (1997a) also stated that PSOLA discrimination for fundamental 

frequency modification of a pure tone stimulus, although unverified, may be as low as 2%. The 

Wilcoxon Signed Rank test performed between the control level of 0% (no pitch modification) 

and the 1% level indicated that even the smallest perceivable pitch modification might cause 

significant perceptible distortion in these CVC stimuli. This result has a large impact on the 

design of the speech corpus and indicates that any amount of signal-processing applied may 

introduce some perceptible distortion. In an ideal situation, all occurrences of all phonemes in 

every prosodic context would eliminate the need for signal-processing totally, although this may 

never be the case due to the extreme variability of speech. This research will therefore focus on 

minimising the introduction of some of the perceived distortion, as a certain amount may be 

unavoidable when even the smallest modification is performed. 

The 1% to 5% region of pitch manipulation showed a marked increase in distortion per 

percentage increase. The occurrence of distortions in this region would be critical for any corpus- 

based speech synthesis systems, where pitch modifications in this region may occur frequently. 

The impact of these results on the speech corpus design would suggest that the larger the speech 

corpus, and hence the variability of the pitch and duration of the segments, the less signal 

processing would be required, leading to a higher quality output with less distortion. 

Figure 4.3 shows a bar chart of the CVC stimuli and their corresponding distortion ratings at 

each of the 5 levels of pitch manipulation. In general, all of the CVC stimuli suffer greater 

perceptible distortion levels when greater degrees of pitch modification are applied, although 

individual CVC stimuli appear to suffer varying amounts of distortion. 

This raises the issue of whether the individual stimulus identity and hence spectral content may 

have an effect on the levels of perceived distortion that is introduced. A Friedman test for a 

within-subjects design, having an IV with more than two levels and consisting of non-parametric 
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data, was used to test whether participants rated the perceived distortion levels present in the 

stimuli differently depending upon their phonetic identity. 

77 

FIGURE 4.3 BARCHART OF CVC SYLLABLES AND DISTORTION RATINGS 

Friedman's test determines whether the medians of the levels of the IV differ. There was a 

significant difference between the ratings for the twenty stimuli (% . =169.5, df=19, N=15, 

p<0.01). This can be seen in the box-plot in Figure 4.4. The effect of stimulus identity is addressed 

further in the fourth experiment in Section 4.5, which is concerned with consonant stimuli. 
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4.2.11 Conclusions 

To conclude, the research hypothesis which stated that increasing degrees of TD-PSOLA pitch 

manipulation may introduce significantly larger levels of perceived distortion, in the form of 

buzzyness, has been supported. 

The maximum pitch modification of 15% level was chosen to reflect some of the most frequently 

occurring modifications required in a corpus-based system. Previous research has cited 

"acceptable modification levels" of up to 50%, the point where significant loss of voice quality 

may occur and the speech begins to sound unnatural. It is argued here that in a corpus-based 

system such modification ratios would not be required often, or even not at all. With increasingly 

larger speech corpora available, modifications that cause extreme voice quality changes are no 

longer an issue. Distortion that occurs for smaller levels of modification is still an issue though, as 

any perceived distortion is undesirable and reduces the resulting speech quality. 

The smallest perceivable pitch modification (1% or 3Hz) with the Praat implementation of TD- 

PSOLA may introduce perceptible distortion. The largest percentage increase in distortion could 

be seen for pitch modification levels of 1-5%. Both regions would be aitical for a corpus-based 

system, where many of the modifications would be required. This indicates that for an ideal 

synthesis system, every occurrence of every phoneme combination in every prosodic context 

must be present in the speech corpus so that no signal processing is required. Due to the 

variability in speech, this may never be achieved, so steps need to be taken to minimise the 

distortion introduced when a signal processing algorithm such as TD-PSOLA is applied for 

necessary modifications in this region. 

Finally, individual stimuli suffered significantly different distortion levels indicating that speech 

segment identity and hence composition may be a factor. This would be an important aspect in 

the design of the speech corpus; segments that respond adversely (in terms of large levels of 

perceived distortion) would require greater representation in the corpus in many prosodic 

contexts, and segments that respond better would require less representations. In this way, the 

amount of signal processing may be reduced for the adversely affected segments, and hence 
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minimise resulting distortion levels. The data from this experiment are analysed in Section 5.2.1 

to design the speech corpus by determining the balance of the vowel representations in the 

corpus to be created. The results will also be used in Section 5.2.2 to develop a signal processing 

distortion measure for vowel phonemes, based on the levels of distortion perceived for each 

phoneme identity. 
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43 Experiment 2: The Effect of the TD-PSOLA Algorithm on Distortion Levels in Positive 

versus Negative Pitch Manipulated Speech 

Abstract 

A listening test evaluated the effect of positive pitch shifts (signal modification to a higher 

fundamental frequency) versus negative pitch shifts (signal modification to a lower fundamental 

frequency) with TD-PSOLA on distortion levels, in the form of buzzyness. Participants were 

presented aurally with 100 CVC stimuli in a random order, which had been pitch-modified 

positively and negatively by various standard amounts from their original pitch. The participants 

were asked to judge, on a scale of 1 to 5, the level of distortion present in each of the stimuli. 

Significantly greater distortion was found with increasing levels of pitch manipulation in both 

positive and negative directions, with similar distortion levels for both directions within the range 

tested. 

4.3.1 Introduction 

In a speech synthesis system, speech segments selected from an inventory or speech corpus may 

need to be manipulated either to a higher pitch or to a lower pitch, or both over various parts of 

the speech waveform. Research opinions are divided over whether positive or negative 

manipulations may suffer greater or less, or similar levels of distortion. Kortekaas & Kohlrausch 

(1997a) using single formant stimuli found that negative pitch shifted signals suffered less for a 

pitch modification range of ±20% for a 100Hz f0 signal. Kawai et aL (1994) also found that 

positive pitch shifted speech, at the word level, was more problematic for the range of 40-200%. 

Blouin & Bagshaw (2000) evaluating a range of 50-200% manipulation of CVCVC syllables 

found that positive and negative pitch modification appeared to suffer similar amounts of 

distortion. This experiment therefore investigates the effect of the TD-PSOLA algorithm on 

natural speech in terms of distortion for both positive and negative manipulations using the Praat 

implementation of TD-PSOLA. 

101 



Corpus-based systems contain multiple versions of speech segments, which may allow candidate 

segments to be chosen with pitches below or above the target pitch. If one direction of 

modification were found to be less problematic, it would be advantageous in terms of minimising 

resulting distortion, to select the speech segment that required this direction of modification. If 

no significant difference were found, this factor would not need to be taken into account in 

either the design of the corpus or the signal processing distortion measure. The pilot study 

carried out in Section 4.2.4 suggested that positive and negative pitch shifts using the Praat 

implementation of TD-PSOLA introduce similar amounts of perceptible distortion in stimuli 

over the range tested. 

4.3.2 Design 

This section states the experimental hypothesis and documents the design of the experiment, 
describing the statistical tests, the stimuli, and any other design considerations. 

4.3.2.1 Hypothesis 

HI 
: There will be a significant correlation between the amounts of perceptible distortion 

introduced when speech is pitch manipulated either positively or negatively. 

4.3.2.2 StructulT of the Experiment 

A listening test was undertaken to evaluate the amount of distortion, in the form of buzzyness, 

introduced by the TD-PSOLA algorithm into speech that has been pitch modified in a positive 

or negative direction from the original pitch. The independent variable divrdion of pitch manipulation 

has two levels of positive and negative modification. 

The method of measurement of the dependent variable distortion was chosen. The use of a paired 

comparison test would involve the presentation of a positively and negatively modified stimulus 

and participants would be required to judge the more distorted Paired comparison tests would 

not allow differences in amounts of distortion at different levels of pitch modification to be 

measured or allow individual pairs to be judged as having similar distortion. Using a direct 
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comparison may also lead to participants using other perceptual cues such as bass being 

preferable to treble for lower or higher fundamental frequency stimuli respectively. The 

dependent variable distortion is to be measured on a MOS (Mean Opinion Score) scale of 1 to 5 

using the definitions from Experiment 1, Section 4.2.2.2. 

A within-subjects design was used to reduce the effect of differences in response rating between 

participants; each participant rated the distortion for both levels of the IV. The data were ordinal, 

so a Spearman rank-order correlation coefficient was applied between the two levels to measure 

the linear relationship- A one-tailed test was conducted as the hypothesis predicted a positively 

correlated relationship. 

4.3.3 Stimuli 

The CVC string list (Appendix B) from Experiment 1, Section 4.2 was used for this experiment 
(see Section 4.2.3 for a full discussion of the choice of stimuli and string list). The use of the same 

material may introduce some bias, as certain participants are common to both experiments 

although these two experiments were carried out with a month delay between. A new set of 

stimuli was uttered and recorded at a pitch of 220Hz by the same female speaker as in the 

previous experiment, using the RPP recording technique (Vine et al, 1999). These were checked 

using the Praat and CoolEdit software to ensure a fundamental frequency of 220Hz. To provide 

the stimuli for the two levels of the IV, these were then pitch-manipulated by standard amounts 

with the Praat software (Boersma & Weenink, 1999) using the process described in Section 2.3. 

The manipulations were performed in steps of -8, -4,0 +4, and +8% from the original pitch, 

giving 5 fundamental frequency levels of 200,210,220,230 and 240Hz. The met scale was used to 

determine these frequencies from the chosen percentages, providing a linear relationship between 

fundamental frequency and pitch: 

m =1125 log(0.0016 f+ 1) Eqn 4.3 

where m= frequency in mels, 
f= frequency in Hz. 

The stimuli were presented via headphones to minimise the effect of any extraneous noises due 

to conducting the experiment in an office environment. All stimuli were recorded in one session 
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using the same computer and software to ensure that any noises caused by the recording process, 

such as background noise would be similar for each stimulus. Stimuli were faded in and out to 

avoid clicks caused by the starting and stopping of the recording process. The female speaker 

used is the author of this work; no bias is assumed although each stimulus was checked to be 

clear and consistent when replayed. 

4.3.4 Procedure 

Participants were familiarised with the procedure and criterion via a fixed set of typed 

instructions (Appendix C). They were informed that they would be aurally presented with 100 

stimuli each consisting of one CVC syllable. The stimuli that they would be presented with were 

either nonsense or meaningful syllables. It was made dear to the participants that the experiment 

was concerned solely on determining the amount of distortion present rather that placing any 

importance on the phonetic identity, intelligibility, or meaning of the speech sounds. They were 

told that they would hear each stimulus once only and then must make a judgement. The stimuli 

were assessed using the amount of perceived distortion as the criterion for evaluation. Distortion 

was defined as buzyness, or electronic sounding. 

To provide participants with a range for the MOS scale ratings and to familiarise them with the 

term distortion in the context of the effect of the TD-PSOLA algorithm on speech, a short training 

session was conducted. Two of the more distorted stimuli from Experiment 1 were presented as 

the examples of distorted speech. Non-manipulated speech, to which TD-PSOLA had not been 

applied, was provided as the contrasting example of speech with no distortion. Participants were 

told that the change in quality, in the form of buzzyness, between the pairs of stimuli was termed 

distortion. 

Participants were asked to judge on the MOS scale how distorted or unnatural each stimulus 

sounded. To minimise the learning effect', the order of presentation of the stimuli was 

randomised for each test run. Test-runs of 100 stimuli, with a delay of approximately 5 seconds 

between each stimulus presentation, lasted 10 minutes. The test-runs were fully automated, and 

the MOS scale interface was provided by the C++ software in Appendix A. 
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4.3.5 Participants 

Ten participants took part. The sample population was composed of university students or 

university staff due to the constraints of cost and availability. Participants ranged from 25-48 

years of age, from both male and female genders (5 male, 5 female). All were asked whether to 

the best of their knowledge, they had normal hearing. Some of the participants were unfamiliar 

with speech test procedures and all were introduced to the testing method and the definition of 

the criterion as applied to synthetic speech prior to the test. 

4.3.6 Test Conditions 

Output Device: headphones 

Acoustic Environment: quiet office 

Noise Levels: minimum background noise 

PC: Pentium, 133 MHz 

Speech Spec: 

" Voice: J. Longster 

" M/ F: F 

" Sampling Frequency: CD quality (44100Hz) 

" Speech Units: CVC syllables 

" Algorithm: TD-PSOLA, Praat Software (Boersrna & Weenink, 1999). 

4.3.7 Results 

Modifications Median distortion 

rating 
Positive +8% 2.55 

modification +4% 1.83 

No modification 0% 1.43 

Negative -4% 1.88 

modification 
_8% 2.28 

Table 4.3 Summary Statistics: Median Distortion for +ve and -ve Modifications 
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Table 4.3 shows the summary statistics for the two levels of positive and negative pitch 

manipulation, each having two percentage pitch manipulations from the original pitch. The 0% 

level was included as a control level to judge the participants' perception of unmodified speech. 

For each modification their median distortion levels judged on the MOS scale is given. 

The most obvious effect is that positive and negative modifications appear to introduce similar 

amounts of distortion. Additionally, distortion increases with increasing degree of pitch 

manipulation in either direction, concurring with the results of Experiment 1. The results are 

presented in Figure 4.5 which shows the median distortion rating for each level of pitch 

manipulation: zero modification, and both positive and negative modification. 

5 

0 )4 
c 

0 
r 
0 N 

62 

1 

13 -8% (2001-x) 

" -4% (210Hz) 

Q 0% (220htz) 

Q +4% (230ttr) 

" +8% (240Pa) 

FIGURE 4.5 POSITIVE AND NEGATIVE PITCH MANIPULATION AND DISTORTION RATING 

The linear relationship between the positive and negative modifications was measured by 

calculating Spearman's rho for the data from each of the ten participants, averaged for all CVC 

stimuli. There was a significant positive correlation between positive and negative pitch 

manipulation directions (rho=0.788, N=20, p<0.01, one-tailed teft). 
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FIGURE 4.6 SCATTERGRAM OF RELATIONSHIP BETWEEN +VE AND -VE MODIFICATIONS 

A scattergram (Figure 4.6) shows the relationship of distortion levels for the positive and negative 

modifications, with MOS values averaged for all CVC stimuli. The scattergram indicates that 

distortion levels for positive and negative manipulations are correlated, although it suggests that 

negative modifications may be slightly more problematic. The scattergram also shows there are 

no outliers which would affect the value of rho. 

4.3.8 Discussion 

The results indicate that in general, there is a con-elation between resulting amounts of perceived 
distortion for both positive and negative modifications, although negative modifications may be 

slightly more problematic. This supports the work of Blouin & Bagshaw (2000) but is contrary to 

the work of Kortekaas & Kohlrausch (1997a) and Kawai et aL (1994). This difference of opinion 

may be due to the stimuli under investigation (from abstract to sentence level), the implementation 

of the algorithm, and the range over which this was tested. 
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4.3.9 Conclusions 

To conclude, there is a significant relationship in the form of a positive correlation between the 

distortion ratings for positive and negative frequency manipulation between the limits of -8% and 

8%. This suggests that in general speech is affected similarly in terms of perceived distortion 

when pitch is increased or decreased using TD-PSOLA. This supports the work of Blouin & 

Bagshaw (2000) who investigated this over a greater pitch modification range. 

It also appeared that individual stimuli were affected differently when pitch was increased or 

decreased although it would require further experimentation to verify this. This would not have 

any bearing on the design of the speech corpus (segments would not require more representation 

at either higher or lower frequencies) but may influence the segment selection process. For 

example, certain phonemes may respond better to the application of the algorithm in terms of 

less perceived distortion when performing pitch modifications in a positive direction. In this case, 

it would be advantageous to select a segment with a lower fO than the target value for the 

sentence to be synthesised. For the purpose of this research, it will be assumed that all phonemes 

respond similarly to positive and negative modifications over a small range. Future experiments 

will evaluate only positive modifications, although the investigation of the effect on individual 

stimuli will be discussed as further work in Section 7.2. 
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Figure 4.7 illustrates the effect of modifications on the individual stimuli for this experiment. 
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FIGURE 4.7 SCATTERGRAM OF DISTORTION LEVELS FOR INDIVIDUAL STIMULI 

It appears that individual identity stimuli are not affected similarly, which concurs with the 

findings from Experiment 1. Calculation of Spearman's rho is significant although less so 

(rho=0.519, N=40, p<0.01, one tailed tesl), when comparing the relationship between positive and 

negative modifications for individual stimuli. This suggests that individual stimuli may not be 

affected similarly for positive and negative modifications, which may have an impact on the 

selection of segments from the - speech corpus. This would require more investigation and is 

discussed in Section 7.2 as further work. For the purposes of this research, over the pitch 

manipulation range tested, segments will be assumed to respond similarly in terms of the distortion 

introduced when modified either positively or negatively. 
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4.4 Experiment 3: The Effect of Pitch Manipulation using the TD-PSOLA Algorithm on 

Distortion Levels in Synthetic Speech at the Sentence Level 

Abstract 

A listening test was undertaken to determine the effect of TD-PSOLA pitch manipulation on 

perceptible distortion levels in synthetic speech at the sentence level Participants were presented 

aurally with 8 stimuli, consisting of simple parts of sentences. The sentences were synthesised 

from different syllable inventories, both using the TD-PSOLA algorithm for (anal pitch 

manipulation. The first inventory consisted of CV, VC and CC syllables recorded at the neutral 

pitch of the speaker, and the second consisted of CV, VC and CC syllables recorded at pitches 

closer to the target pitch of the sentences to be synthesised. Participants were asked to judge, on 

a scale of 1 to 5, the levels of distortion present and the humanness of each of the synthesised 

sentences. Humanness was defined as the naturalness and smoothness of speech and was used to 

evaluate the effect of the concatenation process. On average, greater distortion and humanness 

were found with sentences synthesised using the first inventory, which required greater degrees 

of pitch manipulation to achieve the target prosody. The results were not significant and possible 

reasons for this are discussed. 

4.4.1 Introduction 

Experiments 1 and 2 indicated that perceived distortion levels increase significantly with greater 

pitch manipulation at the CVC syllable level. These experiments evaluated stimuli at the word 

level only, and without concatenation. This experiment was designed to determine whether such 

observations could be generalised to the sentence level, and also what effect the concatenation of 

speech segments has on the perception of the output. Two segment inventories will be used, with 

one containing segments closer to the target pitch values, to determine whether perceived 

distortion levels increase significantly with greater pitch modification at the sentence level. 

In previous experiments, only static pitch contours have been imposed on stimuli having original 

static pitch contours. According to Blouin & Bagshaw (2000), this would be the worst-case 

scenario in terms of greater resulting levels of distortion. Imposing dynamic pitch contours may 
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mask some of the distortion, leading to less distortion being perceived. The results of this 

experiment would indicate whether the results for CVC stimuli from Experiment 1 could be 

generalised to the sentence level and therefore be used to inform the design of the speech corpus 

and segment selection measure to be used for sentence level constructs. 

Additionally, previous stimuli have not undergone the concatenation process. The concatenation 

process may degrade the smoothness of speech, depending on the properties of the segments to 

be concatenated, which may affect participants' judgements of distortion. This was evaluated 

during this experiment using the criterion `humanness', defined as naturalness and smoothness of 

the speech. 

4.4.2 Design 

This section states the experimental hypotheses and documents the design considerations. 

4.4.2.1 Hypotheses 

Hl: Sentence level stimuli requiring greater TD-PSOLA pitch manipulation will suffer 

significantly greater distortion levels. 

H2: Sentence level stimuli constructed from syllables having similar fundamental frequencies will 

be more human sounding than those constructed from syllables having different fundamental 

frequencies when pitch rnauipulated with TD-PSOLA. 

4.4.2.2 Structure of the Experiment 

A listening test was designed to evaluate the effect of TD-PSOLA pitch-modification on 

synthetic speech at the sentence level. The independent variable was inventory type. Two 

inventories were evaluated; the first inventory consisted of CV, VC and CC syllables recorded at 

the neutral pitch of the speaker, and the second consisted of CV, VC and CC syllables recorded 

at pitches closer to the target pitch of the sentences to be synthesised. In this way, sentences 

synthesised using Inventory 1 required greater pitch modification than those synthesised using 

Inventory 2. Additionally, the method of concatenating the segments differed between the 
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inventories. Two dependent variables distortion and humanness were measured on a MOS (Mean 

Opinion Score) scale of 1 to 5 shown belowr. 

1 no perceived distortion/ very human 

2 quite undistorted/ quite human 

3 distorted/ slightly human 

4 quite distorted/ quite inhuman 

5 very distorted/ very inhuman 

The first dependent variable distortion was defined as in previous experiments, as busyness, or 

electronic sounding. The second dependent variable humanness was included to determine the effect 

of the concatenation process on the perception of stimuli. The aim was to evaluate the presence 

of any audible discontinuities in the speech, so humanness was defined as naturalness or smoothness. 

A within-subjects design was used, each participant rated the distortion and humanness of both 

sets of sentences to reduce the effects of variations in participants' level of response and hence 

provide a more powerful test. The requirements of a within-subjects t-test were not fulfilled, as 

the data were ordinal, therefore a Wilcoxon Signed Rank test was applied to the non-parametric 

data to detect differences in the distribution of the distortion for sentences from each inventory. 

4.4.3 Stimuli 

Identical short parts of sentences were synthesised using both inventories. The following four 

sentence parts were used: 

"No way! " 

"My cat? " 

"Look here..... " 

"Prove it. " 
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Short parts of sentences were chosen to minimise ideals of prosody that may affect participants' 

perception, but still allow the effects of pitch modification at the sentence level to be 

investigated. Initially, these sentences were recorded by the speaker, and then analysed for pitch 

and duration information using the Praat software. As all pitch movements are not perceptible, 

the pitch contour was stylised using the algorithm provided by Praat. The syllables and their 
fundamental frequencies are given in Table 4.4. For unvoiced speech such as /k/ in the CV 

syllable /k{/, there is no pitch information, so the pitch contour given in the table applies to the 

voiced part only. 

Sentence I CV, VC, and CC syllabks and f equencies 
No way! 

My cat? 

Look here.... 

Prove it. 

maI (480 - 515Hz) aIk (515 - 380Hz) k{ (240 - 260Hz) {t (260 - 280Hz) 

1U (260 - 280Hz) Uk (280Hz) hl @ (320 - 300Hz - 280Hz) 

pr(-) ru: (330- 300Hz) u: v (300 - 260Hz) vI (180 - 170Hz) It (170 -160Hz) 

Table 4.4 Syllables and Fundamental Frequency Contours of Test Sentences 

This prosody information was imposed on both sets of sentences after synthesis to provide 

standard values. 

To control for the effect of the necessary duration manipulation, the syllables were recorded 

using the RPP recording technique; all segments were recorded with similar durations, which can 
be controlled to a certain extent by recording them in isolation. Similar duration values were then 
imposed on the sets of syllables from both inventories. 

Inventory 1: The CV, VC and CC syllables required to synthesise the sentences were recorded 

using the RPP recording technique at the neutral pitch of the speaker (220Hz). All of the syllables 

possessed similar fundamental frequencies, so they were simply concatenated to form the test 

sentences by cutting the syllables at the stable mid-point of each phoneme in the syllable 

structure and abutting them together. Careful attention was paid to concatenate the syllables at 

zero crossings on the time-domain waveform and at similar positions in the voiced cycles. The 

TD-PSOLA algorithm was applied to manipulate the pitch and duration of the synthetic 

- 340Hz) @Uw (340 - 270Hz) weI (330 - 360Hz - 
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sentences to match the prosody of the previously recorded natural sentences (the fU values are 

shown in Table 4.4). 

Inventory 2: The CV, VC, and CC segments required to synthesise the sentences were recorded 

at the frequencies shown in Table 4.5. 

Sentence CV, VC, and CC syllables and frequencies 
No way! n@U (370Hz) @Uw (305Hz) cvd (320Hz) 

My cat? maI (498Hz) aIk (448Hz) k{ (250Hz) {t (270Hz) 

Look here.... lU (270Hz) Uk (280Hz) hI@ (300Hz) 

Prove it pr(-) su: (315Hz) um (280Hz) vi (175Hz) It (165Hz) 

Table 4.5 Synthesis Fundamental Frequencies of Syllables 

The frequencies were chosen to be midway between the maximum and minimum pitch changes 

from the start of the voiced part to the temporally central voiced part for each CV syllable, and 

from the temporally central part of the voiced part to the end of the voiced part of each VC 

syllable. The syllables were individually pitch modified using TD-PSOLA to midway between the 

fundamental frequencies of the segments to be joined. The aim is to minimise audible 

discontinuities that may occur when concatenating segments of different fundamental 

frequencies. For example, /n@U/ and /@Uw/ were modified to an intermediate, static fO value 

of 337Hz. These were joined by cutting the syllables and abutting them together, as performed 

for Inventory 1 stimuli. TD-PSOLA was then used to impose the final target prosody provided 

by pitch and timing data extracted from the natural sentences (the fo values are shown in Table 

4.4). The difference in concatenation methods between the two inventories should be noted. For 

Inventory 1, segments were concatenated and then TD-PSOLA was applied to achieve the target 

prosody. For Inventory 2, the segments were individually modified to a common intermediate 

fundamental frequency, then concatenated and modified to their final target prosody values. The 

concatenation method used for Inventory 2 may give rise to larger audible discontinuities than 

the concatenation method used for Inventory 1 due to the additional modification stage, and if 

so, this may have an effect on the perception of the output. 
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4.4.4 Procedure 

Participants were familiarised with the procedure via a set of typed instructions (Appendix C). 

They were informed that they would be aurally presented via headphones with 8 short sentences. 

The sentences were assessed using the criteria of `perceived distortion' and `humanness'. 

Distortion was defined as buness or electronic sounding, and humanness was defined as 

naturalness, or smoothness of speech. It was made clear to the participants that the experiment was 

concerned with determining the amount of distortion present and determining the humanness of 

the sentences; no importance was to be placed on the intelligibility, prosody or meaning of the 

sentences. Each sentence would be presented once only and then the participants must make a 

judgement. To provide the participants with a range of potential distortion they may hear and to 

familiarise them with the terms distortion and humanness, a short training session was 

conducted. The training for the distortion criterion involved the presentation of the training 

stimuli from Experiment 2; listeners were told the change in voice quality, in terms of buzzyness, 

was called distortion. For the definition of humanness, participants were told to rate any audible 

discontinuities present in the speech. 

To minimise learning effects,. the order of presentation of the stimuli was randomised for each 

test run. Test-runs, with a delay of approximately 5 seconds between the stimulus presentations, 

lasted approximately 5 minutes each, including time taken for training and explanation of the test 

procedure. 

4.4.5 Participants 

Ten participants took part. The restricted sample population, consisting of postgraduate students 

or university staff, was due to availability of participants. The participants ranged from 22-46 

years of age (7 male, 3 female). All were asked whether to the best of their knowledge, they had 

normal hearing. The participants were unfamiliar with speech test procedures and were 

familiarised with the definition of the criterion as applied to synthetic speech and the procedure 

prior to the test. 
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The stimuli presentation, randomisation and MOS scale interface were provided by the C++ 

software in Appendix A. 

4.4.6 Test Conditions 

Output Device: headphones 

Acoustic Environment quiet office 
Noise Levels: minimum background noise 

PC: Pentium, 133 MHz 

Speech Spec: 

" Voice: J. Longster 

" M/F: F 

" Sampling Frequency. CD quality (44100Hz) 

" Speech Units: CV, VC and CC syllables concatenated to form short sentences 

" Algorithm: TD-PSOLA, Praat Software (Boersma & Weenink, 1999). 

4.4.7 Results 

Synthesis Inventory Median 
distortion 

Inventory 11 Distortion 12.7 

Humanness 3.55 

Inventory 2 Distortion 2.45 

Humanness 13.75 

Table 4.6 Su n=ary Statistics: Medians of Distortion and Humanness 

Table 4.6 shows the distortion and humanness ratings for speech synthesised from the two 

inventories. The most obvious effect is that Inventory 1 stimuli, which have undergone greater 

pitch manipulation, appear to suffer greater distortion. Inventory 2 stimuli, which were 

synthesised using the more complex concatenation method have on average a greater humanness 

rating than Inventory 1 stimuli, indicating that speech synthesised from this inventory may be 

116 



smoother with less audible discontinuities. Figure 4.8 shows a bar chart illustrating the two 

synthesis methods and the corresponding median distortion and humanness ratings. 

Q distortion 

  humanness 

1 

FIGURE 4.8 BARCHART OF SYNTHESIS INVENTORIES WITH DISTORTION AND HUMANNESS 
RATINGS 

Figure 4.9 shows a bar chart of the two sets of sentences synthesised from the two inventories 

and their corresponding average distortion and humanness ratings. For three of the four 

sentences, those synthesised from the Inventory 1 appear to suffer greater distortion. Three of 

the four sentences synthesised from Inventory 2 show greater humanness ratings. 
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FIGURE 4.9 BARCHART OF SENTENCES SYNTHESISED FROM Two INVENTORIES AND DISTORTION 

AND HUMANNESS RATINGS 

A Wilcoxon Signed Rank test was performed on the data to detect differences in the distributions 

of the two IV levels. Neither the distortion distributions (Z=-1.28, N=10, p>0.05, one-tailed tecl) 

nor the humanness distributions (Z=-1.07, N=10, p>0.05, one-tailed tesi) were found to be 

significantly different for speech synthesised using the different inventories. 

4.4.8 Discussion 

Retrospective power analysis was conducted on the data, as the results were not found to be 

significant. The effect size was calculated from the data using Cohen's d, and was found to be 

0.41 for the distortion measure and 0.34 for the humanness measure. Clark-Carter (1999) 

provides tables to determine the power of this test; for a one-tailed test, Oc=0.05, with an effect 

size of between 0.41 and 0.34, having 10 participants, the power is given as 0.2-0.4. To achieve a 

power of 0.8,40-70 participants would have been necessary. Cohen (1988) states an effect size of 

d=0.2 is small, d=0.5 is medium, and d=0.8 is large. For comparative purposes, the effect size for 

the data from Experiment 1 was calculated. Clark-Carter (1999) uses the effect size of ANOVA, 

7 1, as an estimate of the effect size for a Friedman test. The effect size of Experiment 1 was 

found to be 77' =0.47, which Cohen describes as large. The smaller effect size for the current 
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experiment and hence power of the test could therefore be responsible for the rejection of the 

experimental hypotheses. 

Research by Blouin & Bagshaw (2000) suggested that stimuli having dynamic pitch contours 

imposed on them might be less affected than ones with static contours imposed on them. Results 

for static pitch contour stimuli may not be as pertinent for dynamic pitch targets. This could 

reduce any effect evident in Experiments 1 and 2 at the static-pitch contour word level, when 

applied to the sentence level due to the highly dynamic nature of continuous speech. This may 

explain the smaller effect sizes of 0.41 and 0.34 observed for this experiment. 

Inventory 2 segments were recorded with pitches closer to the target values in terms of mean if) 

than Inventory 1 segments. Values were chosen midway between the fO of the central part of 

voiced speech, and the beginning or end of the voiced part for CV and VC syllables respectively. 

Inventory 2 segments, although closer to the target frequencies, still underwent extremely large 

pitch modifications of up to 68 Hz (30%). Such large modifications were outside levels 

investigated so far. It is possible that such large modifications caused changes in voice qualities 

that masked the occurrence of buzzyness under investigation, making the levels indistinguishable 

from those occurring in Inventory 1 stimuli. 

The lack of significance may also be due to the unpredictable nature of the algorithm already 

observed; subjecting all segments to smaller degrees of pitch manipulation may not be enough to 

minimise distortion. In Experiments 1 and 2, segment identity appeared to have a large effect on 

the perceived distortion. It may be that certain segments can withstand greater or lesser pitch 

modifications and that this should be taken into consideration. 

4.4.9 Conclusions 

Sentence level stimuli requiring greater TD-PSOLA modification did not suffer significantly 

different distortion levels than those requiring less modification. The Wilcoxon test indicated that 

there was no significant difference between the distributions of the stimuli synthesised from the 

two inventories. 
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This may be partly due to the low power of the test caused by the smaller effect size. The smaller 

effect size could be due to imposing dynamic pitch contours onto the stimuli which may not be 

as problematic for TD-PSOLA as static pitch contours. This means that the design of the speech 

corpus and signal processing distortion measure using data from experiments making use of static 

pitch contour word-level stimuli may not be as pertinent when used for sentence level stimuli. 

Sentence level stimuli created by the concatenation of different pitch CV and VC segments did 

not sound significantly less smooth than those created from CV and VC segments having the 

same ffi. It was expected that segments synthesised from Inventory 2 would be perceived as 

significantly less smooth than sentences synthesised from Inventory 1, due to the need to 

concatenate segments with different original fundamental frequencies. Evidence suggests that this 

may not be a problem, but stimulus preparation using the two-stage modification approach was a 

more difficult process and some discontinuities were audible. After the final dynamic pitch 

contour was applied though, these effects were almost imperceptible. Although this claim is not 

experimentally verified, it does support the view that the dynamic nature of speech may explain 

much of the success of TD-PSOLA. 

To conclude, the smaller effect size was thought to be due to the imposition of dynamic pitch 

contours, and that any sentence level speech requiring dynamic pitch contour applications would 

suffer less distortion. In addition, the large modifications required for both sets of segments may 

have masked the effect for smaller modifications investigated in the previous experiments at the 

word level. The implications for the speech corpus and signal processing distortion measure 

design are that effects seen at the word level, which are used to inform their design, provide the 

worst-case scenarios. Such effects may be less evident when the speech corpus is used for 

sentence level synthesis and the signal processing distortion measure is used as part of the 

segment selection process. 
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4.5 Experiment 4: The Effect of Pitch Manipulation using the TD-PSOLA Algorithm on 

Distortion Levels in Speech for Various Voices 

Abstract 

An experiment was undertaken to determine whether the effect of pitch manipulation using the 

TD-PSOLA algorithm on distortion levels in speech is significantly different for various voices. 

Four voices, two male and two female, were evaluated. Twenty participants were presented 

aurally with 92 CVC stimuli, 23 of each for the four voices, in a random order. The stimuli had 

been pitch manipulated using the TD-PSOLA algorithm, by various standard amounts from their 

original pitch. Participants were asked to judge on a MOS scale of 1 to 5 the levels of distortion 

present in each of the stimuli. Voices were found to respond differently to the algorithm, some 

appearing to suffer less distortion, although in general, greater distortion was found with 

increasing levels of pitch manipulation for all voices. The CVC stimuli had varying initial 

consonants, and the effect of this phoneme identity on distortion was investigated post hoc. 

4.5.1 Intmduction 

Certain voices may respond better to the application of the TD-PSOLA algorithm (Lowry, 1999) 

in terms of perceived distortion levels. In addition, some evidence suggests that higher ff) voices, 

such as female voices may suffer more (Moulines & Charpentier 1990, Blouin & Bagshaw 2000). 

This experiment investigates whether greater pitch manipulation may contribute to greater 

distortion for all voices and whether certain voices suffer more or less. The results from this 

could provide some guidance for speaker selection when recording a corpus, to choose a voice 

that will respond well to the TD-PSOLA algorithm, in terms of minimal introduction of 

distortion in the form of buzzyness. 

Experiment 1 showed that certain stimuli were more affected than others depending on the 

phonemic identity; this experiment investigates whether there is a relationship between distortion 

levels for individual stimuli for each voice, to determine whether results for one voice can be 
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generalised to others. This would suggest whether the design of the speech corpus and signal 

processing distortion measure developed during this work might be used for other voices. 

Experiment 1 evaluated the amount of perceived distortion present in CVC stimuli in which only 

the central vowel was altered. This experiment uses CVC stimuli in which only the initial consonant 

is altered, and the effect of the phoneme identity is investigated post hoc, to determine the effect of 

the algorithm on consonant phonemes. This data will then be used to inform the design of the 

speech corpus and signal processing distortion measure in Chapter 5. 

4.5.2 Design 

This section states the experimental hypothesis and details considerations in the experimental 
design. 

4.5.2.1 Hypothesis 

H1: Different voices will suffer significantly different amounts of perceived distortion when 

speech is pitch-modified using TD-PSOLA. 

4.5.22. Structurr of Experiment 

A listening test was designed to evaluate the amount of distortion introduced by TD-PSOLA into 

natural speech recorded by various voices to determine whether certain voices suffer different 

amounts of distortion. The independent variable voice had 4 levels; two female and two male, to 

allow comparisons between different gender voices. The dependent variable distortion was 

measured on a MOS scale (Mean Opinion Score) scale of 1 to 5. A MOS scale was chosen to 

allow the measurement of different amounts of distortion between the I. V levels. The stimuli 

were assessed using the amount of perceived distortion as the criterion for evaluation where 

distortion was defined as busy, or electronic sounding. The participants rated each stimulus from 1 

to 5 using the following definitions: 
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1 no perceived distortion 

2 quite undistorted 

3 distorted 

4 quite distorted 

5 very distorted 

A within-subjects design was used, each participant rated the distortion at all 4 levels of the N. A 

within-subjects design was used to reduce the effect of differences in levels of response between 

participants, reducing the number of participants required for the test to achieve the same power 

as a between-subjects design. 

A statistical test was needed to compare the differences between the IV levels to determine 

whether different voices suffered significantly different amounts of distortion. The design was 

within-subjects, but the data were ordinal, so the assumptions of the parametric ANOVA were 

not met. A Friedman test (corrected for ties) was therefore performed on the nonparametric data. 

A two-tailed test was performed as the hypothesis was non-directional. 

4.5.3 Stimuli 

A string list given in Appendix B consisting of CVC (Consonant Vowel Consonant) syllables is 

representative of the initial consonants occurring in the English language (IPA, 1949). There are 

24 consonant phonemes, but only 23 appear in the initial position. The list contains both 

meaningful and non-meaningful syllables. The initial consonant was varied in the CVC structure 

with the following VC structure kept constant. These stimuli would allow the effect of the TD- 

PSOLA algorithm on initial consonants to be evaluated, which was investigated post hoc. All 

stimuli were prepared with the following VC segment / {n/ 

e. g. b {n, k{n, dZ{n 

The checked vowel / {/ was chosen as it had a low distortion rating from Experiment 1 and 2. 

The sonorant /n/ was chosen rather than the plosive used in previous experiments which caused 

problems with the recordings due to `plosive pop' overloading the microphone. 
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All possible initial consonants were included to model the general effect of the algorithm in terns 

of introduced distortion (see Section 4.2.3. for an in depth discussion of the choice of stimulus 

type). The string list contained meaningful and non-meaningful syllables. To minimise any effect 

this may have on the results of the test, it was stressed to participants that the phonetic identities 

of the individual stimuli were not important and that only distortion, in the form of buzzyness, 

was to be evaluated. The string list contained only syllables that would not cause an emotive 

reaction in participants. 

The CVC stimuli were recorded at the speakers' neutral pitch. The neutral pitch was determined 

by production of the "schwa" sound. The reference syllables were spoken at a steady rate and 

pitch, using the RPP recording technique to guide the pitch of the speaker. These pitches are 

shown below: 

SPEAKER NEUTRAL PITCH 

Speaker 1 (Female) 220Hz 

Speaker 2 (Female) 200Hz 

Speaker 3 (Male) 130Hz 

Speaker 4 (Male) 120Hz 

To provide the stimuli for the experiment, the recordings were manipulated from their original 

pitch using the TD-PSOLA algorithm to 0, +1, +5, +10 and +15%, using the mel scale (see 

Section 4.2.3) to provide a linear relationship between fundamental frequency and pitch. This 

gave for each voice, the fundamental frequency levels shown in Table 4.7. 

Voice % pitch manipulation 
0% 1% 5% 10% 15% 

Voice 1 (F) 220Hz 223Hz 233Hz 246Hz 259Hz 

Voice 2 (F) 200Hz 203Hz 212Hz 223Hz 235Hz 

Voice 3 (M) 130Hz 132Hz 137Hz 144Hz 152Hz 

Voice 4 (M) 120Hz 122Hz 127Hz 133Hz 140Hz 

Table 4.7 Fundamental Frequency Values for Voices 
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The 0% control level was included to monitor the quality of the original recording and also to 

examine participants' possible bias towards a particular voice. 

4.5.4 Procedure 

The procedure and test conditions were identical to those in Experiment 1 (Section 4.2.6), and 

the same software was used to automate the test. 

4.5.5 Participants 

Twenty participants took part. All participants were university students or university staff due to 

the constraints of cost and availability. Participants ranged from 18-52 years of age, and of both 

male and female gender (13 male, 7 female). All reported to have, to the best of their knowledge, 

normal hearing. The participants were farniliarised with test procedures and the definition of the 

test criterion prior to the test. 

4.5.6 Results 

Voice % pitch 

manipulation 

Median distortion 

(MOS scale rating) 

Voice 1(F) 0% 1.83 

1% 2.00 

5% 2.54 

10% 2.76 

15% 2.98 

Voice 2 (F) 0% 1.43 

1% 2.46 

5% 3.22 

10% 3.61 

15% 3.52 

Voice 3 (M) 0% 2.17 

1% 2.20 
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5% 2.50 

10%'0 2.65 

15% 2.80 

Voice 4 (M) 0". %O 1.78 

1% 2.11 

5% 2.65 

10% 3.13 

15% 3.41 

Table 4.8 Summary Statistics: Distortion Rating for four Voices 

Voice 1 (F) Voice 2 (F) Voice 3 (M) Voice 4 (M) 

Voices 

FIGURE 4.10 COMPARISON OF DISTORTION FOR FOUR VOICES AT 5 LEVELS OF PITCH 
MANIPULATION 

Table 4.8 shows the summary statistics for each voice. Figure 4.10 illustrates the effect of pitch 

manipulation with TD-PSOLA on perceived distortion levels for the four voices. The most 

obvious effect is that all voices did not suffer similar amounts of distortion over the range of 

pitch modification evaluated. The 0% level represented participants' perception of the voices that 
had not been manipulated by the algorithm. Voice 2 was the participants' preferred voice when 

unmanipulated by the TD-PSOLA algorithm. Conversely, this voice suffered most, in terms of 

perceived distortion, when the algorithm was applied for even small 1% manipulations. Voice 3 

was the least preferred when unmanipulated, but performed best when the algorithm was applied, 

appearing to be unaffected by manipulations of only 1%. Voice 1 appeared to be able to sustain 

small manipulations of 1% but suffered when 5% and larger manipulations were required. Voice 

4 exhibited a greater distortion level at 1% than Voice 1, and a linear response between 5 and 
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15% manipulation. It may also be observed that in general more distortion was introduced the 

greater the manipulation for all four voices. 

A within-subjects Friedman test (corrected for ties) was performed on the data to compare 

differences between the medians of the distortion ratings, using SPSS for Windows, Release 

10.0.5. A significant effect was found indicating that voices may respond differently to the 

algorithm in terms of introduced distortion: for all averaged CVC stimuli and averaged pitch 

manipulation levels (, ýF =42.2, df=3, N=20, p<0.01, two-tailed ter4. 

In addition, a set of contrasts was performed at each pitch modification level, and all were found 

to be significant. 

At 1% pitch manipulation (%F =26.4, df=3, N=20, p<0.01). 

At 5% pitch manipulation (ZF =32.1, df=3, N=20, p<0.01). 

At 10% pitch manipulation (ZF =44.9, df=3, N=20, p<0.01). 

At 15% pitch manipulation (, ýF =39.1, df=3, N=20, p<0.01). 

4.5.7 Discussion 

1. Various voices. Greater pitch manipulation appeared to contribute to greater distortion in all 
four voices, concurring with the results from Experiment 1. Voice I was also used in 

Experiment 1 and showed the same pattern of distortion ratings over the 5 levels of pitch 

manipulation. For this voice, the 1% to 5% region where greatest distortion per percentage 

manipulation occurred was i lustrated again in this experiment. The other voices did not 

respond in the same way. Voice 3 appeared to respond best to the algorithm overall. 

The results illustrated that a voice that may be well received when unmodified may not be 

necessarily well received after the application of the TD-PSOLA algorithm. This illustrates the 

importance of carefully selecting a speaker to record a database or speech corpus and testing 

the response of the voice to TD-PSOLA before the recording process is begun. 
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2. Male versus female voices. Literature reports (hfoulines & Charpentier 1990, Blouin & 

Bagshaw 2000, Kortekaas & Kohlrausch 1997a) that female or higher fundamental frequency 

voices may suffer more from the application of the algorithm. This experiment did not show 

a clear indication of this, as the female voices responded second and fourth well of the four. 

Voice 1 (F) and Voice 3 (M) had both had experience in recording speech synthesis stimuli so 

were potentially more aware of criteria for high quality recording i. e. they were more akin to 

professional speakers. Voice 3 (M) performed better than Voice 1 (F) for the expert speakers, 

and Voice 4 (M) performed better than Voice 2 (F) for the novice speakers, so there is some 

evidence, although not conclusive, to suggest that female voices may suffer more. 

3. Consonant versus vowels. A comparison may be made between the pattern of results of 

Experiment 1 and 4 (for Voice 1). Experiment 1 investigated the effect of the TD-PSOL. A 

algorithm on stimuli where only the central vowel was altered, whereas Experiment 4 

investigated the effect of the algorithm on initial consonants for the same Voice. The similar 

pattern of response to the algorithm over the 5 levels of pitch manipulation for both vowel 

and consonant seen in Figure 4.11 suggests that these stimuli are affected by TD-PSOLA in a 

similar manner. The largest % increase in distortion is still visible between the 1 and 5% pitch 

manipulation levels. 
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4. Stimulus identity and distortion. Experiment 1 showed that certain CVC stimuli were affected 

in terms of perceptible distortion more than others were. This was also evident in this 

experiment. The bar chart in Figure 4.12 shows the stimuli identities and their corresponding 

distortion levels for Voice 1. 
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FIGURE 4.12 BARCHART OF VOICE 1 CVC STIMULI and DISTORTION 
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This is also shown in Figure 4.13, which illustrates large differences in the medians of 

distortion levels for individual stimulus identities and the spread of the data. 
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FIGURE 4.13 BOXPLOT OF VOICE 1 CVC STIMULI VERSUS DISTORTION 
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To examine this, a Friedman test was performed on the non-parametric data to see if there 

was significant variance in the distortion levels of the individual stimuli.. significant effect 

of phoneme idenrira was found (ZF =227.8, df=22, N=20, p<0.01). The data are also 

analysed in Chapter 5 to design the corpus by determining the balance of consonant 

phonemes required. The results will also be used to develop a signal processing distortion 

measure for consonant phonemes, based on the levels of distortion perceived for each 

phoneme identity. Voiced fricative phonemes were found to be especially problematic, and 

CVC Words 

a special selection process will be developed for such segments. 

Further analysis was undertaken to determine whether there were any correlations of 

stimulus identity with resulting distortion between the four voices. Comparisons were 

initially made between the two female voices. Figure 4.14 shows the CVC stimuli and their 

corresponding distortion ratings for Voice 1 and Voice 2 at the 15% level. 
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FIGURE 4.14 STIMULI IDENTITY AND DISTORTION FOR VOICE 1 AND 2 

A one-tailed Spearman's rho correlation was performed to determine the level of correlation 

(rho=0.524, N=23, p<0.05). The corresponding scattergram can be seen in Figure 4.15. 
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FIGURE 4.15 SCATTERGRAM OF STIMULI IDENTITY AND DISTORTION FOR VOICE 1 AND 2 AT 
15% PITCH MANIPULATION 

A correlation can be observed between the stimuli identity and distortion levels for Voice 1 

and 2 at the 15% manipulation level, although Voice 1 appears less affected than Voice 2 by 

the TD-PSOLA algorithm overall. 

The two male voices exhibit a similar phenomenon, although the male and female results 

together do not. A correlation matrix showing the relationship between voices in terms of 

consonant identity and distortion is shown in Table 4.9. As 64 tests were performed, the cc 

level was lowered to 0.01 to reduce the chance of making a Type I error (accepting the 

hypothesis when it is incorrect) without making the test too conservative. Correlations 

between female-female and male-male voices are given in bold. 
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1% manip. Voicel (F) Voice2 (F) Voice3 (M) Voice4 (M) 

Voicel (F) X Not sig. Not sig. Not sig. 

Voice2 (F) Not sig. x Not sig. Not sig. 

Voice3 (M) Not sig. Not sig. xi Not sig. 

Voice4 (M) Not sig. Not sig. Not sig. X 

5% manip. Voices (F) Voice2 (F) Voice3 (M) Voice4 (M) 

Voicel (F) X Not sig. Not sig. Not sig. 

Voice2 (F) Not sig. X Not sig. Not sig. 

Voice3 (M) Not sig. Not sig. X Not sig. 

Voice4 (M) Not sig. Not sig. Not sig. X 

10% manip Voicel (F) Voice2 (F) Voice3 (M) Voice4 (M) 

Voicel (F) X Rho=0.46 P<0.05 Not sig. Not sig. 

Voice2 (F) Rho=0.46 P<0.05 X Not sig. Not sig. 

Voice3 (M) Not sig. Not sig. X Not sig. 

Voice4 (M) Not sig. Not sig. Not sig. 

15% manip Voicel (F) Voice2 (F) Voice3 (M) Voice4 (M) 

Voicel (F) X Rho=0.52 p<0.05 Not sig. Not sig. 

Voice2 (F) Rho=0.52 p<0.05 X Not sig. Not sig. 

Voice3 (M) Not sig. Not sig. X Rho=0.51 p<° 05 

Voice4 (M) Not sig. -- f-Not sig. Rho=0.52 p<0.05 X 

Table 4.9 Correlations of Voices at each Pitch Manipulation uvei 

At 1% and 5% pitch manipulation, none of the distortion levels for the individual stimuli 

identities for any of the voices are correlated. At 10% manipulation, the female voices were 

loosely correlated. Female voices become more correlated at 15%, with male voices also 

exhibiting a high correlation. Correlations appear to occur between voices that have similar 

neutral pitches, or of the same gender. These results indicate that data gathered for one voice 
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may not be generalised to other voices, and that the design of a speech corpus or signal 

processing distortion measure would have to be tailored to the individual voice. 

5. Speaker Selection. Black & Lenzo (2000a) and Lowry (1999) suggest that the selection of the 

speaker has a great impact on the synthesis quality although it is difficult to determine 

acoustic aspects that differentiate good speakers from bad. Indeed it has been shown in this 

experiment that a preferred natural voice might not provide the best synthetic voice. 

The Harmonics-to-Noise Ratio (HNR) can be used to measure the signal to noise ratio on a 

periodic signal where 

HNR(dB) =10log, o (PeriodicEnergy / NoiseEnergy) Eqn. 4.4 

Evidence suggests that TD-PSOLA cannot cope well for mixed voice speech, which would 
be predominant in a `hoarse' speaker, or one who has noise superimposed on the glottal 

waveform. A normal speaker producing an / (/ will typically have a HNR of 20dB, whilst a 

hoarse speaker will have a lower HNR. 

In tests on production of the phone [{] Voice 2, which responded least favourably to TD- 

PSOLA, had a mean HNR of 14dB whilst Voicel had a mean HNR of 20dB. Conversely, 

Voice 3 which responded best to the algorithm had a mean HNR of 14.5dB, whilst Voice 4, 

which was received less well, had a mean HNR of 17.2dB. 

This parameter does not appear to be a conclusive indicator of the potential success of. a 

voice. Whilst it is still impossible to predict the suitability of a voice for synthesis, much time 

and effort may be wasted in recording a corpus before knowing how the speaker's voice will 

respond to synthesis with algorithms such as TD-PSOLA. 

4.5.8 Conclusions 

Various voices appeared to suffer different patterns and levels of distortion when pitch 

manipulated using TD-PSOLA, supporting Lowry (1999). This has a great impact on the 

selection of voices for the recording of a speech corpus for synthesis with TD-PSOLA. The 
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preferred unmodified voice responded worst to the algorithm, which is in agreement with Syrdal 

et al. (1998a) highlighting the fact that voices for synthesis cannot be chosen purely on their 

unmodified characteristics. A parameter of signal-to-noise ratio was tested to determine whether 

it may be used to identify voices that may suffer greater distortion, but no consistent pattern was 

found 

Literature reports that higher fft) or female voices suffer more than lower fr) or male voices. The 

results from this experiment are inconclusive as only four voices were evaluated, although there 

was some supportive evidence that female voices may suffer more. 

Patterns of distortion for consonant and vowel stimuli at each pitch modification level were 

compared and found to increase similarly with increasing pitch modification. Vowels may be 

affected more on average, which was to be expected as not all consonants are voiced; unvoiced 

sounds experience no modification during the pitch manipulation process. 

Individual stimuli appeared to suffer different levels of distortion. A Friedman test was 

performed on the data and the effect of phoneme identity was found to be significant. These data 

will be analysed in Chapter 5 to inform the design of the speech corpus and the signal processing 

distortion measure for use with TD-PSOLA. Voiced fricative phoneme stimuli were found to be 

especially problematic, and a special selection process will be developed in Chapter 5 to reduce 

potential distortion for such segments. 
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4.6 Experiment 5: The Effect of Aspects of the Original Recordings on Distortion Levels in 

TD-PSOLA Pitch-Manipulated Speech 

Abstract 

An experiment was undertaken to determine the effect of aspects of the original recording of 

stimuli on resulting distortion levels. Ten participants were presented aurally with 2 sets of 

randomly ordered CVC stimuli. The first set consisted of 4 recording versions of 6 CVC syllables 

with a varying central vowel. The second set consisted of 4 recording versions of 7 CVC syllables 

with varying initial consonants. Each set was manipulated to a standard pitch of 1,5,10 and 15% 

from the neutral pitch, giving a total of 96 stimuli for the first set and 112 stimuli for the second 

set. Participants indicated whether or not any distortion was perceived for each of the stimuli. 

Perceived distortion for each version varied in each set indicating that aspects of the original 

recording had a high impact on the results. The recording parameter of "waveform asymmetry" 

that had been identified at being potentially problematic during previous experiments was found 

to have a significant effect on resulting distortion levels for 9 of the 13 sets of CVC syllables. 

4.6.1 Introduction 

During the preparation of stimuli for previous experiments, it became apparent that certain 

recordings of speech sounds suffered anomalously large amounts of distortion. Where identified, 

these were removed from the stimuli set and re-recorded. 

Such anomalously large distortions seemed to occur when the time-domain waveform exhibited 

"asymmetry" in the pressure fluctuations. Such pressure changes are mainly caused by the 

production of plosives as illustrated in the waveform of the word "cart" in Figure 4.16. This is 

often ]mown as plosive distortion where the production of a plosive may generate large sound 

pressure levels (SPLs) that can overload the microphone. The effect may be minimised, by 

including a pop filter inside the microphone cap or by using a windscreen, at the expense of the 

high frequency response. An alternative approach places the microphone at 45% degrees to one 

side of the speaker's mouth. 
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The experiment analysed whether this may have contributed to this anomalous distortion and 

whether there may have been any additional factors. 

4.6.2 Design 

This section states the experimental hypothesis and documents design considerations. 

4.6.2.1 H}pothesis 

H1: Aspects of the original recordings of the stimuli will have a significant perceived effect on 

the resulting distortion levels. 

4.6.2.2 Stnrcture of the experiment 

A listening test was undertaken to investigate aspects of the original recording that may lead to 

anomalously large distortion levels. The independent variable recording acped had two levels of 

"asymmetry" and "sy-mmetriy". 
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The dependant variable was measured by indicating whether distortion was present or not. A 

yes/no response was adopted to determine if any distortion was present in the modified stimuli. 

What was of interest in this experiment was whether certain recordings suffered significantly 

more distortion. 

A test was required to determine whether stimuli exhibiting asymmetry suffered significantly 

more distortion than ones that were more symmetrical. The design was within-subjects with 

nominal data, so a non-parametric McNemar's test of change was performed. 

4.6.3 Stimuli 

The stimuli were divided into two sets to keep the data sets and corresponding lengths of test 

runs to a manageable size. The first set consisted of 6 different CVC syllables with varying central 

vowels. The three checked vowels /I/, / {/ and /Q/ were evaluated with their free counterparts 

/aI/, /A: / and /u: /. The second set consisted of 7 different CVC syllables with varying initial 

consonants; a voiced plosive /d/, an unvoiced fricative /s/, a voiced fricative /D/, an afficative 

/tS/, a nasal /n/, a liquid /r/ and a glide /j/, to evaluate a phoneme from each category when 

grouped according to manner of articulation. Four versions of each CVC syllable were recorded. 

Each recording was made at a different sitting to maximise differences in voice quality for each 

session. Two stimuli were chosen which exhibited asymmetry in the time-domain waveform, and 

two were chosen with more symmetrical waveforms, to provide the four recording versions of 

each CVC syllable. 

The CVC stimuli were recorded at the neutral pitch of the speaker (220Hz) using the RPP 

recording technique (Vine et al., 1999). These were then pitch manipulated to the target 

fundamental frequencies of 223,233,246 and 259Hz, corresponding to 1,5,10 and 15% 

modification to provide the TD-PSOLA manipulated stimuli. 

4.6.4 Pmcedurr 

Participants were familiarised with the procedure and criterion using a set of typed instructions 

(Appendix C). They were presented with the CVC stimuli via headphones and then made a 
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judgement as to whether any distortion was present in the stimuli using the software interface 

(Appendix A). The two test runs of 96 and 112 stimuli with a delay of approximately 5 seconds 

between each stimulus presentation lasted 8 and 10 minutes respectively. 

4.6.5 Participants 

Ten participants took part. The somewhat restricted sample population consisted of university 

staff or students, ranging from 20-56 years of age and from both genders (6 male, 4 female). All 

had self-reported normal hearing. 

4.6.6 Test Conditions 

Output Device: headphones 

Acoustic Environment quiet office 

Noise Levels: minimum background noise 

PC: Pentium, 133 MHz 

Speech Spec: 

" Voice: J. Longster 

" M/F: F 

" Sampling Frequency: CD quality (44100Hz) 

" Speech Units: CVC syllables 

" Algorithm: TD-PSOLA, Praat Software (Boersma & Weenink, 1999). 

4.6.7 Results 

4.6.7.1 Vowel results 

Version k{t kIt kQt kA: t kalt kut 

1 17.5% 15% 2.5% 42.5% 35% 57.5% 

2 35% 17.5% 5% 20% 35.5% 62.5% 

3 50% 87.5% 47.5% 47.5% 30% 37.5% 

4 20% 52.5% 25% 77.5% 77.5% 25% 

Table 4.10 Summary Statistics: % Distortion Detection for 4 Versions of 6 CVC Syllables 
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Table 4.10 shows the summary statistics, for 4 recording versions of the 6 CVC syllables, of the 

percentage distortion detection at all pitch manipulation levels. Due to the variability for each 

version, the aspects of the original recording can be seen to have a great impact on the success of 

the stimuli. 
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FIGURE 4.17 FOUR VERSIONS OF 6 VOWEL STIMULI AND DISTORTION DETECTION LEVELS 

Figure 4.17 illustrates the importance of aspects of the original recording; each of the four 

versions of each CVC syllable is shown with the number of distortion detections on the y-axis for 

each % pitch modification. 
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The stimuli were grouped into those that exhibited asymmetry in their time-domain wavefomn 

and those that did not, and a McNemar's test of change was performed on the data. 

" k{t (%Z =0.97, df=1, N=80, p>0.05) 

" kA: t (x, =12.90, df=1, N=80, p<0.01) 

" kQt (%2 =20.83, df=1, N=80, p<0.01) 

" ku: t (z, =11.26, df=1, N=80, p<0.01) 

" kit (x2 =39.83, df=1, N=80, p<0.01) 

" kalt (Z, =18.58, df=1, N=80, p<0.01) 

The results were found to be significant for all CVC syllables except /k{t/ indicating that for five 

of the six sets of CVC syllables, waveforms exhibiting asymmetry suffered greater distortion than 

those with more symmetrical waveforms. 

4.6.4.2 Consonant Results 

Version d{n s{n tS{n n{n rin j{n D{n 

1 10% 25% 17.5% 27.5% 40% 70% 90% 

2 40% 50% 55% 67.5% 45% 72.5% 87.5% 

3 42.5% 30% 25% 67.5% 67.5% 42.5% 62.5% 

4 10% 15% 60% 35% 72.5% 42.5% 65% 

I able 4.11 Summary Jtattstlcs: % Distortion Detection for 4 Versions of i %- v k- )yuaolc5 

Table 4.11 shows the summary statistics for the four recording versions of the 7 sets of CVC 

stimuli as percentage distortion detection at all pitch modification levels. Due to the variability of 

each version, aspects of the original stimuli recordings can be seen to have an impact on its 

success, when subjected to TD-PSOLA pitch modification. 

Figure 4.18 illustrates the impact of aspects of the original stimuli recordings; each of the 4 

versions of each CVC syllable is shown plotted against the number of distortion detections for 

each modification level. 
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FIGURE 4.18 FOUR VERSIONS OF 7 CONSONANT STIMULI AND DISTORTION DETECTION LEVELS 

The stimuli were grouped according to whether or not they exhibited asymmetry in their time- 

domain waveform, and a McNemar's test of change was performed on the data. 
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" d{n (Z2 =0.00, df=1, N=80, p>0.05) 

"S {n (, r2=8.03, df=1, N=80, p<0.05) 

" tS {n (X2 =0.32, df-- 1, N=8Q p>O. 05) 

"n {n (, ZZ =19.12, df 1, N=80, p<0.01) 

" r{n (Z2 =12.25, df1, N=80, p<0.01) 

"j {n (z2 =0.00, df1, N=80, p>O. 05) 

" D{n (%, =11.61, df1, N=80, p<0.01) 

The results were found to be significant for 4 of the 7 sets of CVC syllables, indicating that for 

these four CVC syllable sets, asymmetrical waveforms appeared to suffer greater distortion than 

those that were more symmetrical. The 3 CVC syllable sets for which the results were not, 

significant suggest that there may be additional parameters which may contribute to anomalously 

higher perceived distortion levels. The following section examines other such parameters. 

4.6.8 Possible Causes of Distortion 

Stimuli from previous experiments judged as having anomalously high distortion levels and 

stimuli from this experiment having higher levels than others in their set, were analysed for 

potentially problematic aspects such as incorrect pitch marking, noise on periodic waveforms, 

and phonation type. Stimuli were judged as `anomalously distorted' from other experiments if 

their distortion level was much higher than expected for their phone class, for example, the 

stimulus /kEt/ from Experiment 1 is a checked vowel and hence was expected to have a lower 

MOS rating that it actually received. 

4.6.8.1 Pitch Marking 

Pitch marking should be synchronised on glottal closure and be temporally consistent for 

minimal distortion (Kortekaas & Kohlrausch 1997b, Moulines & Charpentier 1990). The position 

of the pitch marking of anomalously distorted segments was checked using the Praat software. 

None of the stimuli were found to have offset pitch marks ()ittered or shimmered pitch marking), 

suggesting there was no relationship between offset pitch marking and distortion for this data. 
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The segment /kEt/ from Experiment 1 was found to have the /t/ incorrectly marked as voiced 

speech, perhaps contributing to its high level of distortion. 

4.6.8.2 Noise on Periodic Waveforms 

Waveforms that were judged to be anomalously distorted were analysed for noise on the periodic 

waveforms as it is recognised that TD-PSOLA has problems with mixed-voice signals. The 

recordings of the 4 versions of the stimuli for Experiment 5 were made on different days; it is 

possible that the recordings were affected by varying hoarseness of the speaker. The signal-to 

noise ratio, or harmonics-to-noise ratio (HNR) as it is known in the Praat software, can be used 

to measure noise levels on periodic waveforms. 

There was no consistent pattern of anomalously distorted waveforms having smaller signal-to- 

noise ratios than others in the group, suggesting there is no relationship between HNR and 

anomalous distortion for this data. 

4.6.8.3 Phonation Type 

The source-filter theory of speech production states that speech is composed of an excitation 

signal (the glottal source or noise generated by turbulent airflow), filtered by the vocal cavity. The 

glottal waveform can be extracted and examined to determine types of phonation. 

The Praat software was used to extract the glottal source of anomalously distorted signals. Linear 

prediction techniques were used to separate the filter from the source. The spectrum consisting 

of a small number of peaks was estimated in terms of centre-frequencies and bandwidths. This 

was performed on each windowed part of the signal (short-term analysis) to provide the spectral 

evolution as a function of time. It is in fact a smoothed version of a spectrogram. 

The peaks are associated with the formant resonances of the vocal tract. Analysis has shown that 

female voices typically have five formants between the ranges of 0 to 5500Hz. To implement this 

band-limiting, the original signal was resampled to 11kz. 
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LP analysis was then performed on this resampled sound. The LP Burg algorithm applied is 

described in Press et al. (1992). The result was a LP time function with 10 linear prediction 

coefficients in each time frame. To extract the source, the resampled sound and the LP object 

were inverse filtered. Given the filter (the LP coefficients) and the output (the resampled sound), 

the input (the glottal source) could be reconstructed. This signal represents everything in the 

speech signal that cannot be attributed to the resonating cavities. Figure 4.19 shows a glottal 

source for the production of /a/. 

Glottal source extraction was used to determine phonation types e. g. breathy voice (characterised 

by longer fall phase, more symmetrical pulse and higher stochastic component) or creaky voice 

(also known as `vocal fry', characterised by a very low ft), short rise time and irregular pulses), 

which are both known to be problematic for TD-PSOLA. 

There were no stimuli exhibiting breathy voice, hence no evidence to suggest this may have been 

a factor in the large levels of distortion. One stimulus suffered creaky voice, having incorrectly 

low pitch-marking, which may have contributed to the large level of distortion. 

4.6.9 Conclusions 

During the course of the experiments, it was apparent that the success of the TD-PSOLA 

algorithm relied heavily on certain aspects of the original recordings of the speech to be 

manipulated.. - parameter of waveform asymmetry that appeared to lead to anomalously high 

distortion levels was identified. This parameter was found to be statistically significant for 9 of 
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the 13 sets of CVC syllables, suggesting that there may be other factors additionally responsible 

for this anomalous distortion. 

Other possible parameters of incorrect pitch marking, low HNR, and phonation type were 

investigated. There was no evidence to suggest that a low HNR, offset pitch-marking, or breathy 

phonation, may lead to the anomalously high distortion levels of the stimuli analysed. One 

stimulus suffered incorrect pitch-marking (unvoiced speech marked incorrectly as voiced), and a 

second suffered creaky voice phonation, both of which may have contributed to their 

unexpectedly high distortion levels. 

It is possible that a combination of waveform asymmetry, creaky phonation type and incorrect 

pitch marldng may have led to some of the anomalous distortions encountered during these 

experiments, and segments exhibiting such parameters should be removed from the speech 

corpus. 
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4.7 Investigative Experiments Conclusions 

A set of investigative experiments was undertaken to investigate the effects of the TD-PSOLA 

algorithm on natural speech stimuli. Conclusions drawn from these experiments will be used to 

guide the development of a framework for reduced distortion when using TD-PSOLA for 

prosody modifications. The framework consists of a speech corpus design, a signal processing 

distortion measure, and a special selection process for voiced fricative segments. 

The first experiment investigated the effect of pitch manipulation with TD-PSOLA on distortion 

levels in CVC stimuli. Significantly greater distortion was perceived for increasing levels of pitch 

modification. Modifications of as low as 1% were found to introduce distortions into the speech 

signal for certain phoneme stimuli. This indicates than in an ideal situation, the use of signal 

processing should be avoided completely, or more realistically, kept to a minimum. The 

individual phoneme identity was investigated post hoc and found to have a significant effect on 

resulting distortion levels. This will be used to determine the content of the speech corpus and 

develop the signal processing distortion measure. 

The second experiment investigated the effect of the TD-PSOLA algorithm on distortion levels 

in positively and negatively manipulated speech. Over the range evaluated of +/-8% 

manipulation, similar distortion levels were found for both directions of manipulation. This result 

implies that there is no advantage, in terms of less distortion, in selecting segments that have 

either a higher or lower pitch than the target value. In fact, the correlation between individual 

stimulus distortion levels for both positive and negative directions was less significant indicating 

that individual stimuli may not respond similarly to positive and negative modifications. This 

requires further experimentation, and may be used to tune the design of the corpus and 

distortion measure, and is therefore discussed as further work in Section 7.2. 

The third experiment investigated the effect of pitch manipulation with TD-PSOLA on 

distortion levels in synthetic speech at the sentence level. Two inventories were evaluated, the 

first requiring greater pitch modification than the second. There was no significant difference in 

distortion levels between stimuli synthesised from these inventories. This lack of significance may 
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be due to the large amount of TD-PSOLA modification that segments from both inventories 

underwent to achieve the target values. More importantly, the modification of static pitch 

contours at the word-level, investigated in previous experiments, may have provided the worst- 

case scenario. Effects seen in these experiments may not be as evident at the sentence level that 

consist of mainly dynamic contours. This suggests that the use of the new corpus design and 

signal processing distortion measure for sentence-level synthesis may have less effect in terms of 

reducing distortion when compared to a standard synthesis framework as the perception of 
distortion may be reduced for dynamic synthetic speech even using a standard approach. 

The fourth experiment investigated the effect of TD-PSOLA pitch manipulation on distortion 

levels in speech for various voices. Different voices appeared to suffer different patterns and 
levels of distortion, which would be of great importance when selecting voices for recording a 

speech corpus to be used in conjunction with TD-PSOLA. The results were inconclusive as to 

whether female (higher fO) voices suffered more than male (lower f0) voices, although there was 

some evidence to suggest female voices suffered more. Again, the individual phoneme identity 

was investigated post hoc and found to have a significant effect on resulting distortion levels. 

This data will be used to determine the content of the speech corpus and develop the signal 

processing distortion measure. 

During these experiments, it became apparent that aspects of the original recordings had a large 

effect on the success of the stimuli, when pitch modified using TD-PSOLA. A parameter of 
"waveform asymmetry" was isolated as a potential problem for TD-PSOLA. If such a parameter 

was found to contribute to perceived distortion, segments that exhibited this phenomenon could 
be removed from the corpus. Experiment 5 investigated this, and the results were found to be 

significant for 9 of 13 CVC syllable sets. Some additional possible parameters were suggested, 

although fiuther investigation was outside the scope of this work. 

To conclude, a number of issues raised in Chapter 2 have been addressed, although many other 
issues have been identified. These will be discussed in the recommendations for further work- in 

Chapter 7. 
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The following chapter analyses the data collected during these experiments in an attempt to 

model the occurrence of perceived distortion, and analyses individual speech segment properties 

which may contribute to increased perceptible distortion levels. The results of this analysis will 

then be used to design the framework for use with the TD-PSOLA algorithm to allow a speech 

output with reduced perceptible distortion. 
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Chapter 5. Distortion Modelling and Development of a Novel Corpus Design 

and Signal Processing Distortion Measure 

5.1 Introduction 

Chapter 4 documented experiments undertaken to evaluate the effect of TD-PSOLA, in terms of 

perceived distortion, for pitch-modification of speech. The data collected during these 

experiments are analysed in this chapter in an attempt to model the occurrence of such 

distortion. It is impractical to carry out experiments that analyse every possible piece of data in 

every possible situation so this analysis relies on patterns of co-occurrence, or correlations, 

between sets of data. Parameters are identified and analysed to determine their effect on the 

amount of distortion introduced when speech is pitch-modified using TD-PSOLA. 

The data analysis will be used to develop a framework for producing speech with reduced 

distortion when TD-PSOLA is applied for pitch modifications. To this end, existing speech 

corpus designs and unit selection processes are critically reviewed to examine how the 

development of such a framework could improve existing approaches. The concept of designing 

a corpus tailored to the use of TD-PSOLA as the signal-processing algorithm for imposing the 

target prosody on speech, is discussed.. The corpus is not phonetically balanced, but balanced to 

the requirements of TD-PSOLA, containing more versions of adversely affected segments. The 

aim is to minimise the distortion of the output by allowing such segments to be selected with 

pitch contours closer to the target contours. 

The concept of a signal processing distortion measure for inclusion in a unit selection process is 

also presented. This measure would enable speech segments that suffer most from pitch 

modification using TD-PSOLA to be identified. Then, using this measure as part of a standard 

unit selection process, optimal segments could be extracted from the corpus for TD-PSOLA. 

modification with reduced distortion. 

Previous experimentation has shown that segments of different phonetic types suffer different 

perceived amounts of distortion with voiced fricatives being especially problematic. A special 
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selection process for such segments is also developed as part of the framework to reduce this 

potential distortion. 

5.2 Distortion Models 

Experimental results suggested that the amount of distortion introduced when speech is TD- 

PSOLA pitch-modified varies for different phonetic identity speech segments. Chapter 2 

discussed the inherent characteristics of speech sounds, when grouped according to manner of 

articulation. The possible effect of these characteristics on the perception of distortion is 

discussed below, and then the data will be analysed to determine their actual contribution to 

perceived distortion levels when the segments have been pitch-modified by TD-PSOLA. 

" Duration: the effect of duration will be investigated as the duration of sound is known to 

affect perception - tones lasting less than one second cannot be viewed as infinite and 

auditory sensitivity is altered for durations much less than one second, such as lOms or 

less (Gelfand, 1998). 

" Intensity: auditory sensitivity is governed by intensity levels or loudness (Turner et aL, 

1989). It will be investigated whether the mean intensity of individual phonemes may 

contribute to the perception of distortion. 

" First formant (fl) value: the fl value has been cited as having an effect on the perception 

of distortion (Blouin & Bagshaw, 2000). F1 is dependent on the size of the volume 

behind the tongue elevation, which increases as the elevated part of the tongue moves 

forward, lowering fl. F2 depends on the volume in front of the tongue elevation. Lip 

rounding lowers the first two formants by reducing the size of the mouth opening. 

Averagely lower f1 stimuli have been found to suffer less distortion than higher fl stimuli 

and this will be investigated for this data. 

" Voiced/unvoiced/mixed-voice status: The voiced/unvoiced/mixed-voice status of the 

speech sound has a large effect on the success of the algorithm (Moulins & Charpentier, 

1990). Consonants may be voiced/unvoiced or a mixture of both. Vowel sounds are 

always voiced so this status will be analysed for consonants only. For pitch modification, 

Praat performs no manipulation of unvoiced parts of speech. Voiced speech and mixed 
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voiced/unvoiced speech undergo Short Term (ST) repetition when increasing pitch, 

which may cause audible distortions. 

The parameters common to phone classes grouped according to manner of articulation that are 

identified as perhaps contributing to increased distortion levels, can then be used to suggest a 

design for the speech corpus and signal processing distortion measure. 

5.2.1 Vowels 

5.2.1.1 Analysis of Vowel Data 

Initially the stimuli from Experiment 5, consisting of four versions of each of six CVC syllables, 

were analysed. Only the vowel sound was altered in each of the six CVC structures. The stimuli 

were analysed in terms of 

1. Phonetic type e. g. checked/free, monothong/diphthong 

2. Duration 

3. Intensity 

4. F1 value 

The averages of duration, intensity and fl value were taken for each of the four versions of 

speech sounds. Whilst carrying out the analysis, there appeared to be a relationship between the 

shape of the fl contour and resulting distortion, so f1 shape was included also. All four versions 

were used, because the waveform asymmetry parameter, as a potential cause of anomalously large 

distortion levels, was not statistically significant for all CVC sets. The results are summarised in 

Table 5.1. The % distortion detection is given in the final column, averaged for all four versions 

across each pitch modification level of 1,5,10 and 15%. 

CVC 

identity 

phonetic 

type 

dur 

(s) 

intensity 

(dB) 

fl value 

(Hz) 

fl shape % distortion 

detection 

kQt checked 0.17 -22 6 690 Flat 20.0% 

k{t checked 0.18 -24.9 732 Flat 30.6% 

kit checked 0.17 -22.0 530 Flat 41.9% 

ku: t free (mono) 0.28 -25.2 375 Flat 45.6% 

kA . -t 
free (mono) 0.31 -23.5 770 Flat 46.9% 

k&It free (dip) 0.38 -25.9 832 - 446 formant transition 50.0% 

Table 5.1 Vowel Data (Experiment 5) 
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5.2.1.2 Results of Vowel Data 

1. Phonetic type: The vowels can be grouped in terms of perceived distortion level into checked 

vowels and free vowels. The checked vowels performed well, whilst the free vowels suffered 

more from the application of the algorithm. This is illustrated in Figure 5.1, which shows the 

% distortion detection for the two groups of vowels. The free vowels can be further divided 

into monothongs and diphthongs. The data in Table 5.1 suggests that monothongs are more 

successful than diphthongs. 
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FIGURE 5.1 % DISTORTION DETECTION FOR CHECKED AND FREE VOWELS 

2. Duration: the checked vowels, which are characterised by shorter durations, respond well to 

the algorithm, followed by the monothongs, which have a longer duration, and finally the 

diphthong with the longest duration. 

3. Intensity: the mean intensity was calculated using the Praat software over the vowel part of 

the CVC stimuli. There is no evidence of a correlation between intensity and distortion for 

this data. 

4. F1 value: vowel stimuli with lower fl values were found to perform neither consistently 

better nor worse than those with higher fl values. There is no evidence of a correlation 

between f1 values and distortion for this data. 

5. F1 shape: the vowel sounds with flat fl contours suffered less distortion than those with an 

internal formant transition such as often found in diphthongs. 
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From these results, it is hypothesised that the distortion detection levels are dependent upon the 

phonetic type of the vowel, its duration and f1 shape. Intensity and fl value do not have an effect 

on distortion for this data. 

5.2.1.3 Generalisation of Results to other Vowel Data 

The data from Experiment 1 were analysed to determine whether these results can be generalised 

to other data collected for the same Voice. Table 5.2 shows the data from Experiment 1 in order 

of increasing distortion rating. The distortion ratings were calculated for each CVC syllable, 

averaged over each pitch manipulation level of 1,5,10 and 15%. 

vowel phonetic 

type 

duration 

(s) 

Intensity 

(dB) 

fl value 
(Hz) 

fl shape distortion 

rating 

k Qt checked 0.18 -29.7 822 Flat 1.82 

kIt checked 0.19 -20.5 470 Flat 2.02 

O: t free (mono) 0.3 -18.5 506 Flat 2.07 

kVt checked 0.18 -22.1 758 Flat 2.22 

k@t unstressed 0.11 -20.37 673 Flat 2.28 

kUt checked 0.17 -18.7 525 Flat 2.40 

kit checked 0.21 -24.8 963 Flat 2.40 

kA-t free (mono) 0.30 -21.9 720 Flat 2.43 

k@Ut free (mono) 0.26 -21.3 598-486 End trans. 2.47 

kaUt free (dip) 0.30 -22.9 1080-629 Transition 2.52 

kOIt free (dip) 0.24 -20.0 527-374 End trans. 2.58 

keIt free (dip) 0.27 -23.0 663-489 End trans. 2.60 

ki; t free (mono) 0.28 -24.9 439 Flat 2.68 

k3; t free (mono) 0.30 -22.0 662 Flat 2.88 

ku; t free (mono) 0.26 -23.0 429 Flat 2.97 

kalt free (dip) 0.30 -23.8 903-487 Transition 2.97 

t checked 0.20 0221 822 Fiat 3.42 

-iu-@t free (dip) 0.37 -21.1 474-512 Transition 3.52 

kI@t free (dip) 0.38 -20.5 490-509 Transition 3.67 

free (dip) 0.29 -21.4 798-853 Transition 3.75 

Table 5.2 Vowel Data (Experiment 1) 
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1. Phonetic type: the data from Experiment 1, shown in Table 5.2 may be grouped according to 

phonetic type. Diphthongs respond poorly to the application of the algorithm, the 

monothong vowels intermediately, with the checked vowels most successful in terms of least 

perceived distortion. This is illustrated in Figure 5.2. 
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FIGURE 5.2 DISTORTION RATINGS FOR CHECKED, MONOTHONG AND DIPHTHONG VOWELS 

2. Duration: the checked vowels, characterised by shorter durations are most successful, 

followed by monothongs that have longer durations and diphthongs with the longest 

durations. 

3. Intensity: there is no evidence of intensity having an effect on the perception of distortion for 

this data. 

4. F1 value: f1 value does not appear to have an effect on the perception of distortion. The 

results do not support Blown & Bagshaw (2000) who state that vowels with low first 

formants respond better to the algorithm in terms of distortion. 

5. F1 shape: The checked vowels with flat fl contours respond best to the algorithm. The free 

vowels with either flat fl contours or formant transitions at the end of the vowel sound 

perform averagely, whilst the diphthongs with internal formant transitions in the centre of 

the vowel sound perform worst. 

An unexpected exception is the CVC stimuli /kEt/ which does not respond well to the 

algorithm. /E/ is a checked vowel, characterised by a short duration, and a flat fl contour, and is 

therefore expected to have a low distortion rating. This waveform was examined and the 
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unvoiced phoneme /t/ was found to be incorrectly marked by the pitch detection algorithm as 

voiced, which may be one of the parameters that contributes to anomalous distortions. 

5.2.1.4 Conclusions for Vowel Data 

In summary, vowels may be categorised according to their phonetic categories of checked, 

monothong and diphthong vowels, which distinguish their success with the application of TD- 

PSOLA. Inherent characteristics of each of these groups are f1 shape and duration. Checked 

vowels are characterised by flat fl contours and short durations and suffer least distortion. 

Monothongs have longer durations and flat fl contours or contours that rise sharply at the end 

of the vowel sound and suffer intermediate levels of distortion. Diphthongs have the longest 

durations and formant transitions in the centre of the vowel sound, and suffer the greatest 

distortion. There is no evidence that intensity and fl value affect the perception of distortion 

levels in speech for this data. 

5.2.2 Consonants 

5.2.2 1. Analysis of Consonant Data 

Initially, the stimuli from Experiment 5, consisting of four versions of each of seven CVC 

syllables, were analysed. Only the initial consonant was altered in each of the seven CVC 

structures. The stimuli were analysed in terms of 

1. Phonetic type e. g. plosive, affricative etc. 

2. Duration 

3. Intensity 

4. flvalue (if applicable) 

5. f1 shape (if applicable) 

6. Voiced/ unvoiced/ mixed composition 

The averages of duration, intensity, and fl value were taken for each of the four versions of 

speech sounds. The results are summarised in Table 5.3. The % distortion detection is given in 

the final column, averaged for all four versions across each pitch modification level of 1,5,10 

and 15%. 
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CVC 

identity 

Phonetic 

type 

voiced/ 

unvoiced 

Duration 

(s) 

mean 

intensity 

(dB) 

11 

value 

(Hz) 

fl shape % 

distortion 

detection 

d{n Plosive voiced 0.02 -34.31 - fl rise 25.6 

s{n Fricative unvoiced 0.18 -36.5 - fl rise 28.8 

tS{n Affricative unvoiced 0.1 -30.93 - fl rise 39.4 

n{n Nasal voiced 0.1 -32.55 376 flat - rise 49.4 

r{n Liquid voiced 0.2 -28.73 - flat - rise 56.3 

j{n Glide voiced 0.15 -30.51 320 flat - rise 56.9 

D{n Fricative voiced 0.16 -26.73 - fl rise 75.0 

Table 5.3 Consonant Data (Experitnent 5) 

5.2.2.2 Results for Consonant Data 

1. Phonetic type: the plosive sound responded best to the algorithm with respect to minimal % 

distortion detection, followed by the unvoiced fricative, the affricative, the nasal, the liquid, 

the glide and finally the voiced fricative. This is illustrated in Figure 5.3 which shows a 

barchart of the percentage distortion detection for each phoneme category. 
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FIGURE 5.3 BARCHART OF % DISTORTION DETECTION FOR PHONEME CATEGORIES 

2. Duration: The plosive has the shortest duration and responds best to the algorithm. The 

other consonants have similar durations. Consonants are characterised by much shorter 

durations than vowels so duration may not be as large a factor here as for vowels. 
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3. Intensity : there is no evidence to suggest that intensity has any bearing on the resulting 

distortion detection for this data. 

4. F1 value: An f1 value could only be measured for /n/ and /j/. Both of these had a flat fl 

contour of 376 and 320Hz respectively before a rise in fl at the beginning of the following 

vowel sound. With only two values, it is not possible to say whether f1 value has any 

significance. As it had no significance for vowel sounds, it will be assumed that for 

consonants, f1 value has little bearing on the resulting % distortion detection. 

5. F1 shape: /d{n/, which performs extremely well in terms of least distortion detection, 

exhibits a very short voiced part, a silence and then a rise in fl to the beginning of the 

following vowel. It was impossible to measure the fl value of /d/ using Praat, but the effect 

of the plosive on the f1 contour of the vowel began at 457Hz and ended at 916Hz. /s {n/, 

and /tS{n/, which also perform well, exhibit a burst of noise, a silence, then a rise in fl at the 

beginning of the voiced vowel. Again the fl contour began at 484 for Is {n/ and 500 for 

/tS {n/ and became flat after the start of the vowel sound at 860 and 835 Hz respectively. 

/n{n/, /r In/ and /j {n/ perform averagely to poorly and exhibit flat fl contours across the 

initial consonant, then a transitional rise to the beginning of the /{/. /n{n/ had the lowest 

flat fl contour value of 376Hz over the /n/ then exhibited a rise to 862 for the vowel sound. 

It was impossible to find the fl value for /r/ as the liquids' formants are often not well 

defined. The fl contour at the beginning of the vowel started at 592 Hz and rose to 808 Hz. 

/j {n/ had a flat fl contour over the /j/ of 320Hz which rose to 780Hz at the beginning of 

the following vowel. /D {n/, which performs extremely poorly, exhibits an fl rise from the 

beginning of the /D/ phoneme to the beginning of the / (/ from 500 to 860Hz. To 

summarise, segments exhibiting a rise in f1 at the beginning of the transition from C to V 

suffered less distortion in general than segments which exhibited a flat fl shape before a rise 

at the CV transition. 

6. Voiced/unvoiced composition: the unvoiced sounds and the voiced plosive respond well. 

The voiced nasal, liquid and glide perform less well but better than the voiced fricative that 

contains both voiced and unvoiced signals. 

From these results it is hypothesised that % distortion detection is dependent upon the phonetic 

type of consonant, its duration, fl shape, and voiced/unvoiced/mixed-voice composition. 

Intensity and fl value do not appear to have an effect on the perceived distortion for these data. 
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5.2.2.3 Generalisation of Results to other Consonant Data 

The data from Experiment 4 have been analysed for Voice I to determine whether these results 

can be generalised to other data for the same Voice. Table 5.4 shows the data from E cperiment 4 

for Voice 1 in order of increasing distortion rating. The distortion ratings were calculated for 

each CVC syllable averaged over each pitch manipulation level of 1,5,10 and 15% 

CVC 

identity 

Phonetic 

type 

voiced/ 

unvoiced 

duration 

(s) 

mean 

intensity 

(dB) 

fl value 
(Hz) 

fl shape distortion 

raring 

k{n Plosive unvoiced 0.06 -31.2 - - 1.90 

s {n Fricative unvoiced 0.2 -32.8 - 2.04 

t{n Plosive unvoiced 0.08 -29.5 - 2.05 

n{n Nasal voiced 0.16 -28.3 430 flat - rise 2.13 

dZ{n Afiricative voiced 0.12 -32.5 2.19 

f{n Fricative unvoiced 0.04 -24.9 - - 2.23 

h{n Fricative unvoiced 0.09 -35.2 - 2.24 

d{n Plosive voiced 0.04 -32.0 - fl rise 2.33 

tS{n Afi'ricative unvoiced 0.14 -29.0 - - 2.39 

r{n liquid voiced 0.17 -32.2 459 flat - rise 2.41 

1{n liquid voiced 0.15 -30.1 430 flat - rise 2.43 

S{n Fricative unvoiced 0.2 -30.6 - 2.43 

b{n Plosive voiced 0.04 -31.4 flrise 2.44 

g{n Plosive voiced 0.04 -27.3 - 11 rise 2.59 

j fn Glide voiced 0.12 -29.2 267 flat - rise 2.73 

T{n Fricative unvoiced 0.11 -29.1 - - 2.89 

z{n Fricative voiced 0.14 -33.4 420 flat - rise 3.00 

p{n Plosive unvoiced 0.06 -32.8 - 3.13 

m{n Nasal voiced 0.17 -28.2 376 flat-rise 3.21 

D{n Fricative voiced 0.05 -31.3 240 - 720 fl rise 3.33 

w{n Glide voiced 0.15 -31.6 482 flat - rise 3.38 

v{n Fricative voiced 0.10 -33.7 240 flat - rise 3.40 

Z{n Fricative voiced 0.12 -32.8 320 flat-rise 3.53 

Table 5.4 Consonant Data (Experiment 4) 
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1. Phonetic type: Figure 5.4 shows the levels of distortion for stimuli grouped according to 

phonetic type for Voice 1 averaged over all levels of pitch manipulation. It should be noted 

that the sample sizes are not balanced, but it only patterns of co-occurrence that are 

investigated during this analysis. The affricatives perform best in terms of least distortion, 

followed by plosives, unvoiced affricatives, nasals, liquids, glides and finally the voiced 

fricatives. The pattern of results are similar to those of the data set from Experiment 5, where 

the voiced fricative and glide performed least well, the liquid and nasal averagely, and the 

plosive, unvoiced fricative and affricative best. 
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FIGURE 5.4 DISTORTION RATINGS FOR VOICE 1 PHONEME CATEGORIES 

The data for the four voices investigated in Experiment 4 were also analysed in terms of 

average distortion ratings for each phonetic type. Figure 5.5 shows the distortion ratings 

across all pitch manipulation levels averaged for the four voices for each phonetic category. 

Again, the affricatives and plosives perform best, followed by the unvoiced affricatives. Next 

are the nasals and liquids, with glides and voiced fricatives performing less well. 
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FIGURE 5.5 DISTORTION FOR ALL VOICES FOR PHONEME CATEGORIES 

2. Voiced/unvoiced composition: For Voice 1, the voiced consonants respond less well than 

unvoiced consonants; voiced parts of speech are subjected to modifications whilst the 

unvoiced parts are simply copied to the target waveform. The plosives and affricatives can be 

sub-divided further into voiced and unvoiced. Voiced and unvoiced plosives perform 

similarly, whilst voiced affricatives are slightly worse than the unvoiced. The voiced fricatives 

suffer most due to their mixed stochastic and periodic composition. 
3. Duration: the voiced plosives are as successful as the unvoiced plosives - this may be due to 

the short duration of plosives that makes distortion imperceptible for this pitch manipulation 

range. 

4. F1 shape: the fl shape of the liquids, glides (semi-vowels) and nasals have formant transitions 

in the centre of the voiced CV part and suffer high distortion levels. The voiced fricative 

exhibits a rise in fl from the beginning of C to V and responds very poorly in terms of 

distortion. The plosive, unvoiced fricative and affricative perform well; they involve a short 

formant transition at the beginning of the following vowel sound. 
5. There was no evidence to suggest that intensity and fl value had any effect on the distortion 

ratings. 
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5.2.2.4 Conclusions for Consonant Data 

In summary, consonants may be categorised according to their phonetic categories, voiced/ 

unvoiced composition, fl shape and duration, which together distinguish the success of their 

response to the application of the TD-PSOLA algorithm. 

Unvoiced types have lower distortion ratings than voiced due to no modification of the unvoiced 

parts of the signal during the TD-PSOLA pitch modification process. The exception is the 

voiced plosive, which is of such short duration that the voicing appears to have no perceptual 

effects in terms of distortion, having a low distortion rating. 

The f1 shape of the liquids, glides (semi-vowels) and nasals followed by a vowel sound are similar 

to the diphthong vowels; they have formant transitions in the centre of the voiced CV part with 

longer durations and suffer similarly high distortion levels. The voiced fricative exhibits a rise in 

fl from the beginning of /D/ to the / {/ in the CVC syllable /D {n/, has a long duration and 

responds very poorly in terms of distortion. This may be due to the mixed voice component that 

can be a problem for TD-PSOLA (Moulines & Charpentier, 1990). The plosive, unvoiced 

fricative and affricative perform well; they involve a short formant transition at the beginning of 

the following vowel sound. 

These results may also be generalised to some extent to all voices tested in Experiment 1, when 

the data are grouped according to phonetic category. 

5.2.2.5 Issues 

An assumption has been made that it is the distortion in the consonant that is evaluated, not its 

effect of the following vowel. In reality, the vocal tract moves from the consonant to the position 

for the following vowel (coarticulation) where there are brief influences on the fortnants at the 

beginning of the vowel. It may be the perceived distortion in the consonant itself, and also the 

effect of the consonant on the following vowel formants, which is evaluated. Different levels of 

distortion may be perceived for different following vowels. Although not experimentally verified, 

an informal listening test, replacing / {n/ with /It/ as the following VC construct, indicates that 

the /j/ (glide) and /D/ (voiced fricative) respond least well, followed by /r/ (the liquid), and 

then /n/ (the nasal). /b/ (the plosive), /tS/ (the affricative), and /s/ (the unvoiced fricative) are 
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all unaffected. This pattern concurs with the results from Section 5.2.2.1 and indicates that it may 
be likely that the distortion perceived for the consonants is relatively independent of the 

following vowel, although further investigation would be advantageous. It should be noted that 

coarticulation is speaker specific (van den Heuvel et al., 1996) so results for this voice reflect the 

coarticulation behaviour of this speaker only. 

5.2.3 Summary 

The consonant and vowel sounds have been categorised in terms of distortion levels and 

parameters have been identified which contribute to the success of segments when TD-PSOLA 

is applied for pitch modification. Both consonants and vowels sounds can be grouped according 

to their phonetic category determined by their manner of articulation. These categories have 

inherent characteristics of differing durations, f1 shape, and for consonants, 

voiced/unvoiced/mixed-voice composition. 

In the following section, these results will be used to develop a novel speech corpus design 

tailored to the use of TD-PSOLA, and a signal processing distortion measure to be included in a 

segment selection process. During this analysis, voiced fricative phonemes were identified as 

being especially problematic, and a special selection process for these will also be developed. 

Before this, existing speech corpus designs and segment selection processes are reviewed. 

53 Review of Existing Speech Corpus Techniques 

5.3.1 Introduction 

Speech signals contain more data than just fO and duration. Simple diphone approaches to speech 

synthesis do not consider additional aspects of natural speech such as varying voice qualities- 

Corpus-based synthesis attempts to retain such details. Furthermore, speech segment quality is 

maintained by selecting segments closer to the target values, which minimises the amount of 

signal processing required. The most extreme corpus-based system CHATR (Black & Taylor, 

1994) does not perform any prosodic modifications but relies on the fact that listeners are less 
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disturbed by discontinuities. This is often not the case and for speech to be generated with less 

discontinuity, Portele (1998) states that post-concatenation is still inevitable as finding all features 

in all combinations is not possible (van Santen & Buschbaum, 1997). 

Portele (1998) claims there are three main factors that determine the quality of the synthetic 

speech output the size and variety of the segments in the corpus, the choice of annotated 

features and accuracy of annotations, and the unit selection algorithm. Donovan & Woodland 

(1999) suggest it is also the number of concatenation points. 

In the following section, the current speech corpus strategies of corpus design (size of corpus 

and variety of segments) and the unit selection process are reviewed. Then the concept of a novel 

TD-PSOLA balanced corpus is presented which is intended to retain much of the resulting 

speech quality by reducing serious signal processing degradation. This would potentially improve 

the resulting output quality of a US system that makes use of the TD-PSOLA algorithm. 

5.3.2 Existing Corpus Designs: Si e and Variety of Segments 

A corpus may be designed to reflect the chosen application for limited or dosed domains e. g. a 

speaking clock synthesiser. The synthesis is then usually robust and of a high quality (Black & 

Lenzo, 2000b). For open domain applications where arbitrary sentences are synthesised, a more 

general approach to corpus design is required. 

Corpora may be phonetically rich containing every possible speech segment, or alternatively they 

may be phonetically balanced with specific additions needed to cover unusual phonetic 

sequences. Black & Lenzo (2001) addressed the concept of creating the smallest set of utterances 

for a speech corpus that would give optimal phonetic coverage. They take a large amount of 
intended output then greedily select sentences from Lewis Caroll's "Alice's Adventures" to give 

best diphone coverage with minimal redundancy. 

Factors such as lexical stress, pitch, duration, and position in phrase are also taken into 

consideration. The addition of each feature increases the amount of data necessary and, as van 
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Santen & Buschbaum (1997) point out, getting all possible features is not feasible due to the 

complex variations and combinations of speech. 

A current concern of corpus-based approaches is how to increase the emotional capacity (the 

ability to produce large prosody variations for arbitrary sentences) of such a system without 

greatly increasing the size of the corpus (Niimi et al., 2001). Their database is prosodically 

balanced, containing segments which have emotional speech quality, and so any Japanese accent 

pattern may be generated with minimal signal processing modification to achieve more diverse 

pitch and duration targets without serious degradation. 

As an example of typical size, the AT&T system uses 84,000 demiphones, which is equivalent to 

1.8 billion unit pairs, plus 36 million mid-phone transitions (Möbius, 2000). Experiments have 

shown that a subset of 1.2 million unit pairs gave 99% coverage, and that such a subset was 

capable of producing sequences of speech almost identical (98.2%) to those using the optimal 

selection from the entire corpus (Beutnagel et al, 1999b). 

Larger corpora require more time to record, leading to the problems associated with multiple 

recording sessions such as voice quality changes, which make unit selection more unreliable in 

terms of output quality. The data also need to be labelled, much of which still needs to be done 

by hand. 

Obviously there must be a trade off between the variety of segments available and the size of the 

corpus. Signal processing is still required to keep the corpus a manageable size. As signal 

processing is necessary, the design of the corpus should take the requirements of the algorithm 

into account This is addressed in the following section, which develops a novel speech corpus 

design that is balanced to the needs of the signal processing algorithm used to achieve the desired 

prosody. 

5.3.2.1 A TD-PSOLA Balanced Speech Corpus 

A TD-PSOLA balanced speech corpus would retain or even reduce the necessary size of the 

corpus; the need for certain speech segments to be represented in as many different contexts with 

varying pitch and durations may be reduced. Limiting the size of the corpus improves the 
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consistency of speech by allowing the recording to take place in one session and avoiding speaker 

fatigue. 

Analysis of different speech sounds in Section 5.2 indicates that segments such as checked 

vowels, plosives, and affricatives respond well to pitch manipulation; fewer representations of 

these segments would be necessary in a TD-PSOLA balanced speech corpus. Black & Lenzo 

(2001) describe how to successfully prune a database to remove unnecessary versions of 

segments. 

It would be advantageous to include more of the segments that do not respond well to TD- 

PSOLA, such as diphthongs and voiced fricatives. This would be especially necessary in a 

phonetically balanced corpus for adversely affected combinations of segments that are rare in the 

English language. Extending the database or corpus with problematic segments has already been 

achieved successfully for other purposes; Klabbers & Veldhuis (2001) included extra versions of 

highly coarticulated diphones in their database. The CHAIR corpus contains not only a 

phonetically balanced corpus but also sets of isolated words and sets of isolated sentences to 

cover problematic texts. 

Thus a speech corpus with optimal coverage for TD-PSOLA may be designed. Section 5.5 

develops this concept by using the MOS scale ratings to predict which phoneme groups respond 

well to TD-PSOLA and hence allow material to be designed having more of certain segments 

and fewer of others, rather than being purely phonetically balanced. 

5.3.3 Existing Unit Selection Pmadwes 

Corpus-based systems enable the use of variable length units such as phones, diphones, triphones 

(or even longer) rather than just diphones or syllables. Non-uniform synthesis was first suggested 

by Sagisaka (1988) of ATR (Advanced Telecommunications Research Institute) and Takeda et aL 
(1990). Also at ATR, Black & Campbell (1995) and Hunt & Black (1996) began parallel research 

that also included prosodic measures (duration and pitch) in the unit selection process. Unit 

selection aims to select the longest available string of phonemes therefore minimising the number 
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of concatenation points. Möbius (2000) states that several hours worth of speech in a. corpus- 

based system will produce utterances constructed of units that are considerably longer than 

diphone or demi-syllable synthesis. 

Unit selection involves finding the best unit in the corpus to fit a target utterance. Best' is in 

terms of closest phonetic, acoustic and prosodic features. Unit selection minirnises two cost 

functions: one for unit distortion and one for concatenation distortion. Unit distortion or target 

cost measures the distance from the target values to the values of a candidate unit. Concatenation 

cost measures the distance between two adjacent segments at the concatenation point, hence 

measures the quality of the segment join. 

Segments in the corpus are labelled with features consisting of both segmental and prosodic 

properties. The feature vector of these properties is computed for the target segment at runtime 

for values predicted from text. Hence the unit distortion cost can only make use of those that can 

be predicted from text, namely the phonetic and prosodic features of phonetic context, duration, 

pitch, and position in syllable, word and phrase. 

Continuity distortion can use all features, as it compares features of two actual segments from the 

corpus, making use of using spectral properties such as met-cepstrum vectors, local fO, and local 

power. A weighted sum of distances is used to calculate the continuity cost and also for optimal 

coupling (Conkie & Isard, 1996). Optimal coupling determines the best place to join two units by 

varying the cut point of the speech segments. 

Target and corpus units are labelled with the same set of features. For each feature a distance 

measure (e. g. absolute, equal/non-equal; squared difference) is selected. The target cost may be 

calculated as the weighted sum of the distances of these features. 

Unit selection occurs as follows. Each unit in the corpus is represented by a state in a state 

transition network with state occupancy represented by the unit distortion value, and state 

transitions by the continuity distortion values. Hunt & Black (1996) select the optimal units by 

finding a path through the states that rninimises both costs. 
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The size of unit selected is usually phone sized which does not actually minimise concatenation 

points, although the method does encourage longer unit selection, as the concatenation cost 

would be zero between segments found together in the corpus. 

The difficulty in unit selection is determining the distance measures themselves and their 

weightings. Currently, there are two main approaches: weight space search (Black & Campbell 

1995, Campbell & Black 1996) and multiple linear regression (Hunt & Black, 1996). 

Weight space search uses analysis-by-synthesis to determine the weights. An utterance is 

synthesised from the first choice best set of units and its distance from the natural utterance is 

measured. This is then repeated for various weight settings and utterances until the best set of 

weightings is found. 

Multiple linear regression is used to find the weightings for the target cost separately and the 

weight space search is used to train the concatenation cost This allows separate weights for 

different phone classes to be used e. g. high vowels, nasals etc. It is also computationally less 

expensive. For each occurrence of a type of unit in the corpus, the acoustic distance between 

each is calculated. The target cost distances for each feature are also calculated producing a large 

table of acoustic costs and feature distances as shown in Equation 5.1. 

AverageCost = w, D1 + w2D2 +....... w�D� Eqn 5.1 

w,, can then be estimated, for each phone each class of unit, using linear regression. This method 

is used in CHATR (Campbell et al., 1989). 

Some new more efficient weight training methods have been proposed (Meron & Hirose, 1999) 

that divide the analysis-by-synthesis into two processes: selection and scoring, meaning only 

candidate segments are scored. Additionally, they apply regression training to target and 

concatenation costs simultaneously, which is an improvement as the two costs are not 

independent of one another. It also takes into account prosodic costs at synthesis time. Holzapfel 

& Campbell (1998) use fuzzy logic to determine the cost of a candidate unit and also define a 

range of acceptable distances for each feature, which prevents large mismatches (fuzzy logic 

allows small deviations to exist assuming they are not be perceptually relevant). Wouters & 
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Macon (1998) and Macon et al. (1998) evaluated the use of distance measures to predict optimal 

unit selection, which provided a correlation of 0.66 with perceptual differences, indicating there is 

much work needed here. It may be that some important features are missing or that weights have 

not been trained accurately. 

The following section discusses the development and potential addition of a TD-PSOLA 

distortion measure to current unit selection processes, which may be one of the features missing 

from current processes. 

5.3.3.1 A TD-PSOLA Distortion Measure 
A TD-PSOLA signal-processing measure may be added to existing target cost calculations. `This 

would not be just a simple measure of the absolute distance in Hz for all segments, but weighted 

according to the phonetic identity of the segment. This would allow segments adversely affected 

by the algorithm to be selected closer to the target in terms of signal processing cost, as they 

would have greater signal processing cost weightings, lessening the importance of other features 

in the selection vector, such as position in phrase, when necessary. The signal -processing 

measure is developed in Section 5.6 where the MOS scale ratings are converted into weights for 

the individual phoneme groups, using linear regression. This TD-PSOLA distortion measure, if 

included as part of a target cost estimation to select units from a corpus would take into account 

the effects of TD-PSOLA on final pitch modification and select segments that would suffer 

minimal TD-PSOLA distortion. 

5.3.4 Context Clustering 

An alternative process to unit selection is context clustering using a decision tree (Nalajima & 

Hamada 1988, Nakajima 1994, Itoh et al, 1994, Wang et ah 1993). Context clustering is used in 

the Microsoft Whistler system (Hon et al. 1998, Huang et al. 1996). The idea is to take all units of 

each type found in the corpus and to define an acoustic distance between them. All units of a 

particular type, having the same segmental phonetic context, are grouped together. Using features 

used for target cost calculation, such as metrical and prosodic context, the duster is split by 

minim sing the acoustic distance between members until some threshold is attained. Using CART 

trees (Brieman ei al, 1984), which allow the most significant factor to be selected by using a 
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greedy algorithm (a greedy algorithm makes optimal decisions at each stage without regard for 

subsequent stages), the result is a decision tree available at synthesis time with each leaf on the 

tree represented by a segment and its features. TTS systems often use binary trees: at each node, 

clusters are split by questions about features of units that require a yes/no answer. The target 

cost is the distance of a unit to its duster centre. A subset of phones from each duster is selected 

and stored. The selection process computes statistics for duration, energy and pitch and removes 

tokens not near the average. A small number are selected based on an objective function that 

measures the match with the cluster. 

The number of leaf nodes therefore determines the number of synthesis units, and the depth of 

the decision tree determines the size of the inventory. This provides a trade-off mechanism 
between unit inventory size and specificity. A small inventory will have a shallow tree and the 

clusters will be less context-specific, and will probably require more signal processing. 

Syllable stress, word accent and position relative to the phrase boundary, all influence pitch and 

duration of phonemes. Surrounding phonemes can cause coarticulation phenomena and must be 

taken into consideration during the selection process. This method inherently determines the 

importance of contextual (syllable position, word/phrase position) and coarticulatory effects 

using questions such as "is the previous phoneme a /U/? ". 

Unit selection can then be performed using unit distortion (measured as the Euclidean distance 

from the cluster centroid (Iwahashi et al., 1992)) and continuity distortion to minimise the global 

cost over the utterance to be synthesised. Further developments (Iwahashi & Sagisaka 1995, 

Sagisaka & Iwahashi 1995) simultaneously minimise both costs, although this is very 

computationally expensive. This version also added prosodic properties such as pitch, duration 

and intensity to the selection criteria. 

Black & Taylor (1997) combined context clustering and unit selection and implemented it in the 

Festival system (Black et al, 1999). The segments are clustered according to their phonetic and 

prosodic contexts with each cluster containing more than one segment (usually 10 to 15 

examples). The main advantage is that most of the computation is performed offline so the 

search effort at runtime is reduced; the target cost computation is moved from synthesis time 
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into the training process. Rather than having to select between all available units, the most 

appropriate cluster is chosen using the decision tree, then the best unit is chosen from the cluster. 

Möbius (2000) suggests that the cost of signal processing could be included in the scoring during 

unit selection from the cluster. The tree is grown until the desired number of terminal or leaf 

nodes is reached, or if the number of phones in the leaf node falls below a threshold. This 

approach finds larger matches with less computation and does not depend on the prediction of 

duration and f0, which is notoriously difficult. 

Prosodic features are used in the Eloquens speech system when large mismatches are 

encountered between candidate and target values (Balestri et al., 1999) as they argue that it is still 

necessary to impose model-based artificial prosody to attain enough flexibility. Their unit 

selection takes into account prosodic labels as well as acoustic correlates of f0 and duration. 

Results suggest that unit selection by categorical prosodic features is better than by matching 

numerical prosodic values. 

Synthesis for either approach uses the target costs (as either weighted distances, or distances from 

the cluster centre for members of the optimal duster) and the continuity costs between the 

possible selections of units to calculate the minimal total cost. The optimal route through these 

units is found using a Viterbi decoding algorithm. 

The following section looks at the concept of context clustering guided by the requirements of 

the TD-PSOLA algorithm which may be used for final prosodic modifications. 

5.3.4.1 TD-PSOLA Guided Context Clustering 

The tree does not have to be grown evenly as long as there are enough segments in the corpus. 

Phone clusters that respond well to TD-PSOLA would not need to be grown as far as there can 

be fewer variations; their prosodic characteristics of duration and pitch can be modified to target 

values without introducing unacceptable levels of distortion. Phone clusters that do not respond 

well would have a deeper tree structure with more questions and hence more context specific 

clusters. 
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Voiced fricatives, diphthongs and glides would be grown furthest giving more variety of pitch 

and duration values, therefore it would be more likely to find ones closer to target values, hence 

less modification would be required. Checked vowels, affricatives and plosives would have 

shallow branches with monothongs, nasals, and liquids having moderate branches. The novel 

signal processing cost would also be included in the unit selection from the duster as suggested 

by Möbius (2000). The use of this in conjunction with a TD-PSOLA balanced corpus would 

allow the tree to be grown to different depths to facilitate the choice of TD-PSOLA problematic 

segments having prosodic values nearer the target values. 

Additionally, the decision tree approach would allow generalisation to new contexts not 

encountered during training by backing-off to broader categories for the neighbouring contexts. 

This may be used for bad response TD-PSOLA candidates from the chosen context; if the 

prosodic modification will be large, segments in other contexts that may not be correct 

linguistically may have loser prosodic values. The generalisation to new contexts has been 

implemented successfully by Chou et al. (1999). The development of a TD-PSOLA guided 

context clustering approach is outside the scope of this work, although the concept may provide 

a successful solution to reducing distortion introduced by the TD-PSOLA algorithm. 

5.4 Summary 

This section reviewed existing corpus design and speech unit selection methods. A TD-PSOLA 

balanced corpus and signal processing distortion measure has been proposed. This may be 

implemented in a ITS system as either unit selection from a whole corpus or as context 

clustering and as unit selection, to select from the clusters. The following section develops the 

TD-PSOLA balanced corpus and signal processing distortion measure based on the data 

gathered during the investigative experiments in Chapter 4. 
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5.5 Development of a TD-PSOLA. Balanced Corpus 

The data from Experiment 5 are used to design the TD-PSOLA balanced corpus; segments that 

suffered high percentage distortion detection will be represented in greater numbers in the corpus. 

The data are in a categorical yes-no format depending on whether any distortion was detected. 

Klabbers & Veldhuis (2001) suggest using a `majority score' to reduce the variability of judgements 

between participants. At each pitch modification level, a stimulus is marked as distorted if 5/10 

participants judge it as so. A score of 5/10 was chosen to give a spread of values and avoid any 

ceiling effect. The percentage distortion detection was then calculated averaging the distortion at 

each pitch manipulation level and for each of the four recording versions. The results are shown in 

Table 5.5. 

plosive u/ fricative affricative nasal liquid glide v/ fricative 
13% 19% 44% 56% 69% 69% 94% 
checked monot io di htho 
27% 50% 69% 
1 able 5.5 Percentage Distortion Detection for Different Phonetic Categones 

Voiced fricatives were nearly always detected as containing perceptible distortion when the 

majority score was set at 5/10. Conversely, plosives were rarely detected as containing distortion. 

It is this measure that will be used to develop the novel speech corpus design, containing more of 

the adversely affected segments such as voiced fricatives, glides, liquids and diphthongs, and less 

of the segments that respond well to the algorithm such as plosives, unvoiced fricatives and 

checked vowels. 

5.6 Development of a Signal Processing Distortion Measure 

In this section a signal processing distortion measure is developed, which may be used as an 

objective measure to predict the occurrence of distortion. Previous segment selection processes 

have either ignored the effect of signal processing by not including a prosodic measure, whereas 

others have included a prosodic measure as simply the absolute distance of the fO between the 
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candidate segment and the target. This work proposes a signal processing distortion measure that 

comprises an absolute distance from the target, weighted for individual phonemes according to 

how they respond to the TD-PSOLA algorithm in terms of perceived distortion levels. 

The weights were trained using the MOS scale ratings gained from experimentation. It is widely 

accepted in the speech community that MOS scale ratings provide a popular subjective measure 

of naturalness, although running MOS experiments is time consuming. MOS experiments cannot 

be carried out for every parameter change or voice change. This work aims to show that a small 

set of training data can be used to derive the weights for a signal processing cost. 

The signal-processing cost 
C"9-J" 

may be defined as shown in Equation 5.2. 

Csg-a, - wah. X Dfo 
Eqn 5.2 

whereC. is the cost of necessary signal-processing, 
D is the absolute distance of the 

fundamental frequency of the candidate segment selected to the target fundamental frequency, 

and 
w°"e"" 

is the weighting of the importance of the measure determined by the identity of the 

phoneme. In other words, if the distance between the target and the selected segment is zero, the 

signal processing cost is zero. 
CS'a-P"°`' 

is believed to be correlated with the amount of distortion 

present in the segment, therefore a lower cost would mean less resulting distortion after TID- 

PSOLA pitch modification. 

If no consideration is given to the effect of TD-PSOLA in terns of distortion for individual 

phoneme identities during selection, 
Wphon 

can be set to 1, then the cost is simply the absolute 

distance in Hz between the target fO and the segment fO. Initially, the weights 
W 

were set 

to 1 for all phonemes. 

The vowel data from Experiment 1 and the consonant data from Experiment 3 were used to 

train the weightings for the phonemes. Weightings were developed for categories of phonemes 

grouped according to manner of articulation. Categories were used as analysis has indicated that 

phonemes grouped according to manner of articulation were affected similarly in terms of 
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distortion. In addition, this lessens the effect of anomalous occurrences of distortion in segments, 

the cause of which is still uncertain. It may also allow the generalisation of weightings to other 

voices. The categories are: 

" vowels: checked vowels, monothong vowels, and diphthong vowels 

" consonants: plosives, unvoiced fricatives, voiced fricatives, nasals, liquids, glides and 

aff icatives. 

In Figure 5.6 the MOS score data for the individual stimuli are plotted against the initial signal- 

processing cost at 1,5,10 and 15% pitch modification (3,13,26,39Hz absolute distance) when 

weightings 
Wphonene 

were set to 1. Figure 5.6 shows scatterplots of (a) consonant data and (b) 

vowel data. Each point represents the MOS rating, averaged for 20 participants at each cost. 

A linear regression trend line for each scatterplot was estimated by calculating the least squares fit 

through the data. The equation of the line for consonant data is y=0.026x + 2.07, and for 

vowel data is y=0.033x+ 2.00. 
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FIGURE 5.6 SCATTERPLOT OF COST AND MOS SCORES 

The regression line in Figure 5.6 is used as an approximation to show the trend in the data and as 

an intermediate stage to achieve the training of the weights. The data for the interval scale Cost 

are confined to categories due to the design of the experiment, and it would require further 
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experimentation with greater amounts of data for a complete model. To this end, the correlations 

quoted are purely indicative of the trend and the success of the training of the weightings, by 

comparing the values at this intermediate stage to those found after the application of the 

weights. A Spearman's rho correlation was performed between the cost and the MOS ratings for 

the consonant and vowel data. A high correlation would indicate that the absolute value of cost 

gives reasonable perceptual correlations. 

" consonants: (rho=0.530, N=92, p<0.01, one-tailed). 

" vowels: (rho=0.605, N=80, p<0.01, one-tailed). 

The correlations are significant, although the use of different weightings for individual phonemes 

may provide larger correlations. 

The linear regression lines on the scatterplots in Figure 5.6 were used as an intermediate 

representation to estimate the signal-processing cost (denoted by Chw) needed to predict the 

MOS raring for each data point 

The optimised weights 
Wphoner'° 

were then calculated using Equation 5.3. 

R'prýý =/ Dfo Eqn 5.3 

where C,.; 
gh�Cd 

is the new estimated cost predicted from the linear regression lines and D fo is 

the absolute distance of the segment from the target fO value in Hz. 

The average MOS ratings of original unmanipulated waveforms were calculated to provide the 
lower bounds for MOS ratings of synthetic stimuli. A MOS score of 1.93 for consonants and 
1.77 for vowels was calculated as the average score for unmodified stimuli. It was decided that 

ratings below this value should not be used in weight training. In fact, 48% of consonants at 1% 

modification and 55% of vowels at 1% modification level had MOS ratings below this value, so 

the 1% level was not used during the weight training. Inclusion of the 1% level was found to 

yield a lower correlation due to the small amounts of distortion introduced at the 1% level and 

hence varied response amongst participants. 
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Average weights were calculated for each group of phoneme category. The optimised weights in 

the cost function for each group of phoneme category are given in Table 5.6. 

affricatives plosives u/frics v/frics glides liquids nasals 

0.79 0.80 0.68 2.25 1.91 0.91 1.13 

checked monothong diphthong 

0.69 1.14 1.98 

Table 5.6 Weights for Different Phonetic Categories 

The correlation between MOS scale ratings and the new signal-processing cost C,. 
igh�ed was 

calculated: 

" consonants: (rho=0.710, N=92, p<0.01, one-tailed). 

" vowels: (rho=0.731, N=80, p<0.01, one-tailed). 
The use of weighted distances in the calculation of the cost of signal-processing using TI)- 

PSOLA has increased the correlation between this cost and the subjective MOS scale ratings of 

distortion levels. This can be seen in the scatterplots in Figure 5.7 which show the average MOS 

scale rating versus the new weighted cost for consonants and vowel data. Several outliers are 

visible, which would reduce the value of the correlation. 
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The correlation between the weighted cost derived for this voice and the other voices from 

Experiment 4 was then measured. 

" Voice 2 (rho=0.672, N=92, p<0.01, one-tailed) 

" Voice 3 (rho=0.528, N=92, p<0.01, one-tailed) 

" Voice 4 (rho=0.711, N=92, p<0.01, one-tailed) 
This suggests that the weightings can be generalised to other voices to a certain extent, but would 

probably need to be retrained for individual voices using their respective data. 

5.6.1 Minimum Distortion for Pitch Modification of Voiced Fricatives 

From the analysis in Section 5.2.2.2, the worst distortion is apparent when raising the pitch of 

voiced fricatives as this involves time-scale modifications; repeating Short Term (ST) signals 

causes local periodicity which is perceived as buzzyness. It is possible to avoid this for purely 

unvoiced parts of speech, by reversal of every other ST-signal. Unfortunately, voiced fricatives 

contain both voiced and unvoiced parts, mating ST-signal reversal impossible. A new segment 

selection process has been devised which can be used in a corpus-based system containing 

multiple versions of such segments. This repetition of ST signals when increasing pitch could be 

avoided, by selecting a signal of longer duration than required. Thus by combining pitch and 
duration manipulation i. e. decreasing duration, there is no need for ST-repetitions. For a flat ff) 

contour, the necessary duration of the voiced part of the candidate segment is given in Equation 

5.4. 

duration.,,,.., = (duration, x f O, )/f0 Eqn 5.4 

where durations,,, and f Osevww refer to the physical duration and 10 of the candidate 

segment in the corpus, and duration 
1 and f 0�,, 

t refer to the required duration and 40 

target values for synthesis. 

For instance, the voiced fricative /Z/ with a static pitch contour may be required to have a target 
10 of 220Hz and a target duration of 0.12. The segment from the corpus that would give least 

distortion in terms of repeated ST-signals when increasing the pitch of the segment would have a 

product of its duration and its f0 similar to the product of the target duration and the target B). 

This is expressed mathematically in Equation 5.5. 
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durationcegmemXJ O. 
vegmem = 

duration, 
ar_eiX� 

Orar__ei Eqn 5.5 

In other words, the product of the target values of 220 x 0.12 equals 26.4, so a segment in the 

corpus having a similar product value may suffer less distortion than a segment having a pitch 

perhaps closer to the target value but with a shorter duration, hence requiring ST-repetition. A 

segment of 210Hz and duration 0.12 seconds has a product of 25.2, indicating ST-repetition 

would be necessary, but a segment in the corpus having a pitch further from the target of perhaps 

200Hz but with duration 0.132 seconds, would have the same product value as the target 

segment and no ST-repetition would be necessary. 

This approach may only be applied for moderate modifications. Large duration modifications 

introduce the issue of whether the characteristic content of the phoneme would be altered by 

removal of major amounts of ST-signals. Therefore the candidate segment should have fO and 

duration values relatively close to the target values. 

This may be implemented in the Praat software by adding a duration point that corresponds to 

the new synthesis pitch point. The position of the duration point is given in Equation 5.6 as a 

ratio. 

Position = duration, 
erget 

/dur'ationsegment Eqn 5.6 

For the worked example above, where duration,.,, 
-e, =0.12s and duration, 

eömen, =0.132s, the 

duration point would be positioned at 0.91. This is illustrated in Figure 5.8 which shows a signal 

being increased in pitch and decreased in duration in the Praat editor window. 

FIGURE 5.8 VOICED FRICATIVE MODIFICATION 
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Informal listening indicates that much of the buzzyness encountered when imposing static pitch 

contours on voiced fricatives is eliminated, but its success is evaluated formally in Chapter 6. 

Dynamic pitch contours require a more complex algorithm, where corresponding duration 

contour points are calculated for every synthesis pitch point. Informal listening suggests that the 

use of this process is not as critical for dynamic contours, as it is the inherent local periodicity of 

repeating similar ST signals that may contribute to the distortion. The repetition of ST-signals 

does not seem to have as adverse an effect on dynamic f0 contours, which is in accordance with 

the work of Blouin & Bagshaw (2000) who found that static pitches provide the worst-case 

scenario for TD-PSOLA distortion discrimination. The illustration of this algorithm at the 

diagnostic static-pitch word-level ensures that the worst-case scenario has been considered and 

any applications during dynamic speech can only introduce less distortion. 

This method could also be extended to purely voiced speech sounds for both increasing and 

decreasing pitch, to avoid or minimise ST repetition and deletion. ST repetition and deletion is a 

form of signal manipulation which could introduce some distortion and avoiding this may 

provide better quality speech output with TD-PSOLA. Further research would be necessary, and 

this is discussed as a recommendation in Chapter 7. 

5.7 Summary 

Data from the investigative experiments in Chapter 4 have been analysed in an attempt to model 

the occurrence of perceptible distortion when speech is pitch-manipulated using the TD-PSOLA 

algorithm. 

Similar distortion levels were found for phonemes from the same phonetic category, when 

grouped according to manner of articulation. Such phonemes from the same phonetic category 

possess inherently similar characteristics of duration, fl shape (if applicable) and 

voiced/unvoiced/mixed composition (if applicable). 

The results of the analysis were used to design a novel speech corpus balanced to the needs of 

the signal processing algorithm. Segments that suffered large amounts of perceived distortion will 
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be represented in greater numbers in the corpus, therefore providing more prosodic variations. 

The aim is to reduce the amount of signal processing required for such segments to achieve the 

target fO of the new constructs to be synthesised. This may thus reduce the level of perceptible 
distortion introduced. 

The results of the analysis were then used to develop a signal processing distortion measure by 

calculating individual weightings for the phonetic categories. These weights indicate the levels of 

perceived distortion that may be potentially introduced in to the speech signal when pitch- 

modified to the target ti) value. The product of the individual weighting for a phoneme and the 

distance (in Hz) of the modification results in a signal processing cost, which may be used to 

determine the amount of distortion that may occur in that speech segment after modification by 

TD-PSOLA. This signal-processing distortion measure may be used as part of an existing 

segment selection process when selecting segments from a speech corpus which uses TD- 

PSOLA for final prosody modifications. The use of such a measure would ensure that the cost of 

signal processing is taken into consideration besides other criteria such as `position in word or 

phrase', when selecting the appropriate segment from the corpus to synthesise a new utterance. 

In addition, a special selection process was developed for voiced fricatives which are very 

problematic for TD-PSOLA. Segments are chosen in terms of their fO and duration and the 

target fO and duration to avoid or minimise ST-signal repetition, which causes local periodicity 

and may be perceived as buzzyness. 

Together, these three developments of a speech corpus, a signal processing distortion measure, 

and a selection process for voiced fricatives, provide a framework for reducing perceptible 

distortion in speech that is pitch-modified using TD-PSOLA. The use of this framework is 

illustrated in Chapter 6 and its success is evaluated. 
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Chapter 6. Evaluation of the novel corpus design and signal processing 

measure 

6.1 Introduction 

For current text-to-speech systems the use of a signal processing algorithm, such as TD-PSOLA, 

to modify the pitch and duration of existing speech segments is unavoidable. Previous 

experiments have shown that certain segments remain relatively unaffected in terms of 

introduced distortion when pitch-manipulated using TD-PSOLA. In Chapter 5, a novel speech 

corpus design, and a signal processing distortion measure, for use with TD-PSOLA were 

developed. In addition, in Section 5.6.1, a special pitch selection method for voiced fricatives was 

presented. In this chapter, a listening experiment is carried out to evaluate the success of 

1. the novel speech corpus, designed to retain the naturalness of synthetic speech by reducing 

potential distortion, 

2. the signal-processing distortion measure, and hence illustrate its potential usefulness for 

inclusion as part of a target cost estimation in a unit selection process, 

3. the rules for the selection process for voiced fricatives. 

6.2 Design 

This section states the experimental hypotheses and details the structure of the experiment. 

6.2.1 Hypotheses 

Hl: The signal processing costs of test stimuli and their resulting distortion levels when TD- 

PSOLA pitch-modified will be positively correlated. 

H2: Stimuli synthesised using segments from the novel corpus will suffer significantly less 

distortion than stimuli synthesised using segments from a phonetically balanced corpus. 

H3: Stimuli containing voiced fricatives and synthesised using the voiced fricative selection 

method will suffer significantly less distortion than those synthesised using the standard selection 

method. 
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6.2.2 Structure of Experiment 

The listening test was designed to evaluate the ability of the signal-processing measure to predict 

the resulting amount of distortion in individual stimuli, depending upon their phonetic content at 

sentence level. The success of the signal processing measure was evaluated by calculating the 

signal processing cost of each sentence level stimulus and comparing this to its resulting 

distortion level. 

The dependent variable distortion was measured on a MOS scale, which had been used 

successfully in the previous experiments, to facilitate the measurement of various amounts of 

distortion for different values of signal processing cost. 

A test was required to describe the relationship between signal processing cost and distortion. 

The data were ordinal, so a non-parametric Spearman's rho correlation was performed. A one- 

tailed test was used as the hypothesis predicts a positive correlation. 

The listening test was also designed to evaluate the success of the voiced fricative pitch selection 

method. Sentences containing voiced fricatives were resynthesised using the special selection 

method and the dependent variable distortion was judged on a MOS scale. The IV synthesis method 

had two levels of v-, fiicati e selection and standard selection. A test was required to compare the 

differences between the medians of the two IV levels to determine whether stimuli synthesised 

using this novel method suffered significantly less distortion than those synthesised by the 

standard method. The data were ordinal, so a within-subjects Wilcoxon Signed Ranks test was 

performed. A one-tailed test was used, as the hypothesis was directional. 

The experiment also evaluated the success of the novel speech corpus design, tailored to the 

requirements of TD-PSOL N, compared to the performance of a phonetically balanced corpus. 

The aim of the novel design is to provide segments for TD-PSOL A pitch modification that result 

in a less distorted output. 
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The corpora were simulated for this experiment. Synthesising stimuli from the different corpora, 

one representing the TD-PSOLA balanced corpus and one representing the phonetically 

balanced design, allowed the resulting distortion levels in the stimuli to be compared. The 

independent variable corpus design has two levels of `TD-PSOL. A-balanced' and `phonetically- 

balanced' design. The dependent variable distortion was measured on a MOS scale. A statistical test 

was required to compare the differences between the medians of the two IV levels to determine 

whether speech synthesised using the novel corpus suffered less distortion than speech 

synthesised from the phonetically balanced corpus. The data were ordinal, so a within-subjects 

Wilcoxon Signed Ranks test was performed on the non-parametric data. The hypothesis 

predicted that the TD-PSOLA balanced corpus would perform better than the phonetically 

balanced corpus, so a one-tailed test was used. 

For all parts of the experiment, participants rated the variable distortion for each stimulus using the 

definitions from previous experiments. 

63 Stimuli 

Initially, the test sentences were designed. Parts of sentences were used to minimise the influence 

of incorrect prosody on the experimental results. They were designed with fundamental 

intonation contours (Dutoit, 1997), covering types of sentences such as questioning, ordering, 

echoing, wh-questioning (who, what, where, why questions), exclamations, implications, and 

finality, which are defined on a grid of four levels covering approximately one octave. These 

contours can be distinguished by their slope and curvature, and initial and final pitch levels. This 

ensured that most of the pitch levels within the speaker's vocal range and various contours were 

tested. 

These sentences were then recorded and analysed for pitch using the Praat software. The pitch 

contours of the sentences were stylised, as not all pitch movements are perceptible. The results 

are shown in Table 6.1. 
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SENTENCE SEGMENTS AND PITCH CONTOURS 

Take it, tel eIk kI It 

355-299 299-276 190 190 

My cat? mal aIk k{ It 

360-430 430-300 180-238 238-353 

Prove it. pr ru: u: v vi It 

338-338 338-77-1 195 195 

Look Here! IU Uk hI@ I@ 

359 425 341-383 341-224 

383-341 224-185 

Evidently.... Ev vI Id dE En nt 1i: 

196 383 383 406-213 213-163 - 158 

That's okay. D{ It is s@U @uk keI 

272 272 - 210-190 190-172 239-193 

Who's there? hu: u: z De@ e@ 
265-289 289-309 309-255 255-173 

Measure mE EZ Z@ DE Em 

them? 
258 258-180 200 200-342 342-444 

What dog? WQ Qt dQ Qg 
378-411 411-325 218 183 

Three fish? Tr ri: Q IS 
439-423 423-222 168-189 189-292 

Table 6.1 Segments and Target YO Values 

It was not practical to test every phoneme or combination of phonemes in each word position in 

the sentences due to the unfeasibly large set of stimuli, which may introduce uncontrolled 

variables due to listener fatigue and boredom during the test. The sentences were designed to 
include the majority of consonants and vowel phonemes in a random word and phrase position. 

The intonation contours were randomly assigned to each sentence and hence each phoneme had 

a random target pitch and contour. 
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6.3.1 Simulating the Corpora 

The TD-PSOLA tailored corpus and the phonetically balanced corpus were simulated for this 

experiment to minimise the effect of variables present in a real speech corpus. Variables such as 

necessary duration modification, phoneme context, spectral mismatches etc. may affect the 

results and mask the effects under investigation. The phonetically balanced corpus design and the 

TD-PSOLA balanced corpus design were simulated by recording two segment inventories, each 

consisting of segments recorded at 1,5 and 10% from the target pitches of the segments in the 

sentences to be synthesised. 

The first corpus (representing the phonetically balanced corpus) consisted of sentences having fi) 

contours at 1,5, or 10% below the target f0 contour, depending on their frequency of appearance 

in the English language. An assumption is made that increased frequency of occurrence increases 

the variability of segments with different pitch contours (an assumption which the corpus-based 

approach itself relies on). For example, /@/ the most common phoneme (Crystal, 1995) may be 

selected with an f0 of 1% lower than the target, whereas /U@/, the least common phoneme may 

be selected with an f0 of 10% lower. 

The second corpus (representing the TD-PSOLA balanced corpus) consisted of segments having 

fD values of 1,5, and 10% below the target values depending on the values given in Table 6.3. 

For example, aff icatives may be selected at 10% below target fO and voiced fricatives at 1% 

below target 

A third corpus was simulated to evaluate the success of the signal processing distortion measure 

and the voiced fricative selection method. It consisted of segments having pitch contours 5% 

below the target M contours. 

Prior to the recording of each of the CV, VC, and CC segments, pitch prompts consisting of the 

same pitch contours as the segments in the original sentences were generated. These were 

modified using the Praat software to 1,5 and 10% below the target contours and played to guide 

the pitch of the speaker when recording the segments to be included in the corpora. All segments 

were recorded in the same phonetic contexts as they appear in the test sentences to reduce the 
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effect of variables, such as spectral mismatches between joining segments, or pronounced 

differences in duration between segment and target values. Such variables may otherwise affect 

the results of the experiment. 

6.3.2 Sentence-level Stimuli 

Using segments from these inventories, four sets of sentences were synthesised 

" Setl: using segments based on their phonetic balance at 1,5 or 10% below the target f0, 

representing a phonetically balanced corpus. TD-PSOLA was applied to the sentences to 

achieve the target pitch contour. 

" Set2: using segments of 1,5 or 10% below target fO based on their TD-PSOLA distortion 

rating, representing a TD-PSOLA balanced corpus. TD-PSOLA was applied to the 

sentences to achieve the target pitch contour. 

" Set3: using segments all at 5% below target fO. These were used to evaluate the validity of 

the signal processing distortion measure. The average costs were calculated for each of 

the sentence level stimuli. The variable average signal processing cost was calculated using 

Equation 6.1. 

AC =1W phonemeD f0 Eqn 6.1 

where N is the number of segments in the sentence, W, j, a, 
is the weighting for the 

individual phonemes, and D f0 is the absolute distance in Hz of the segment f) to the 

target fr). The average cost was calculated to allow comparisons between stimuli with 

differing numbers of segments. 

" Set4: using segments all at 5% below target. The rules (described in Section 5.6.1) for the 

selection of voiced fricatives were applied to 5/10 of the test sentences that contained 

voiced fricatives, to evaluate the success of these rules. 

The experimental stimuli consisted of short sentences, synthesised by concatenation of CV, VC 

and CC waveforms from each of the inventories. For each set of sentences, the concatenation 

point for each waveform was chosen by an iterative synthesis /adjustment method. The 

experimenter created each sentence using subjective optimal segment concatenation points to 
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produce the most natural sound in terms of concatenation smoothness and natural sentence 

rhythm. The synthesis methods for each individual set of sentences is described below: 

Set 1. This set of sentences represents a phonetically balanced corpus. Table 6.2 shows the 

frequency of occurrence of phonemes in spoken text (taken from Fry, 1947), and the 

corresponding percentage fl) below the target fO the phoneme may be selected for this set of 

stimuli. 

PHONEME FREQ IN SPOKEN TEXT CORPUS REPRESENTATION 

VOWELS SET I 

@ 10.74% 1% 

I 8.33% 1% 

E 2.97% 5% 

al 1.83% 10% 

V 1.75% 10% 

ei 1.71% 10% 

1.65% 10% 

@U 1.51% 10% 

{ 1.54% 10% 

Q 1.37% 10% 

0: 1.24% 10% 

u: 1.13% 10% 

U 0.86% 10% 

A: 0.79% 10% 

au 0.61% 10/c 

3: 0.52% 10% 

e@ 0.34% 10% 

I@ 0.21% 10/c 

OI 0.14% 10% 

U@ 0.06% 10% 

CONSONANTS 

n 7.58% 1% 

t 6.42% 1% 

d 5.14% 1% 

s 4.81% 5% 
1 3.66% 5% 

D 3.56% 5% 
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r 3.51% 5% 

m 3.22% 5% 

k 3.09% 5% 

w 2.81% 5% 

z 2.46% 5% 

v 2.00% 10% 

b 1.97% 10% 

f 1.79% 10% 

p 1.78% 10% 

h 1.46% 10% 

N 1.15% 10% 

g 1.05% 10% 

S 0.96% 10% 

j 0.88% 10% 

dZ 0.60% 10% 

tS 0.41% 10% 

T 0.37% 10% 

Z 0.10/a 10/a 

Table 6.2 Frequencies of Occurrence of Phonemes in Spoken Text and Corpus Representation 

The phoneme representations in the simulated corpus were chosen at 10% below target 

frequency for phonemes that occur less than 2% of the time, 5% below target for phonemes that 

occur between 2 and 5%, and 1% below target for phonemes that occur more than 5%. 

The sentence level stimuli were created using the two-stage pitch modification process described 

in Experiment 3, Section 4.4.3. Joining segments were first modified to an intermediate fO, 

midway in absolute value between the two, using TD-PSOLA. They were then concatenated by 

cutting the segments at the stable parts of the phonemes, and abutted. The final target pitch 

contour was then applied using TD-PSOLA. 

Set 2. This set of sentences represents the TD-PSOLA balanced corpus. Table 6.3 shows the 

phoneme representations in the TD-PSOLA corpus, based on the analysis in Section 5.5, with 

the percentage fr) below the target fO that the phonemes may be selected at for this set of stimuli. 
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The two-stage pitch modification process used for Set 1 sentences was used to create the Set 2 

stimuli. 

PHONEME CATEGORY % DISTORTION DETECTION CORPUS 

REPRESENTATION 

CHECKED VOWEL 
. 27% 10% 

MONOTHONG VOWEL 50% 10% 

DIPHTHONG VOWEL 69% 5% 

PLOSIVE 13% 10% 

UNVOICED FRICATIVE 14% 10% 

AFFRICATIVE 44% 10% 

NASAL 56% 10%o 

LIQUID 69% 5% 

GLIDE 69% 5% 

VOICED FRICATIVE 94% 1% 

I able 0.3 Phoneme Kepresentation in the TL)-I'JVLii Balanced Corpus 

The distribution of the corpus representation between the frequencies of 1,5 and 10% below 

target were chosen to reflect the number of phonemes in each % group in the simulated 

phonetically balanced corpus. More specifically, for the phonetically balanced corpus and the 
TD-PSOLA balanced corpus respectively, 5 and 4 phonemes are represented at I% below target, 

9 and 10 at 5% below target, and 30 and 30 at 10% below target 

Set 3. This set was used for the evaluation of the signal processing distortion measure. As all 

segments were recorded at 5% below the target values, a one-stage pitch modification process 

was employed; segments were concatenated, taking care to avoid pitch mismatches when joining 

dynamic pitch contours, and then the final pitch contour modification was made using TD_ 

PSOLA. 

For the sentences in Set 3, the signal processing cost for each sentence was calculated using the 

weights determined in Section 5.6 and shown in Table 5.6. The weights were multiplied by the 

absolute ß) of 5% or 13Hz for each phoneme. The average cost for each sentence was calculated 
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to allow comparisons between sentences having different numbers of phonemes. Table 6.4 

shows each sentence and its average signal processing cost. 

Sentence Signal processing cost 
"Take it. " 11.00 
"My cat? " 14.04 
"Prove it. " 14.30 
"Look here! " 13.16 
"Eviden 

.. " 13.13 
"That's okay. " 13.94 
"Who's there? " 21.58 
"Measure them? " 16.41 
"What dog? " 11.62 
"Three fish? " 10.35 

Table 6.4 Stimuli and Signal Processing Costs 

Set 4. This set was used to evaluate the success of the voiced fricative selection method. The five 

sentence-level stimuli from Set 3 that contained voiced fricatives were used, and duration 

modifications were made to the voiced fricative segments in the sentences using TD-PSOLA. 

The duration modifications were calculated using Equations 5.4 and 5.6 in Section 5.6.1, and 

applied as described there. As the duration of the segment will remain essentially the same, i. e. 

the actual duration of the segment and the duration of the target value is the same, the equation 

to calculate the duration positions simplifies to the ratio expressed in Equation 6.2. 

position =f0 , e,,, 
/f0, 

wset 
Eqn. 6.2 

The values of the duration positions were rounded down to two decimal places to ensure no ST- 

signal repetition would occur, which may not be the case if the numbers were rounded up. Table 

6.5 shows the five sentences containing the voiced fricatives, the identity of the voiced fricatives, 

their fO contours, the target fO contours, and the duration point positions for each phoneme. No 

value was assigned to the phoneme /Z/ in the sentence "measure them? " as the pitch detection 

algorithm in Praat did not detect this phoneme as voiced; no pitch modification would be 

performed on that part of speech, hence no necessary duration modification. 

190 



Sentences "Evidently... " "Measure them? " "Prove it. " "That's ok. " "Who's there? " 

V. fricatives /v/ /Z/ /D/ /v/ /D/ /z/ /D/ 

FO contours 368 X 187-252 237-191 259 291-296 296-242 

Target IT) 383 X 200-265 250-204 272 304-309 309-255 

Duration pts. 0.96 1 0.93-0.95 0.94-0.93 0.95 0.95-0.95 0.95-0.94 

Table 6.5 FO Contours and Duration Points for Voiced Fricatives 

6.4 Procedure 

Prior to the experiment, participants were given a set of instructions (Appendix C), which were 

explained to them. The participants were then given a short training session before the 

experiment began. The training session involved the presentation of four CVC syllable examples, 

two that had not been manipulated by the TD-PSOLA algorithm and two that had been judged 

to be very distorted in a previous experiment. Participants were told the change in voice quality, 

in terms of buzzyness perceived, between the two pairs of segments was called distortion. This also 

provided a range for the distortion they may encounter in the test stimuli. 

Participants were then collectively tested using a standardised procedure. The experiment was 

carried out using the C++ automated interface (Appendix A). 

Thirty-five short sentences were presented in a random order via headphones. After each 

presentation, a judgement concerning the level of distortion was made using the 5-point MOS 

scale. 

6.5 Participants 

Nine participants took part in this experiment and all were university staff. This restricted sample 

number and population was due to the constraints of cost and availability. Participants ranged 

from 25 - 52 years of age and were from both genders (5 male, 4 female). All had self-reported 

normal hearing. Some had experience of previous experiments performed during the course of 

this research. This experiment was performed several months after the previous ones, so it is 

assumed participants experienced minimal `training effects'. They were not made aware of the 

purpose of the experiment but were asked to judge solely the amount of perceived distortion 
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present in each sentence. The participants were familiarised with speech test procedures and the 

definition of distortion prior to the test. They were not paid to participate in the test. 

6.6 Test Conditions 

Test conditions were controlled for as in previous experiments. 

6.7 Results 

6.7.1 Results of the Evaluation of the Signal Processing Measure 

Table 6.6 shows the summary statistics for the evaluation of the signal processing measure. The 

sentences are given with their signal processing cost estimation and their average MOS ratings. 

Sentence Signal processing cost MOS rating 
"Take it. " 11.00 1.33 
"My cat? " 14.04 1.89 
"Prove it. " 14.30 2.44 
"Look here! " 13.16 2.00 
"Evidently... " 13.13 2.33 
"That's okay. " 13.94 3.56 
"Who's there? " 21.58 1.89 
"Measure them? " 16.41 3.11 
"What dog? " 11.62 1.56 
"Three fish? " 10.35 1.78 

Table 6.6 Summary Statistics: Sentences, Costs, and MOS Ratings 
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FIGURE 6.1 SCATTERGRAM OF MOS RATINGS AND SIGNAL PROCESSING COSTS 

Figure 6.1 shows the scattergram illustrating the relationship between the MOS scale ratings and 

the signal processing cost calculated for each sentence. A Spearman's rho was calculated for the 

data and found to be significant (rho=0.58, N=90, p<0.05, one-tailed : e4, supporting the 

hypothesis H1, which stated that the signal processing cost was positively correlated with 

distortion levels. The scattergram shows that there may an outlier in the data, which would affect 

the value of rho. The outlier is the sentence "Who's there? " which was given a high signal 

processing cost but was judged as relatively undistorted. Potential reasons for this are discussed 

in Section 6.8. 

6.7.1.1 Results for the Evaluation of the Voiced Fricative Selection Method 

Table 6.7 shows the summary statistics of each sentence containing a voiced fricative, and the 

corresponding MOS ratings for synthesis using the proposed special-case selection method, and 

for standard selection. 
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Sentence MOS rating 

(v. fricative selection) 

MOS rating 

(standard selection) 

"Prove it. " 2.11 2.44 
"Evidently... " 2.11 2.33 
"That's okay. " 2.44 3.56 
"Who's there? " 1.67 1.89 
"Measure them? " 3.00 3.11 

Table 6.7 Summary Statistics: MOS Rating for Voiced Fricative Selection Methods 

These data are illustrated in Figure 6.2, which shows the median distortion ratings, averaged over 

each sentence, for the voiced fricative selection method and the standard selection method. 

FIGURE 6.2 BARCHART OF DISTORTION FOR VOICED FRICATIVE SELECTION METHODS 

A Wilcoxon Signed Rank test was performed, which indicated there was a significant difference 

between the medians of the distortion levels for the two selection methods (Z=-2.325, N=9, 

p<0.05, ogre-tailed test), supporting hypothesis H3, which stated that stimuli containing voiced 

fricatives, synthesised using the special voiced fricative selection method, suffer less distortion 

than those synthesised using the standard method. 

6.7.2 Results of the Evaluation of the TD-PSOL, Balanced Corpus 

Table 6.8 shows the average IN4OS ratings of distortion levels in sentence level stimuli synthesised 

using segments from either the phonetically balanced corpus or the TD-PSOLA balanced corpus. 
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If confidence limits were set on the data, of a difference of 0.3 being noteworthy, the TD- 

PSOLA balanced corpus produces a less perceived distorted output than the phonetically 

balanced corpus for 6 samples. Of the remaining 4 samples, there is little difference between 3 

and the phonetically balanced corpus performs better for 1 sample. These results are discussed in 

Section 6.8. 

Sentence MOS rating 

(phonetically balanced 

corpus) 

MOS rating (TD- 

PSOLA balanced 

corpus) 

"Take it. " 3.00 1.33 

"My cat? " 1.67 1.56 

"Prove it. " 2.89 2.67 
"Look here! " 3.33 3.00 

"Evidently... " 2.67 2.33 
"That's okay. " 4.56 4.00 
"Who's there? " 2.89 2.11 
"Measure them? " 4.00 3.33 

"What dog? " 2.67 2.56 

"Three fish? " 2.78 3.44 

TD-PSOLA balanced corpus Phonetically balanced corpus 

Table 6.8 Summary Stansncs: IMOS Ratings tor Yhoneucauy and Inaiancea t, orpus 

Stimuli 

The results are illustrated in the barchart in Figure 6.3 which shows the median distortion ratings, 

averaged over the sentences, for the stimuli synthesised using segments from the phonetically 

balanced and the TD-PSOL. A balanced corpora. 

5 

4 
o) c 
14 3 
C 0 
ö2 
N 

0 

-ddistortion 

FIGURE 6.3 DISTORTION LEVELS FOR STIMULI SYNTHESISED FROM Two CORPORA 
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A \Vilcoxon Signed Rank test indicated that medians of the distortion levels were significantly 

different for the two corpora (Z=-2.670, N=9, p<0.05, one-tailed test), supporting hypothesis H2 

that there is a significant difference between the distortion levels for the phonetically balanced 

corpus and the TD-PSOLA balanced corpus. 

6.8 Discussion 

Concerning the evaluation of the signal processing distortion measure, the correlation of 0.58 

illustrates that there is a relationship between the signal processing cost and the resulting 

perceived distortion levels when the sentences are pitch-modified using TD-PSOI. A. The 

correlation value has dropped from 0.71 for consonants and 0.73 for vowels, determined for 

word-level CVC syllables in Section 5.6. This may be due to the synthesis of dynamic pitch 

contours for sentence level stimuli which appear to be less problematic for TD-PSOLA. It may 

also be due to the effect of duration at sentence level. For example, /r/ in "Prove it" is given a 

score determined from the MOS scores for the initial consonant of the CVC segment "ran". The 

duration of /r/ in the sentence is of much shorter duration than in the CVC syllable, suggesting 

that the measure perhaps should be adjusted accordingly. 

The data were found to contain an outlier (the sentence "Who's there? "), which had a high cost 

but was judged as relatively undistorted. The unexpected result for this stimulus may be due to 

the random pitch and duration assigned to the individual segments determined by the sentence to 

be synthesised. The highly weighted segments, such as the voiced fricatives were of shorter 

duration than those evaluated at the word level, and it may be that the signal processing measure 

needs to take durations into consideration when scoring the individual segments. There is a 

similar argument for segments found in stressed and unstressed positions. During the 

investigations at the word-level, all segments were in stressed positions in the CVC syllables, but 

at the sentence-level they can be in either position. The factors of duration and stress may need 

to be included in the distortion measure for fine-tuning, and this is discussed in Section 7.2 as 

further work. 
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The evaluation of the TD-PSOLA balanced corpus illustrated that sentences synthesised using 

the TD-PSOLA balanced corpus were significantly less distorted than those synthesised using the 

phonetically balanced corpus. Having set confidence limits on the data, 6 out of 10 samples 

suffered less perceived distortion, 3 showed little difference, and 1 showed more distortion. The 

results may be affected by the type of sentence and hence different stress and intonation 

contours. Segments assigned stressed positions may not respond similarly as when found in 

unstressed positions. The analysis in Section 5 was performed on phonemes in stressed positions, 

which was assumed to give the worst case scenario for the introduction of perceptible distortion. 

This may reduce the effect seen when using sentence level stimuli with segments in both stressed 

and unstressed positions, and would require further work to determine its importance. 

It should also be noted that this simulation represents a best-case scenario where segments are 

available from the corpus at near target fo contours. In reality, having more of certain segments 

in a corpus may not necessarily mean all pitch contours are represented as near as 1% from the 

target, but this result has illustrated the potential of the approach. Although the effect using a real 

corpus may not reduce distortion by such a large amount, it is still expected to provide a 

significantly less distorted output than when using a phonetically balanced corpus. 

The voiced fricative selection method significantly reduced distortion at the sentence level for 

such phonemes. This approach may be extended for use when increasing and decreasing the 

pitch of all voiced segments that require the repetition and deletion of ST-signals. In a speech 

corpus, segments are available with varying pitches and duration, so it is probable that a segment 

may be selected that, by combining pitch and duration modification, would lead to a less 

distorted output 

6.9 Conclusions 

The correlation of the signal processing cost and MOS scale ratings suggests that the signal 

processing distortion measure is a valid indictor of the distortion that may be introduced during 

certain pitch modifications. It may be advantageous to include such a measure in target costing 

during a segment selection process, to take into account the effect of signal processing when 

selecting segments, to reduce potential distortion. The measure requires fine-tuning, possibly by 
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taking into account durations and stress of segments when appearing in different contexts, which 

may require different costs. 

The results illustrated that sentences synthesised using the voiced fricative selection method 

(requiring simultaneous duration modification) were perceived as significantly less distorted than 

sentences synthesised using the standard method (applying no duration modification). 

The results also illustrated that sentences synthesised using segments from the TD-PSOLA 

balanced corpus were perceived to be significantly less distorted than sentences synthesised from 

the phonetically balanced corpus. 

Overall, the use of a TD-PSOLA balanced corpus, and voiced fricative selection method 

provides a framework for generating TD-PSOL. A modified speech with reduced distortion. The 

signal processing distortion measure was able to predict distortion to some certain extent, and the 

results indicate its potential use in a segment selection process, when selecting segments for pitch 

modification with TD-PSOLA. 
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Chapter 7. Conclusions and Further Work 

7.1 Conclusions 

In this thesis, a framework for the generation of pitch-modified speech with reduced distortion 

has been implemented and evaluated. This work was motivated by Kortekaas & Kohlrausch 

(1997a) who investigated the perceptual effects of the TD-PSOLA algorithm on single formant 

stimuli, and van Santen (1997) who stated that signal processing is still unavoidable even with a 

large speech corpus. 

The first part of this work consisted of a set of investigative experiments to determine the effect 

of the TD-PSOLA algorithm on natural speech stimuli, in terms of the distortion that is 

perceived as buzzyness. The first experiment evaluated the effect of greater pitch manipulation 

on the perceived amount of distortion, concluding that greater pitch manipulation may lead to 

significantly greater distortion. This indicated the necessity of keeping the amount of signal 

processing applied to a minimum. In addition, modifications of as low as 1% may have led to 

perceptible distortion in certain stimuli. 

The effect of positive versus negative manipulation over a small pitch modification range, such as 

often required in a speech corpus system, was then investigated. It was found to be significantly 

similar, segments can be selected which are either below or above the pitch of the target value 

with no expected difference in introduced distortion levels. There was some indication that 

negative modifications may be slightly more problematic with respect to the overall average for 

all stimuli, which may be contrary to some past research. In addition, individual stimuli appeared 

to respond differently to positive and negative modifications. 

The third experiment looked at the effect of pitch manipulation using TD-PSOLA on distortion 

levels in synthetic speech at the sentence level. Sentences were synthesised from two inventories, 

one containing segments with monotone fO values, and the other containing segments with ft) 

values loser to the target values. The results were not significant indicating little difference 

between the two sets of stimuli in terms of distortion. The lack- of significance was thought to be 
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due to the smaller effect size of these data, and that the small effect size was due to the 

application of dynamic pitch contours for sentence-level stimuli as opposed to static pitch 

contours, which had been investigated previously at the word level. Dynamic contours appear to 

lessen the adverse effect of pitch modification, in terms of introducing less perceptible distortion. 

The fourth experiment investigated the effect of pitch manipulation in speech for various voices. 

Certain voices were found to respond better to the application of the algorithm than others with 

some evidence to suggest that female voices suffered more. This highlighted the need for careful 

speaker selection when recording a speech inventory or corpus for synthesis using TD-PSOLA. 

In Experiments I and 4, a significant effect of phoneme identity on distortion levels was found, 

suggesting that the composition of the speech sound may be responsible for some of the 

distortion introduced. In addition, there was a significant correlation between distortion levels of 

individual phonemes for certain voices in Experiment 4; results for one voice may be generalised 

to an extent to other voices, especially ones of the same gender or of similar neutral fO. 

Throughout the course of the experiments, some anomalously high distortion levels occurred, 

suggesting that aspects of the original recording were a factor in the resulting success of the TI)- 

PSOLA modified stimuli. The fifth experiment investigated this issue. A parameter of "waveform 

asymmetry" was identified, which may have led to significantly higher distortion for 9 of 13 sets 

of stimuli. Other possible causes of this anomalous distortion, such as phonation type, low HNR 

and incorrect pitch marking, were investigated. Although not experimentally verified, creaky 

voice and incorrect pitch detection (the marking of unvoiced speech as voiced) may have 

contributed to some of the anomalous occurrences of distortion. 

The data gathered during these experiments were analysed for patterns of co-occurrence and 

correlations. Groups of speech sounds determined by their manner of articulation were found to 

respond similarly to the algorithm, in terms of perceived distortion. The inherent characteristics 

of phonemes in the groups were similar duration, fl shape (if applicable), and 

voiced/unvoiced/mixed composition (if applicable). 
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Existing corpus designs and speech segment selection processes were then reviewed, highlighting 

the fact that the effect of the signal processing algorithm is not taken into consideration in the 

design of the corpus. The TD-PSOLA algorithm affects certain types of speech sounds more 

than others, but such effects are often not taken into account during existing segment selection 

processes. A signal processing distortion measure was developed, which was weighted for 

different phonemes, trained using experimental data. The signal-processing measure developed 

here could be included in a unit selection measure to allow candidate segments to be chosen that 

would significantly reduce distortion when using the TD-PSOLA algorithm to modify the 

speech. Segment selection using this measure would encourage selection of adversely affected 

segments closer to the target values, with less weighting given to other selection features, where 

necessary. 

A novel corpus was designed, tailored to the use of TD-PSOLA. Purely phonetically balanced 

corpora do not take into consideration the needs of the signal processing algorithm that may be 

applied for fine prosody modifications. Experimental data were used to determine which 

segments required greater representation, and in more varied contexts in the corpus to reduce 

potential distortions. 

A major problem for TD-PSOLA was increasing the pitch of voiced fricatives where the 

repetition of ST-signals created a buzzy characteristic. A selection process for voiced fricatives 

was developed to prevent repetition of ST-signals and retain speech segment quality. The 

selection involved choosing speech sounds of longer duration to avoid ST-repetition, which may 

be especially pertinent for static pitch signals, where the effect of ST-repetition appears to 

contribute to the largest amounts of perceptible distortion. 

The validity of the signal processing distortion measure, and the success of the voiced fricative 

selection method and the TD-PSOLA balanced corpus, were evaluated in a final listening test. 

The TD-PSOLA balanced corpus was found to produce a significantly less distorted output than 

a phonetically-balanced corpus design. Sentence-level stimuli synthesised using the voiced 

fricative selection method were significantly less distorted than sentences synthesised using the 

standard method. The signal processing distortion measure was able to predict the resulting 
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distortion, illustrating its potential use as part of a target cost estimation in a unit selection 

process. 

In a TTS system, the use of a signal processing distortion measure as part of a segment selection 

process, used in conjunction with a TD-PSOLA balanced corpus, would provide an approach to 

concatenative synthesis using TD-PSOLA, which could significantly reduce distortion levels in 

the speech output. 

7.2 Further Work 

The framework for minimising the distortion introduced for TD-PSOLA pitch-modification of 

speech requires further development. Although the small set of training data has been successful 
in developing the signal processing distortion measure and the novel corpus design, it may be 

possible to fine-tune these with greater amounts of, and more specific, training data. 

Allophonic variations of speech segments have not been explicitly investigated; only initial 

consonants and mid-vowels in a CVC structure have been investigated and these results 

generalised to other word positions. It was assumed that the results could be extended to other 

contexts, as the analysis was based on the inherent characteristics of speech sounds such as 

voiced/unvoiced/mixed composition. 

It was uncertain as to whether participants were judging solely the perceived distortion of the C 

or V phoneme under investigation, or whether it was additionally the distortion caused by the 

influences of C and V phonemes on each other in the CVC syllables. An informal experiment 

was carried out to determine the effect of plosives on different following vowels, and although 

indications suggested that they had little effect, a more extensive investigation is needed. 

The effect of segment identity on distortion levels was investigated for the worst-case scenario; 

the phonemes evaluated at the word level had long durations, were in stressed positions and with 

minimal coarticulation, so any other contexts encountered are expected to be less problematic. 

When the results for static pitch stimuli at the word level are compared to dynamic contour 

stimuli at the sentence level, the effect of pitch manipulation on distortion is lessened, which 
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supports this. It should be noted though, that static pitch contours often occur during natural 

speech alongside dynamic contours. 

Closer investigation into the effect on individual phonemes may be undertaken to tune the signal 

processing distortion measure and corpus design further. Individual segments could be analysed 

rather than segments grouped according to manner of articulation, as there may be variations in 

characteristics within the groups. Larger numbers of individual segments would need to be 

investigated in terms of their responses at each of the pitch manipulation levels so they can be 

more accurately described for each level of manipulation. For example, a certain phoneme may 
be able to withstand 5% manipulation, whereas another may be able to sustain 15%. The 

measure and corpus design could be refined in this way. 

Experiment 2 found that increasing and decreasing pitch manipulation had a similar effect on 
distortion levels in vowels sounds over the small range measured. It is necessary to test this over 

a larger pitch manipulation range to investigate whether there is a general loss in voice quality for 

individual identity phonemes when decreasing pitch rather than increasing or vice versa. For 

larger modifications the cues of distortion become less important but the perception of loss of 

voice quality becomes more evident. Determining an allowable maximum level of manipulation 
in both modification directions, whilst retaining natural voice quality, would be advantageous. 

For the development of a complete signal processing measure of distortion and speech corpus 
design, a duration modification distortion measure is also required. This was partly addressed in 

the investigation of the effect of pitch manipulation, which also involves increased duration when 

raising the pitch of voiced parts of speech and decreased duration when lowering the pitch of 

speech. The pitch manipulation and duration manipulation costs for each segment could then be 

combined into the overall framework. 

The development of a special-case voiced fricative selection process was found to produce 

significantly less distortion in the output than the standard algorithm. This method avoided the 

repetition of ST-signals, which may cause local periodicity that is perceived as buzzyness. The 

algorithm may be extended to the pitch modification of all voiced segments for both positive and 
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negative modifications to avoid or reduce the repetition and deletion of ST-signals. Further 

investigation into the use of this and issues such as limits of pitch and duration modifications 

would be required. An assessment of the trade-off between the comple aty of implementing this 

algorithm and the reduction in distortion could be undertaken. Perhaps it would only be 

advantageous for the more adversely affected segments such as voiced fricatives and diphthongs. 

During this study, one implementation of the TD-PSOLA algorithm (the Praat implementation) 

has been investigated. Some of the distortions may be peculiar to this particular algorithm, such 

as deficiencies in the pitch-mark. ng algorithm, or perhaps choice and size of analysis window. It 

may be necessary to test more implementations to allow the results from this work to be 

generalised. 

During the course of this research, issues were raised that were unfortunately outside the scope 

of the thesis. Factors for successful voice selection for synthesis systems, and determination of 

aspects of segment recordings that affect the success of TD-PSOLA, provide interesting areas for 

further work. 

To conclude, the framework developed during this research provides a method to generate pitch- 

modified speech using the TD-PSOLA algorithm, with reduced distortion. Whilst distortion still 

occurs in the signals, there exists aspects of this work that may be improved further. In fact, 

whilst signal processing algorithms are still necessary in speech synthesis systems, the goal of 

reducing signal processing distortion remains a challenging and important area of research for the 

speech community as a whole. 
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Appendices 

Appendix A. Code and Interface 

The following Figures show screenshots of the C++ software used to automate the listening 

experiments undertaken during this work. Figure A. 1 shows the initialisation of the software, 
enabling the experimenter to select the number of stimuli for each experiment. 

FIGURE A. 1 SELECTION OF NUMBER OF STIMULI FOR EXPERIMENT 

Figure A. 2 shows the interface for Experiments 1,2,3,4 & 6. The Play Stimulus button must be 

selected by the participant to hear each stimulus. The MOS scale buttons, labelled 1 to 5, are then 
enabled, allowing the participant to record their judgement of that stimulus. Once a judgement 
has been made (by selecting a button between 1 and 5), the Play Stimulus button is re-enabled, 
allowing the next stimulus to be played. 

FIGURE A. 2 ;,..: ;, 4 AND 6 

Figure A. 3 shows the interface for Experiment 5. The Play button must be selected by the 
participant to hear a stimulus. The Yes/ No buttons are then enabled, allowing the participant to 
record whether or not they perceived any distortion in that stimulus. Once a judgement has been 
made (by selecting either button), the Play button is re-enabled, allowing the next stimulus to be 
played. 
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Figure A. 4 shows the Form "Experiment" used to create the visual interface for the C++ code. 

The following C++ code was written using the Borland C++ Builder 3 environment. It provides 
the experimenter with the ability to initialise the system with the number of stimuli for each 
experiment. The names of the wav files of each stimulus are read in from a floppy disk and 
stored in a playlist. The participant is then presented with the interface shown in Figure A. 2 and 
must click on the Play Stimulus button to hear the first stimulus. A random number is then 
generated to select a random stimulus form the plavlist. This ensures that for each test run, the 
order of presentation of the stimuli is different. The stimulus is played once only. The Play 
Stimulus button is then disabled, preventing the user from playing another stimulus at this stage. 
The MOS scale, consisting of buttons labelled 1 to 5, is enabled. The participant must then make 
a judgement about the stimulus just played by clicking one of the buttons. When this has been 
done, the number of the button clicked (the MOS rating) is then associated with the stimulus just 
played to be output to a results file when the experiment is completed. The MOS buttons are 
then disabled to prevent another judgement to be made at this stage. The Play Stimulus button is 
re-enabled to allow the participant to play the next stimulus and so on. 
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File: listening_experimentcpp 

// - ------- -M__---_____ _M ---- 
#include <vcl. h> 
#pragma hdrstop 
USERES("l istening_experiment. res"); 
USEFORM("exp. cpp", Experiment); 
USEUNIT("exp_engine. cpp"); 
//-- 
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int) 
{ 

try 
{ 

Application->Initialize(); 
Application->CreateForm(_classid(TExperiment), &Experiment); 
Application->RunO; 

} 
catch (Exception &exception) 
{ 

Application->ShowException(&exception); 
} 
return 0; 

} 
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File: exp. h 

#ifndef expH 
#define expH 

#include <Classes. hpp> 
#include <Controls. hpp> 
#include <StdCtrls. hpp> 
#include <Forms. hpp> 
#include "exp_engine. h" 

class TExperiment : public TForm 
{ 

_published: 
IDE-managed Components 

TScrollBar *stim_num; //Scroll bar to choose number of stimuli for experiment 
TEdit *display; //Display of number of stimuli determined by position of scroll bar 

TButton *Select_stim_num; //Button to select number of stimuli for experiment 

TButton *MOS_1; //Buttons to select MOS rating of I to 5 
TButton *MOS_2; 
TButton *MOS_3; 
TButton *MOS 4; 
TButton *MOS_5; 

TButton *play_stim; Button to play stimulus 

void 
_fastcall 

ForrnCreate(TObject *Sender); 

//methods performed when scroll bar position altered or buttons clicked 

void 
_fastcall 

stim_numChange(TObject *Sender); 
void 

_fastcall 
Select_stim_numClick(TObject *Sender); 

void _fastcall 
play_stimClick(TObject *Sender); 

void _fastcall 
MOS_1Click(TObject *Sender); 

void 
_fastcall 

MOS2Click(TObject *Sender); 

void fastcall MOS_3Click(TObject *Sender); 

void 
_fastcall 

MOS 4Click(TObject *Sender); 

void 
_fastcall 

MOS_SClick(TObject *Sender); 

private: // User declarations 

Experimental Exp; //instantiate object Exp from class Experimental, providing 
//stimuli attributes and methods 

public: // User declarations 
fastcall TExperiment(TComponent* Owner); 

extern PACKAGE TExperiment *Experiment; 

#endif 
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File: exp. cpp 

#include <vcl. h> 
#pragma hdrstop 

#include "exp. h" 

#pragma package(smart_init) 
#pragma resource "*. dfm" 
TExperiment *Experiment; 
H 

_fastcall 
TExperiment:: TExperiment(TComponent* Owner) 

TForm(Owner) 
{ 
} 
// ------ -- ---- 

void -fasttal] 
TExperiment:: FormCreate(TObject *Sender) 

play_stim->Visible-false; //create form and initialise buttons used during 
MOS_1->Visible=false; //experiment to non-visible. Visible buttons 
MOS 2->Visible=false; //used for selection of number of stimuli 
MOS3->Visible=false; //for experiment 
MOS__4->Visible=false; 
MOS_5->Visible=false; 

} 
// -- 

void _fastcall 
TExperiment:: stim numChange(TObject *Sender) 

{ //when scroll bar is altered to select number of stimuli 
display->Text = IntToStr(stim_num->Position); //display is updated to show number depending on 

} //position of scroll bar 
//- --- 

void _fastcall 
TExperiment:: Select stimnumClick(TObject *Sender) 

{ ///function called when number of stimuli for experiment is selected 
int no of stims; 
no_of stims=stim num->Position; 
Exp. initialise(no of stims); //read in stimuli list from floppy disk 

Select 
_stim 

num->Visible=false; //form components not needed for experiment made non-visible 
display->V isible=false; 
stim_num->Visible=false; 

play_stim->Visible--true; //button to play stimulus visible and enabled 

MOS1->Visible=t ue; //MOS buttons visible (only enabled after each stimulus played) 
MOS__ 1->Enabl ed=false; 
MOS_2->Vi sible-'Prue; 
MOS_2->Enabled-false; 
MOS3->Visible-true; 
MOS_3->Enabled=false; 
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MO S_4-> Vi si bl e=true; 
MOS_4->Enabl ed=false; 
MO S_5 -> Vi sibl e=true; 
MOS 5->Enabled=false; 

} 
u------- ------------ ----------------------- ---------_---____- 
void _fastcall 

TExperiment:: play_stimClick(TObject "Sender) 
{ //when stimulus play button is clicked..... 
int stim num; 

stim_num=Exp. get_stim_numO; //get random stimulus number from list of stimuli 

Exp. play(stim num); //play stimulus 

play_stim->Enabled=false; //play stimulus button disabled and MOS rating buttons enabled 
MOS_I ->Enabled=true; 
MOS_2->Enabled=true; 
MOS 3->Enabled=true; 
MO S_4->Enabl ed=true; 
MOS_5->Enabled=true; 

} 

void 
_fastcall 

TExperiment:: MOS_IClick(TObject *Sender) 
{ //when MOS rating button I is clicked...... 

int number, stim_total; 
Exp. store_num(I ); //associate MOS rating of 1 with current stimulus just played 

number=Exp. get_counter(); //get count of stimuli already played 
stim_total=Exp. get_stim_total(); //get total number of stimuli in experiment 

if(number>=(stim_total-1)) 

MOS_1->Visible=false; 
MOS2->Visible=false; 
MOS__3->Visible=false; 
MO S_4-> Vis ib l e=fat se; 
MOS 5->Visible=false; 

//if end of experiment, make MOS buttons non-visible 
//and save all data to floppy disk 

Exp. save_stuffO; 
} 
else //if not end of experiment, enable button to play next stimulus and disable MOS buttons 

play_stim->Enabled-true; 
MOS_ 1->Enabled=false; 
MOS 2->Enabled=false; 
MOS 3->Enabled=false; 
MOS_4->Enabled=false; 
MOS 5->Enabled=false; 

Exp. inc_counterO; //increment the number of stimuli played so far during experiment run 

} 
ýý------------------ ---_________ 
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void 
_fastcall 

TExperiment:: MOS_2Click(TObject *Sender) 
{ 

int number, stim total; 

Exp. store_num(2); 
number =Exp. get_counter(); 
stim_total=Exp. get stim_total(); 
if(number>=(stim_total-1)) 

MOS_l->Visible--false; 
MOS_2-> V isibl e--false; 
MOS_3->Visible=false; 
MOS_4->Visible=false; 
MOS_5->Visible=false; 

Exp. save stuffO; 
} 
else 

play_stim->Enabled=true; 
MOS_1->Enabled=false; 
MOS_2->Enabled=false; 
MOS3->Enabled=false; 
MOS_4->Enabled=false; 
MOS_5->Enabled=false; 

Exp. inc_counterO; 

} 

void __fastcall 
TExperiment:: MOS_3Click(TObject *Sender) 

{ 
int number, stim_total; 

Exp. store num(3); 

number=Exp. get counter(); 
stimtotal=Exp. get_stim_total(); 
if(nu_mber>--(stim_total-1)) 
{ 

MOS_1->Visible=false; 
MOS_2->Visible=false; 
MOS_3->Visible=false; 
MO S_4-> Visi bl e=false; 
MOS_5->V isible=false; 

Exp. save_stuf; 
} 
else { 

play_stim->Enabled=true; 
MOS_ 1->Enabled=false; 
MOS_2->Enabled=false; 
MOS_3->Enabled=false; 
MOS_4->Enabled=false; 
MOS_5->Enabled=false; 
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Exp. inc_counterü; 
} 

} 
//------------------ ---- -------_----------------- ------------ 

void _fastcall 
TExperiment:: MOS_4Click(TObject *Sender) 

{ 
int number, stim_total; 

Exp. store_num(4); 

number=Exp. get_counterO; 
stim_total=Exp. get_stim_total(); 
if(number>=(stim_total-1)) 
{ 

MOS_ 1->Visible=false; 
MOS_2->Visible=false; 
MOS_3->Visible=false; 
MOS_4->Visible=false; 
MOS 5->Visible=false; 

Exp. save_stuffO; 
} 
else{ 

play_stim->Enabled=true; 
MOS_1->Enabled=false; 
MO S2->Enabl ed=false; 
MOS_3->Enabled=false; 
MOS_4->Enabled=false; 
MOS 5->Enabled=false; 

Exp. inc_counterO; 

} 
// 

void _fastcall 
TExperiment:: MOS_5Click(TObject *Sender) 

{ 
int number, stim_total; 
Exp. store_num(5); 

number=Exp. get_counter(); 
stim_total=Exp. get_stim_total(); 

if(number>=(stim_total-l )) 
{ 

MOS 1->Visible=false; 
MOS_2->Visible=false; 
MOS3->Visible=false; 
MOS_4->Visible=false; 
MOS_5->Visible=false; 

Exp. save_stuff(); 
} 
else { 
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play 
_stim->Enabl 

ed=true; 
MOS_I ->Enabled=false; 
MOS_2->Enabled=false; 
MOS_3->Enabled=false; 
MOS_4->Enabled=false; 
MOS_5->Enabled=false; 

Exp. inc_counter(); 

} 
II ýý 
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File: exp_engine. h 

#ifndef exp_engineH 
#define exp_engineH 

class Experimental 
{ 
private: 

struct //List holds stimuli waveform paths and filenames and respective MOS rating 

char Filename [50]; //path and name of wav files 
int answer; //MOS rating 

} List [1000]; //max of 1000 stimuli may be used in experiment 

int counter; //current number of stimuli played so far in experiment 
int random check [1000]; //used in random number generation. 

//Ensures each stimulus played only once 
int stimulus; //current stimulus identity number 
int total; //total number of stimuli in experiment 

public: 

void initialise (int no of stimuli); //initialise stimuli playlist 
void play (int num); //play stimulus 
int get counter (void); //get current number of stimuli played so far 

void inc_counter (void); //increment current number of stimuli played so far 
int get_stim_num (void); //generate random stimulus identity number 
void save 

_stuff(void); 
//save MOS data to floppy disk 

void store_num(int score); //store MOS rating with respective stimulus filename 

void set_stim_total(int no-of stims); //set total number of stimuli in experiment 
int get_stim_total(void); //get total number of stimuli in experiment 

}; 

//---_ý________ý___________ý---______ 
#endif 
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File: exp_engine. cpp 

#include <vcl. h> 
#pragma hdrstop 

#include "exp_engine. h" 
#include <mmsystem. h> 

#include <stdlib. h> 
#include <conio. h> 
#include <iostream. h> 

#include <fstream. h> 

void Experimental:: initialise(int no-of stimuli) //initialises stimuli playlist 
{ 
int i; 
counter-0; 

for (i0; i<no_of_stimuli; i++) //initialise random checker used during random num generation 

. random-check[i]=i; 

ifstream inFile("a: \\stim. dat", ios:: in); //open file of stimuli path and filenames 

if(! inFile) 
{ 

cerr«"File could not be opened' ; 
exit(] ); 

} 

i-0; //read in wav file path and filenames and store in List structure, Filename field 
while(inFile»List[i]. Filename) 

i++; 

inFile. seekg(O); 
inFile. closeO; 

set stim_total(no_ofstimuli); //set the number of stimuli in the experiment 
} 
// 

void Experimental:: play(int num) 
{ 
P1aySound(List[num]. Filename, NULL, SND_SYNC); //play stimulus 
} 

int Experimental:: get_counter(void) 
{ 

return counter, //get current count of stimuli played so far 
} 
// 
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void Experimental:: inc_counter(void) 
{ 

counter++; increment current count of stimuli played so far 
} 
/1------------------------------------- ------------ýý 

int Experimental:: get_stim_num(void) //generated random stimulus identity number 
{ 

int num, i=0, flag=0; 
srand(time(NULL)); //seed random number generator from PC clock 
num=randQ%total; //random number between 0 and (total number of stimuli in experiment- ]) 

do 
{ 
if (i----total) //if random number has been generated before, generate a new number 
{ 
i=0; 
num=randO%total; 
} 

if (num=random_check[i]) //if stimulus identity number has not been generated before...... 
{ 

random-check[i]=999999; //set element in array to 999999 so it cannot be chosen again 
flag-- 1; 

} 
i++; 

)while (flag=0); //repeat until stimulus identity number not previously chosen is generated 

stimulus=num; 

return num; //return stimulus identity number to be played 
} 

void Experimental:: save_stuff(void) 
{ 

ofstream outfile("a: \\results. dat"); //save stimuli filenames and respective MOS ratings to floppy disk 
int i; 
for (i=0; i<total; i++) 

outfile«List[i]. Filename«" "«List[i]. answer«endl; 
outfile. closeo ; 

} 

void Experimental:: store num(int score) 
{ 

List[stimulus]. answer=score; //store MOS rating for stimulus just played in structure List 
} 
//_____-____-----____ý----------______--- 

void Experimental:: set_stirn_total(int no-of stims) 
{ 

total=no-of stims; //sets the total number of stimuli in the experiment 
} 
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int Experimental:: get_stim_total(void) 
{ 

return total; //gets the total number of stimuli in the experiment 
} 

#pragma package(smart_init) 
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Appendix B. String Lists for Experiments 

B. 1 CVC Syllables with Varying Central Vowel for Experiment 1 and 2 

/k{t/ /kEt/ /kIt/ /kQt/ /kUt/ /kVt/ 
/k@t/ /ki: t/ /keIt/ /kaIt/ /kOIt/ /ku: t/ 
/k@Ut/ /kaUt/ /k3: t/ /kA: t/ /kO: t/ kI@t/ 
/ke@t/ /kU@t/ 

B. 2 CVC Syllables with Varying Initial Consonant for Experiment 4 

/p{n/ /b{n/ /t{n/ /d{n/ /k{n/ /g{n/ 
/tS{n/ /dZ{n/ /f{n/ /v{n/ /T{n/ /D{n/ 
/s{n/ /z (n/ /S{n/ /Z {n/ /h{n/ /m{n/ 
/n{n/ /r{n/ /1{n/ /w{n/ /j{n/ 

B. 3 Sentence-Level Stimuli for Experiment 3 

"My cat? " 
"Prove it. " 
"No way! " 
"Look here..... " 

B. 4 CVC Syllables for Experiment 5 

B. 4.1 Vowel Stimuli 

/k{t/ /kIt/ /kQt/ /kA: t/ /kalt/ /ku: t/ 

B. 4.2 Consonant Stimuli 

/d{n/ /s{n/ /tS{n/ /n{n/ /r{n/ /j{n/ 
/D {n/ 

B. 5 Sentence-Level Stimuli for Experiment 6 

"Take it. " 
"My cat? " 
"Prove it. " 
"Look here! " 
"Evidently..... " 
"That's okay. " 
"Who's there? " 
"Measure them? " 
"What dog? " 
"Three fish? " 
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Appendix C. Instructions for Experiments 

Instructions for Listening Experiment No..... 

Do you to the best of your knowledge, have normal hearing? 

In this experiment you will hear 96 mono-syllabic syllables via headphones, and will be asked to 
give your opinion of the speech you hear. 

Prior to the start of the experiment, you will be provided with examples of the criterion under 
investigation and familiarised with the testing procedure. 

Experiment Procedure 

Using the computer interface provided, press the `Play Stimulus' button to hear the speech. You 
will hear the stimulus only once, then you must press the appropriate button on the interface (1- 
5) to indicate your opinion using the following scale: 

AMOUNT OF DISTORTION PRESENT IN STIMULI 
1 no perceived distortion 

2 quite undistorted 
3 distorted 

4 quite distorted 

5 very distorted 

After a short pause, you will be able to play the next stimulus. 

Thank you for your participation in this experiment 
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Appendix D. Experimental Data 

% PITCH MODI FICATIO N 
PARTICIPANTS 0% 5% 10% 15% 
1 2.15 3.60 3.35 4.15 
2 2.15 2.75 2.70 3.15 
3 1.45 2.25 2.60 3.10 

D. 1 EXPERIMENT 1: PILOT STUDY DATA (positive modification only) 

% PITCH MODIFICAT ION 
PARTICIPANTS -15% -10% -5% 0% +5% +10% +15% 
1 3.60 4.00 3.75 2.15 3.60 3.35 4.15 
2 3.00 3.00 3.00 2.15 2.75 2.70 3.15 
3 2.75 2.80 2.00 1.45 2.25 2.60 3.00 

D. 2 EXPERIMENT 1: PILOT STUDY DATA 

PITCH MO DIFICATION (HZ) 
PARTICIPANTS 220 223 233 246 259 
1 1.70 1.85 2.85 2.95 3.35 
2 2.00 2.10 3.55 3.30 4.15 
3 2.05 2.10 2.65 2.60 3.05 
4 1.35 1.55 2.15 2.60 2.90 
5 2.10 2.25 3.15 3.30 3.45 
6 1.90 2.05 2.95 3.00 3.15 
6 1.75 1.65 2.35 2.55 2.90 
8 1.25 1.45 2.35 2.85 2.90 
9 1.35 1.35 2.15 2.55 3.00 
10 1.40 1.55 2.25 2.25 2.80 
11 1.70 1.55 2.40 2.75 2.85 
12 1.75 1.95 2.90 3.05 3.25 
13 1.75 2.00 2.80 2.65 3.20 
14 2.40 2.50 3.35 3.40 3.75 
15 2.15 2.35 3.15 3.50 3.70 

D. 3 EXPERIMENT 1: PARTICIPANTS' MOS RATINGS OF DISTORTION AT EACH 

PITCH MODIFICATION LEVEL 
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PITCH MAN IPULATION H27 
CVC 
SYLLABLE 220 223 233 246 259 
ki: t 1.73 1.73 2.47 3.47 3.07 
kA: t 1.47 1.47 2.33 2.67 3.27 
kO: t 1.20 1.73 2.20 2.20 2.13 
ku: t 1.40 1.40 3.73 2.87 3.87 
k3: t 1.73 1.73 2.87 3.33 3.60 
kit 1.60 1.40 2.07 2.20 2.40 
kEt 2.00 2.40 2.87 4.27 4.13 
k (t 1.87 1.87 2.47 2.73 2.53 
k 1.53 1.73 2.27 2.53 2.60 
kVt 1.73 1.87 2.40 2.13 2.47 
kQt 1.40 1.40 1.87 2.00 2.00 
kUt 1.73 1.87 2.47 2.40 2.87 
kelt 1.40 2.00 2.80 2.87 2.73 
kalt 2.13 2.40 3.00 2.73 3.73 
kOlt 1.27 1.27 2.80 3.13 3.13 
k@Ut 1.53 1.67 2.13 2.67 3.40 
kaUt 1.87 1.73 2.27 2.40 3.67 
kI@t 2.67 2.67 3.67 3.80 4.53 
ke 2.67 2.67 4.27 3.67 4.40 
kU@t 2.53 2.67 3.73 3.67 4.00 

D. 4 EXPERIMENT 1: MOS RATINGS FOR INDIVIDUAL CVC STIMULI 

PITCH MODIF ICATION (HZ) 
PARTICIPANTS 200 210 220 230 240 
1 1.70 1.40 1.10 1.35 2.10 
2 2.60 1.80 1.50 1.85 2.00 
3 3.05 2.60 1.60 2.85 2.80 
4 1.55 1.45 1.15 1.45 2.00 
5 2.05 1.80 1.30 1.75 2.15 
6 2.50 1.75 1.60 2.00 2.40 
7 2.60 1.85 1.30 1.65 2.05 
8 2.80 2.45 1.80 2.15 2.85 
9 2.40 1.95 1.35 1.90 2.45 
10 2.95 2.25 1.70 2.35 2.75 

D. 5 EXPERIMENT 2: PARTICIPANS' MOS RATINGS AT EACH PITCH MODIFICATION 

LEVEL 

222 



% PITCH M ODIFICATIO N 
CVC 
SYLLABLE -8% -4% 0% 4% 8% 
kA: t 1.40 1.20 1.20 1.30 1.70 
k (t 2.30 1.20 1.20 1.20 2.60 
k@t 2.10 1.20 1.20 1.30 2.40 
kO: t 3.00 1.70 1.20 2.00 3.00 
k@Ut 3.30 2.00 1.20 2.30 3.30 
kOlt 2.70 1.70 1.20 2.00 3.00 
ku: t 3.00 2.60 1.30 2.00 3.30 
kUt 2.40 1.70 1.40 2.60 2.00 
kVt 2.20 1.60 1.50 2.00 2.10 
ke@t 2.30 2.00 1.10 1.70 1.40 
kalt 3.00 3.00 1.70 2.00 1.40 
ki: t 3.00 2.60 2.00 2.00 3.30 
kEt 2.60 2.30 2.00 2.10 2.30 
kU@t 1.60 1.90 1.20 2.00 2.30 
kI@t 2.70 2.30 1.60 1: 60 2.30 
kOt 1.90 1.60 1.10 1.70 2.00 
kit 2.00 1.70 1.10 1.30 1.70 
kalt 2.30 2.30 2.00 2.30 1.70 
kaUt 2.60 2.00 2.00 3.20 3.30 
k3: t 2.00 2.00 1.60 2.00 2.00 

D. 6 EXPERIMENT 2: CVC STIMULI AND MOS RATINGS 

PARTICIPANTS 
INVENTORY 1 
DISTORTION HUMANNESS 

INVENTORY 2 
DISTORTION HUMANNESS 

1 2.50 3.25 2.00 4.25 
2 3.25 4.25 2.75 3.50 
3 3.25 2.50 2.50 4.00 
4 2.50 3.00 2.25 3.75 
5 1.75 3.75 2.25 2.75 
6 3.00 2.00 3.50 2.00 
7 3.00 3.25 2.75 3.50 
8 2.50 3.75 2.50 4.25 
9 2.25 3.50 1.00 4.75 

10 3.25 4.00 3.25 3.50 
U. / r. ai'r. K All: N'1' 3: PARTICIPANTS' MOS RATINGS OF DISTORTION AND 

HUMANESS FOR TWO INVENTORIES 
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SENTENCES 
INVENTORY 1 DISTORTION HUMANNESS 
"My cat? " 2.5 3.7 
"No way! " 2.9 3.5 
"Look here... " 3.1 2.5 
"Prove it. " 2.4 3.6 
INVENTORY 2 DISTORTION HUMANNESS 
"My cat? " 2.2 3.8 
No way! " 2.8 3.2 

"Look here... " 2.2 3.8 
"Prove it. " 2.7 3.7 

D. 8 EXPERIMENT 3: SENTENCE STIMULI AND MOS RATINGS 

PITCH MODIFICATION (HZ) 
PARTICIPANTS 220 223 233 246 259 
1 2.09 2.13 2.26 2.52 2.83 
2 1.78 2.13 3.13 3.26 3.35 
3 2.57 2.39 2.83 2.74 3.00 
4 1.78 1.87 2.91 3.65 3.91 
5 2.17 2.35 2.91 2.91 3.17 
6 1.57 1.52 2.04 2.17 2.17 
7 1.65 1.61 1.78 2.09 2.39 
8 1.37 1.59 2.07 2.45 2.82 
9 1.43 1.48 1.91 2.48 2.78 
10 1.83 1.96 2.48 2.61 2.78 
11 1.87 2.09 2.57 2.91 3.35 
12 1.43 1.78 2.17 2.35 2.74 
13 2.00 2.26 2.78 3.00 3.00 
14 2.61 2.30 3.13 3.26 3.39 
15 1.78 1.91 2.52 2.78 3.09 
16 1.83 1.91 2.26 2.65 2.96 
17 1.96 1.96 2.61 2.78 2.96 
18 1.74 2.04 2.48 2.57 2.87 
19 2.57 2.39 3.09 3.17 3.22 
20 2.52 2.48 3.26 3.30 3.39 

D. 9 EXPERIMENT 4: PARTICIPANTS' MOS RATINGS AT EACH 1'I I CH 

MANIPULATION LEVEL FOR VOICE 
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D. 1 

PITCH MODIFICATIO N 
CvC 
SYLLABLE 1% 5% 10% 15% 

n 2.20 2.15 2.85 2.55 
k(n 1.55 1.70 2.20 2.15 
d (n 1.60 2.40 2.60 2.70 
f (n 2.15 2.30 2.30 2.15 

n 1.40 2.40 2.70 3.85 
h{n 1.85 1.70 2.55 2.85 

n 2.00 2.15 2.85 2.70 
m{n 2.85 3.25 3.15 3.60 
n (n 1.55 1.70 2.40 2.85 

n 1.70 2.85 3.70 4.25 
rin 1.90 3.00 2.30 2.45 
s (n 1.40 2.15 2.30 2.30 
t (n 1.90 2.40 1.45 2.45 
v (n 2.00 3.20 4.00 4.40 
w (n 2.40 3.40 4.00 3.70 
z{n 2.55 3.00 3.15 3.30 
tS n 1.85 2.80 2.70 2.20 
dZ(n 1.60 2.40 1.90 2.85 
T (n 2.25 3.25 2.75 3.30 

n 2.80 3.35 3.45 3.70 
n 2.00 2.30 2.70 2.70 

Zn 2.85 3.55 3.70 4.00 
.n 2.30 2.15 3.15 3.30 

0 EXPERIMEN T 4: STIMU LI AND MO S RATINGS FOR VÖTrr. 
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PITCH MODIFICATION HZ) 
PARTICIPANTS 200 203 212 223 235 

1 1.48 2.57 2.83 3.13 3.22 
2 1.65 2.43 3.17 3.35 3.39 
3 1.96 3.48 4.17 4.17 3.83 
4 1.22 2.26 3.26 3.96 4.17 
5 1.39 2.26 3.13 3.48 3.22 
6 1.26 2.96 3.74 3.96 3.83 
7 1.09 2.43 3.35 3.43 3.35 
8 1.04 1.91 2.30 2.83 3.09 
9 1.26 2.13 3.09 3.26 3.48 
10 1.48 2.70 3.30 3.48 3.39 
11 1.26 2.65 3.09 3.74 3.39 
12 1.22 2.30 3.13 3.61 3.70 
13 1.61 2.91 3.57 3.78 3.87 
14 1.74 3.22 3.91 4.26 4.04 
15 1.22 2.26 3.17 3.61 3.39 
16 1.48 2.43 3.17 3.48 3.57 
17 1.52 2.48 3.30 3.78 3.57 
18 1.30 2.13 2.91 3.17 3.17 
19 1.57 3.35 4.00 3.96 3.83 
20 1.78 3.30 4.22 4.22 4.09 

D. 1 I EXPERIMENT 4: PARTICIPANTS' MOS RATINGS AT EACH Fl l LN 

MANIPULATION LEVEL FOR VOICE 1 
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D. 12 

% PITCH M ODIFICATION 
CvC 
SYLLABLE 1% 5% 10% 15% 

n 2.00 1.85 3.00 2.30 
k (n 3.00 3.40 3.85 4.05 
d (n 1.85 3.10 3.70 3.15 
f (n 2.70 2.70 2.10 2.40 

n 3.00 3.80 3.55 3.70 
h (n 2.80 3.00 3.30 3.30 

n 3.50 4.65 4.80 4.85 
m (n 3.00 3.60 4.05 4.00 

n 1.70 3.30 3.30 3.70 
n 2.50 4.25 3.40 4.55 

r (n 2.00 2.70 3.00 3.30 
n 2.00 2.30 3.10 3.15 

t (n 3.00 3.40 3.85 3.85 
n 3.20 3.35 3.85 4.05 

w (n 2.70 3.85 4.70 4.25 
z in 2.50 3.30 3.85 3.30 
tS(n 2.50 3.00 3.15 3.15 
dZ(n 1.70 3.40 3.85 3.74 
T (n 1.85 2.40 2.70 3.05 

n 4.30 4.40 4.05 3.85 
n 2.40 2.45 3.05 2.60 

Z (n 2.50 4.50 4.70 4.20 
L& 3.30 4.15 4.65 4.00 
EXPERIMEN T 4: STIMUL I AND MO S RATINGS FOR Voir E2 
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PITCH MODIFICATION (HZ) 
PARTICIPANTS 130 133 137 144 152 
1 2.17 2.22 2.52 2.65 2.78 
2 2.83 2.43 2.96 3.13 3.61 
3 2.17 2.13 2.30 2.57 2.65 
4 2.09 2.17 2.65 3.13 3.17 
5 2.26 2.30 2.83 2.61 2.39 
6 2.00 1.91 2.04 2.04 2.26 
7 1.91 1.91 2.26 2.35 2.70 
8 1.87 1.83 2.35 2.57 2.70 
9 2.35 2.48 2.43 2.83 2.83 
10 2.13 2.22 2.48 2.74 2.83 
11 2.17 2.17 2.48 2.52 2.83 
12 2.65 2.74 2.87 2.87 3.17 
13 2.74 2.87 2.78 3.30 3.17 
14 1.96 1.83 2.35 2.39 2.43 
15 2.17 2.13 2.57 2.70 2.70 
16 2.13 1.78 2.43 2.65 2.83 
17 2.13 1.87 2.26 2.57 2.65 
18 2.22 2.22 2.70 2.52 2.70 
19 2.74 2.74 3.04 3.04 3.17 
20 2.70 2.61 2.96 2.96 3.17 

D. 13 EXPERIMENT 4: PARTICIPANTS' MOS RATINGS AT ALH r11 c. ti 

MANIPULATION LEVEL FOR VOICE 3 
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D. 14 

% PITCH M ODIFICATIO N 
CvC 
SYLLABLE 1% 5% 10% 15% 

n 2.30 2.55 2.50 2.50 
k (n 1.95 2.10 1.95 2.40 

n 1.70 1.70 2.35 1.95 
f (n 2.40 2.80 2.80 2.50 

n 1.40 1.40 2.40 2.25 
n 2.40 2.40 2.20 1.85 

n 2.10 2.40- 2.60 3.20 
m (n 2.00 2.40 2.80 2.80 

n 2.40 2.40 2.80 2.80 
n 1.70 2.80 2.20 1.80 

r (n 2.20 2.40 3.00 3.40 
s (n 2.20 2.00 2.00 3.00 
tin 2.00 2.80 2.00 2.80 

n 2.00 2.40 2.40 2.20 
win 2.60 3.00 3.05 2.50 

z (n 2.60 3.60 3.60 4.20 
tn 2.25 2.20 2.40 2.80 
dZ(n 2.40 2.40 2.60 2.20 
T (n 2.40 2.80 3.20 2.50 

n 2.65 3.20 3.40 3.00 
n 2.10 2.20 3.75 4.60 

; In 2.80 3.60 3.05 3.80 
n 2.70 3.40 3.20 4.20 

EXPERIMEN T 4: STIMU LI AND MO S RATINGS FOR VOII :E3 
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PITCH MODIFICATION (HZ 
PARTICIPANTS 120 122 127 133 140 
1 1.61 2.13 2.65 2.96 3.22 
2 2.00 2.26 2.57 3.22 3.30 
3 1.70 1.96 2.65 3.17 3.61 
4 1.52 2.09 3.43 3.35 3.78 
5 2.13 2.57 3.39 3.78 3.91 
6 1.78 1.83 1.83 2.04 2.30 
7 1.43 1.61 2.30 2.65 3.00 
8 1.43 1.57 2.22 2.83 3.39 
9 1.96 2.30 2.61 3.09 3.57 
10 1.91 2.35 3.00 3.26 3.43 
11 1.57 1.91 2.48 2.91 3.13 
12 2.00 2.65 3.22 3.52 3.52 
13 2.22 2.83 3.57 3.96 4.22 
14 1.83 2.09 2.78 3.22 3.39 
15 1.78 2.04 2.74 2.96 3.30 
16 1.74 1.87 2.39 2.83 3.04 
17 1.70 2.13 2.61 2.87 3.43 
18 1.74 2.04 2.52 3.00 3.09 
19 2.35 2.61 3.26 3.43 3.83 
20 2.17 2.57 3.26 3.57 3.43 

D. 15 EXPERIMENT 4: PARTICIPANTS' MOS RATINGS AT EACH PI CH 

MANIPULATION LEVEL FOR VOICE 4 
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% PITCH M ODIFICATION 
CVC 
SYLLABLE 1% 5% 10% 15% 

n 2.20 2.40 3.00 2.50 
k (n 2.15 2.40 2.40 3.20 

n 1.75 2.00 2.80 3.00 
f (n 2.70 2.80 2.40 2.80 

n 2.10 2.40 3.00 3.80 
h (n 1.80 2.80 2.65 3.00 

n 1.80 2.60 3.20 3.60 
m (n 2.00 2.40 2.40 3.00 

n 1.90 3.00 4.00 3.45 
n 2.00 3.00 2.80 2.60 

r (n 2.05 2.60 3.00 3.25 
n 3.00 3.80 4.05 4.40 

t (n 1.40 2.00 2.60 3.20 
v (n 2.75 2.80 3.60 4.20 
w (n 2.65 3.40 3.60 3.25 
z (n 2.35 2.80 4.00 4.20 
tn 1.60 2.20 2.40 2.80 
dZ(n 2.00 2.80 2.80 3.20 
T (n 2.00 3.00 3.80 3.60 

n 1.60 2.80 3.05 3.40 
n 2.50 3.40 3.00 3.60 

Z (n 3.50 3.80 4.05 4.05 
n 2.10 2.60 3.40 4.00 

D. 16 EXPERIMENT 4: CVC STIMULI AND MOS RATINGS OF VOICE 4 
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PITCH CVC SYLLABLE 
MODIFICATION VERSION lk U /kA: t/ /kQt/ /ku: t/ /kit/ /kalt/ 

223Hz 1 0 0 0 1 0 0 
2 0 0 0 1 0 1 
3 0 0 1 0 1 0 
4 0 1 0 0 .0 

1 
233Hz 1 0 0 0 1 0 0 

2 0 0 0 1 0 1 
3 0 0 1 0 1 0 
4 0 1 0 0 1 1 

246Hz 1 0 1 0 1 0 0 
2 0 0 0 1 0 1 
3 1 1 0 0 1 1 
4 0 1 0 0 1 1 

259Hz 1 0 1 0 1 0 1 
2 1 0 0 1 0 1 
3 1 1 1 0 1 1 
4 0 1 0 0 1 1 

D. 17 EXPERIMENT 5: DISTORTION DETECTION WITH MAJORITY SCORE 5/10 FOR 

VOWEL STIMULI 

PITCH CVC SYLLABLE 
MODIFICATION VERSION /d n/ /s n/ /t n/ /n N /r n/ / nl /D n/ 

223Hz 1 0 0 0 0 0 1 1 
2 0 1 1 1 0 1 1 
3 0 0 0 1 1 0 1 
4 0 0 1 0 1 0 1 

233Hz 1 0 0 0 0 0 1 1 
2 1 1 1 1 0 1 1 
3 0 0 0 1 1 0 1 
4 0 0 1 0 1 0 1 

246Hz 1 0 0 0 0 0 1 1 
2 0 0 0 1 1 1 1 
3 0 0 0 1 1 1 0 
4 0 0 1 0 1 0 1 

259Hz 1 0 0 0 0 1 1 1 
2 0 1 1 1 1 1 1 
3 1 0 0 1 1 1 1 
4 0 0 1 1 1 1 1 

D. 18 EXPERIMEN T 5: DISTOR TION D ETECT ION WI TH MATORITY SCORE 5/10 FOR 

CONSONANT STIMULI 
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PITCH MO DIFICATIO N (HZ) 
CVC 
SYLLABLE VERSION 223 233 246 259 ASYMMETRY 
/kt/ 1 1 1 2 3 NO 

2 2 3 3 6 NO 
3 4 4 6 6 YES 
4 3 1 1 3 YES 

/kA: V 1 3 4 5 5 YES 
2 1 2 2 3 NO 
3 4 4 6 5 NO 
4 7 8 7 9 YES 

/kQt/ 1 0 1 0 0 NO 
2 0 1 0 1 NO 
3 5 5 4 5 YES 
4 2 3 3 2 YES 

/ku: tl 1 6 6 5 6 YES 
2 6 5 7 7 YES 
3 4 4 3 4 NO 
4 3 2 1 4 NO 

/kW 1 2 1 2 1 NO 
2 2 1 2 2 NO 
3 8 9 8 8 YES 
4 3 5 6 7 YES 

/kalt/ 1 4 3 4 5 NO 
2 5 5 7 9 YES 
3 4 3 5 5 NO 

ýý 4A Tt)TTT T 

4 
T'11n - giess se 

6 
ý'+iýw 

9 
ýý sý w Tý 

8 
ns" . ýý w 

9 
w www w 

YES 
'. ýýý __-__ 

L. l'J r. i+rr. ýýýYLI LNi J: WAVZr%JI 1V11laILV11VLGllil ALLNIJ INL)LViDM. K VI' L)1JIVKIIVN 

DETECTIONS FOR VOWEL STIMULI 
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PITCH MODIFICATION (HZ) 
CVC 
SYLLABLE VERSION 223 233 246 259 ASYMMETRY 
/d n/ 1 1 2 0 1 YES 

2 3 5 4 4 YES 
3 4 4 4 5 NO 
4 1 0 1 2 NO 

Is n/ 1 1 2 3 2 NO 
2 5 5 4 6 YES 
3 4 3 3 2 YES 
4 1 2 1 2 NO 

/tS n/ 1 2 2 3 0 NO 
2 5 6 4 7 NO 
3 1 3 2 4 YES 
4 5 6 7 6 YES 

/n (n/ 1 2 2 3 4 NO 
2 7 6 7 7 YES 
3 8 6 7 6 YES 
4 3 2 3 6 NO 

/r n/ 1 4 3 4 5 NO 
2 4 3 6 5 NO 
3 6 7 6 8 YES 
4 7 7 6 9 YES 

/ n/ 1 7 6 7 8 YES 
2 6 8 7 8 NO 
3 4 3 5 5 NO 
4 4 4 4 5 YES 

/D n/ 1 8 9 10 9 YES 
2 8 8 9 10 YES 
3 6 7 4 5 NO 
4 7 6 6 8 NO 

D. 20 EXPERIME NT 5: WAV EFORM ASYMMETR Y AND N UMBER O F DISTORTION 

DETECTIONS FOR CONSONANT STIMULI 
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STIMULI WEIGHTING S 
cvc 
SYLLABLE 1% 5% 10% 15% 
ki: t -2.73 1.10 1.71 0.83 
kA: t -5.35 0.77 0.78 0.99 
kO: t -2.73 0.47 0.23 0.10 
ku: t -6.06 4.03 1.01 1.45 
k3: t -2.73 2.03 1.55 1.24 
kit -6.06 0.16 0.23 0.31 
kEt 4.04 2.03 2.65 1.66 
kt -1.31 1.10 0.85 0.41 
k@t -2.73 0.63 0.62 0.47 
kVt -1.31 0.93 0.15 0.37 
kQt -6.06 -0.30 0.00 0.00 
kUt -1.31 1.10 0.47 0.68 
kelt 0.00 1.86 1.01 0.57 
kalt 4.04 2.33 0.85 1.34 
kOlt -7.37 1.86 1.32 0.88 
k@Ut -3.33 0.30 0.78 1.09 
kaut -2.73 0.63 0.47 1.30 
ki 6.77 3.89 2.10 1.97 
k 

4 
6.77 5.29 1.95 1.86 

kU 6.77 4.03 1.95 1.55 
D. 21 CHAPTJ R 5: VOWEL WEIGHTINGS FOR EACH PITCH MANIPULAT ION LEVEL 
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D. 22 CHAPT 

WEIGHTIN GS 
CVC 
SYLLABLE 

1% 5% 10% 15% 

n 1.67 0.24 1.15 0.47 
k (n -6.67 -1.09 0.19 0.08 
d (n -6.03 0.98 0.78 0.62 

_ f (n 1.03 0.68 0.34 0.08 
n -8.59 0.98 0.93 1.76 

h (n -2.82 -1.09 0.71 0.77 
I (n -0.90 0.24 1.15 0.62 

_ m (n 10.00 3.49 1.60 1.51 
_ n (n -6.67 -1.09 0.49 0.77 
_ n -4.74 2.31 2.41 2.15 

r (n -2.18 2.75 0.34 0.37 
_ s (n -8.59 0.24 0.34 0.23 
t (n -2.18 0.98 -0.92 0.37 
v (n -0.90 3.34 2.86 2.30 

w (n 4.23 3.93 2.86 1.61 
z (n 6.15 2.75 1.60 1.21 
tn -2.82 2.16 0.93 0.13 
dZ(n -6.03 0.98 -0.25 0.77 
T (n 2.31 3.49 1.01 1.21 
D (n 9.36 3.79 2.04 1.61 

_ n -0.90 0.68 0.93 0.62 
Z (n 10.00 4.38 2.41 1.90 

n 2.95 0.24 1.60 1.21 
PR S. (YIATQ( TANTT IYTPT r-T-TT Mr-4Z AT F ACN PITCH MAN 

LEVEL 

IPULATION 
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INVENTORY 

PARTICIPANTS 
TD-PSOLA 
BALANCED 

PHONETICALLY 
BALANCED 

1 2.70 3.20 
2 2.20 2.60 
3 2.30 2.50 
4 2.00 2.70 
5 2.30 3.10 
6 2.90 3.40 
7 3.00 3.20 
8 3.00 3.30 
9 3.30 3.40 

D. 23 EXPERIMENT 6: PARTICIPANTS' MOS RATINGS FOR EACH INVENTORY 

D. 24 =1 

INVENTORY 
)M EACH 
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PARTICIPANTS 
V/FRICATIVE 
SELECTION 

STANDARD 
SELECTION 

1 1.80 2.40 
2 1.60 1.60 
3 2.40 2.20 
4 2.60 2.80 
5 2.60 3.00 
6 2.00 2.40 
7 2.40 2.80 
8 2.60 3.40 
9 2.40 3.40 

D. 25 EXPERIMENT 6: PARTICIPANTS' MOS RATINGS FOR VOICED FRICATIVE AND 

STANDARD SELECTION METHODS 

SENTENCES 
V/FRICATIVE 
SELECTION 

STANDARD 
SELECTION 

"Evidently ... 2.11 2.33 
"Measure them? " 3.00 3.11 
"Prove it. " 2.11 2.44 
`That's oka ." 2.44 3.56 
"Who's there? " 1.67 1.89 

D. 26 EXPERIMENT 6: MOS RATINGS FOR SENTENCES SYNTHESISED USING 

VOICED FRICATIVE AND STANDARD SELECTION METHODS 
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Acronyms and Abbreviations 

CART Classification and Regression Trees 
CELP Code Excited Linear Prediction 
CLID-test Cluster Identification test 
C Consonant 
DFT Discrete Fourier Transform 
DMOS Degradation MOS 
DRT Diagnostic Rhyme Test 
DSP Digital Signal Processing 
DV Dependent Variable 
EC Error rate per Contrast 
FD-PSOLA Frequency-Domain PSOLA 
FFT Fast Fourier Transform 
FO Fundamental frequency; the frequency of vibration of the vocal folds 
F1, F2, F3.... Formant frequencies 
HMN Harmonic plus Noise Model 
HNR Harmonics-to-Noise Ratio 
H/S Harmonic/ Stochastic model 
IPA International Phonetic Association 
IV Independent Variable 
JND Just Noticeable Differences 
LPC Linear Predictive Coding 
LP-PSOLA Linear Prediction PSOLA 
MOS Mean Opinion Score 
MBR-PSOLA (MBROLA) Multi-band Resynthesis PSOI. A 
MLPC Multipulse Linear Predictive Coding 
MRT Modified Rhyme Test 
NLP Natural Language Processing 
PC Paired Comparison 
PSOLA Pitch-Synchronous Overlap-Add 
RELP Residual Excited Linear Prediction 
SAMPA Speech Assessment Methods Phonetic Alphabet 
SNR Signal-to-Noise Ratio 
SPL Signal Pressure Level 
ST-signal Short Tern signal 
STFT Short Term Fourier Transform 
SUS Semantically Unpredictable Sentences 
TD-PSOLA Time-Domain Pitch-Synchronous Overlap-Add 
ToBI Tones and Break Indices 
TTS Text-to-Speech 
V Vowel 
V/UV Voiced/Unvoiced 
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