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Abstract

Concatenatuve Speech Synthesis: A Framework for Reducing Perceived Distortion when
using the TD-PSOLA Algorithm

Author: Jennifer Ann Longster

This thesis presents the design and evaluation of an approach to concatenative speech synthesis
~using the Time-Domain Pitch-Synchronous OverLap-Add (TD-PSOLA) signal processing
algorithm. Concatenative synthesis systems make use of pre-recorded speech segments stored 1n
a speech corpus. At synthesis time, the ‘best’ segments available to synthesise the new utterances
are chosen from the corpus using a process known as wni? selection. During the synthesis process,
the pitch and duration of these segments may be modified to generate the desired prosody. The
TD-PSOLA algorithm provides an efficient and essentially successful solution to perform these
modifications, although some perceptible distortion, in the form of ‘buzzyness’, may be
introduced into the speech signal.

Despite the popularity of the TD-PSOLA algorithm, little formal research has been undertaken
to address this recognised problem of distortion. The approach in the thesis has been developed

towards reducing the perceived distortion that is introduced when TD-PSOLA 1s applied to
speech.

To investigate the occurrence of this distortion, a psychoacoustic evaluation of the effect of pitch
modification using the TD-PSOLA algorithm is presented. Subjective expeniments in the form of
a set of listening tests were undertaken using word-level stimuli that had been mamipulated using
TD-PSOLA. The data collected from these expenments were analysed for patterns of co-
occurrence or correlations to investigate where this distorion may occur.

From this, parameters were identified which may have contnbuted to increased distortion. These
parameters were concerned with the relatonship between the spectral content of individual

phonemes, the extent of pitch manipulation, and aspects of the onginal recordings.

Based on these results, a2 framework was designed for use in conjunction with TD-PSOLA to
minimise the possible causes of distortion. The framework consisted of a novel speech corpus
design, a signal processing distortion measure, and a selection process for espeaally problematic
phonemes. Rather than phonetically balanced, the corpus is balanced to the needs of the signal
processing algonthm, containing more of the adversely affected phonemes. The aim 1s to reduce

the potenual extent of pitch modification of such segments, and hence produce synthetic speech
with less percepuble distortion.

The signal processing distortion measure was developed to allow the prediction of perceptible
distorion in pitch-modified speech. Different weightings were estimated for individual
phonemes, trained using the experimental data collected during the listening tests. The potential



benefit of such a2 measure for existing unit selection processes in a corpus-based system using
TD-PSOLA is illustrated. Finally, the special-case selection process was developed for highly
problematc voiced fricative phonemes to minimise the occurrence of percetved distortion in

these segments.

The success of the framework, in terms of generating synthetic speech with reduced distortion,
was evaluated. A listening test showed that the TD-PSOLA balanced speech corpus may be
capable of generating pitch-modified synthetic sentences with significantly less distortion than
those generated using a typical phonetically balanced corpus. The voiced fricative selection
process was also shown to produce pitch-modified versions of these phonemes with less
perceived distortion than a standard selection process. The listening test then indicated that the
signal processing distortion measure was able to predict the resulting amount of distortion at the
sentence-level after the application of TD-PSOLA, suggesting that it may be beneficial to include
such a measure in existing unit selection processes.

The framework was found to be capable of producing speech with reduced perceptible distortion
in certain situations, although the effects seen at the sentence-level were less than those seen 1n
the previous investigative experiments that made use of word-level stimuli. This suggests that the
effect of the TD-PSOLA algorithm cannot always be easily anticipated due to the highly dynamic
nature of speech, and that the reduction of perceptible distortion in TD-PSOLA-modified speech

remains a challenge to the speech community.

v



AAPIER 1L INTROL o4 N

1.1 Area of Research and Motivation
1.1.1 Area of Research

1.1.2 Statement of Problem

1.1.3 Research Aims & Objectives

1.2 Overview of Speech Production and its Representation
1.2.1 Speech Production

1.2.2 Physical Representation of Speech

1.2.3 Phonetcs

1.3 The Text-to-Speech Process

1.3.1 The Natural Language Processing Module
1.3.2 Digital Signal Processing Module

1.4 Speech Synthesis Strategies
1.4.1 Source-Filter Model of Speech
1.4.2 Articulatory Synthesis

1.4.3 Synthesis by Rule
1.4.4 Concatenative Synthesis

1.4.5 Summary

1.5 Speech Models for Concatenative Synthesis
1.5.1 Linear Prediction

1.5.2 Sinusoidal Models

1.5.3 Harmonic plus Noise Models
1.5.4 Pitch-Synchronous OverLap-Add
1.5.5 Corpus-based Techniques

1.6 Choice of Synthesis Model

1.7 Summary

Ut L »d ot b

Q -1 On



——— — e

,!_*i_:‘__.ﬂ- It 2 ]
»

» \
LY 2. hedd 2 A% P

2.1 Introduction

2.2 The TD-PSOLA Algorithm

2.2.1 Analysis
2.2.2 Modification
2.2.3 Synthesis

DLA /
erT’e " .

ORITHM AND PREVIOU

2.3 The Praat Softwate Implementation of the TD-PSOLA Algorithm

2.3.1 TD-PSOLA Analysis
2.3.2 TD-PSOLA Modification
2.3.3 TD-PSOLA Synthesis

2.4 The Basic Distortions introduced by TD-PSOLA in Pure Sine Waves

2.5 TD-PSOLA Distortions in Single Formant Stimuli o
2.5.1 Thresholds for Discrimination of TD-PSOLA Modified Single Formant Stimub

2.6 The Influence of Pitch Marker Position
2.7 The Influence of Analysis Window Size and Type

2.8 Extent of Manipulation
2.8.1 Positive versus Negative Pitch Shifts .

2.8.2 Original Fundamental Frequency and First Formant Frequencies

2.9 Speech Type
2.10 Analysis of Previous Research

2.11 Summary

43

1LY N

3.1 Introduction

3.2 Existing Test Procedures
3.2.1 Segmental Intelligibility Tests
3.2.2 Sentence-level Inteligzbility
3.2.3 Overall Quality Tests

3.3 Test Conditions
3.4 Participants
3.5 Experimental Procedure

3.6 Summary

_HAFLER 4 IIN VI L ANTLN L)

4.1 Introduction

4.2 Experiment 1: The Effect of Pitch Manipulation using the TD-PSOLA Algorithm

on Distortion Levels in Speech Sounds
Abstract

4.2.1 Introducton

4.2.2 Design

4.2.3 Sumul

4.2.4 Pilot Study

4.2.5 Choice of I\" Levels for Main Expenment

Vi

67

68

69
72
73

74
74
75
76

79

82
82
82
83
85
89



4.2.6 Procedure 21

4.2.7 Parncipants 92
4.2.8 Test Conditions 93
4.2.9 Results 93
4.2.10 Dascussion 96
4.2.11 Conclusions 99
4.3 Experiment 2: The Effect of the TD-PSOLA Algorithm on Distortion Levels 1n
Positive versus Negative Pitch Manipulated Speech 101
Abstract 101
4,.3.1 Introduction 101
4.3.2 Design 102
4.3.3 Samuh 103
4.3.4 Procedure 104
4.3.5 Participants 105
4.3.0 Test Conditions 105
4.3.7 Results 105
4.3.8 Discussion 107
4.3.9 Conclusions 109
4.4 Experiment 3: The Effect of Pitch Manipulation using the TD-PSOLA Algonthm

on Distortion Levels in Synthetic Speech at the Sentence-level 110
Abstract 110
4.4.1 Introduction 110
4.4.2 Design 11
4.4.3 Samuli 112
4.4.4 Procedure 115
4.4.5 Partucipants 115
4.4.6 Test Conditons | 116
4.4.7 Results | 116
4.4.8 Discussion 118
4.4.9 Conclusions 119
4.5 Experiment 4: The Effect of Pitch Manipulation using the TD-PSOLA Algorithm

on Distortion Levels in Speech for Various Voices 121
Abstract 121
4.5.1 Introduction 121
4.5.2 Design 122
4.5.3 Stmuli 123
4.5.4 Procedure 125
4.5.5 Partictpants 125
4.5.6 Results 125
4.5.7 Discussion 127
4.5.8 Conclusions 133

4.6 Experiment 5: The Effect of Aspects of the Original Recordings on Distortion

Levels in TD-PSOLA Pitch-Manipulated Speech 135
Abstract 135
4.6.1 Introduction 135
4.6.2 Design 136
4.6.3 Sumuls 137
4.6.4 Procedure 137
4.0.5 Parucipants 138
4.6.6 Test Conditions 138
4.6.7 Results 138
4.6.8 Possible Causes of Distortion 142
4.6.9 Conclusions 144

4.7 Investigative Experiments Conclusions 146

vii



HAPTER 5. L DELLING AND DEVELOPMENT
JF ANOVEL __ , AND SI ALL PROCESSING

DISTORITION MEA, 149

5.1 Introduction 149
5.2 Distortion Models 150
5.2.1 Vowels 151
5.2.2 Consonants 155
5.2.3 Summary 162
5.3 Review of Existing Speech Corpus Techniques 162
5.3.1 Introduction 162
5.3.2 Existing Corpus Designs: Size and Varety of Segments 163
5.3.3 Existing Unit Selection Procedures 165
5.3.4 Context Clustening 168
5.4 Summary 171
5.5 Development of a TD-PSOLA Balanced Corpus 172
5.6 Development of a Signal Processing Distortion Measure 172
5.6.1 Minimum Distortion for Pitch Modification of Voiced Fricatives 177
5.7 Summary 179

JIAL 1R 6, FEVALUA11()] ] _ SUORE

AND SI1GINAL D ‘

6.1 Introduction 181
6.2 Design 181
6.2.1 Hypotheses 181
6.2.2 Structure of Expenment 182
6.3 Stimuli 183
6.3.1 Simulating the Corpora 185
6.3.2 Sentence-level Sumuls 186
6.4 Procedure 191
6.5 Participants - 191
6.6 Test Conditions 192
6.7 Results 192
6.7.1 Results of the Evaluation of the Signal Processing Measure 192
6.7.2 Results of the Evaluation of the TD-PSOLA Balanced Corpus 194
6.8 Discussion 196
6.9 Conclusions 197

HA I R _ | ,_ ot A : 9

7.1 Conclusions 199
7.2 Further Work 202

Viii



APPENL

Appendix A. Code and Interface 205
Appendix B. String Lists for Experiments 218
B.1 CVC Syllables with Varying Central Vowel for Expedment 1 and 2 218
B.2 CVC Syllables with Varying Inital Consonant for Expenment 4 218
B.3 Sentence-Level Sumuli for Expenment 3 218
B.4 CVC Syllables for Expenment 5 218
B.5 Sentence-Level Sumuli for Expeniment 6 218
Appendix C. Instructions for Experiments 219
Appendix D. Experimental Data 221

DREVIALIO]

w—

ACRONYMS AND A

X



BELANK IN ORIGINAL



LIST OF FIGURES

FIGURE 1.1 THE SPEECH PRODUCTION ORGANS (FROM DUTOIT, 1997) ...coovvinniiiriiiiiiiiiiiiininninnns 6
FIGURE 1.2 TIME-DOMAIN WAVEFORM OF THE WORD “KIT.......cottrerrereercrerroresctrsossssscsesscssscenses 7
FIGURE 1.3. SPECTRUM OF PHONEME L/ ..oeoeeeeeveetitntereeecensesseressssssssssssnsasssssssnsssnssssssssssssssssssssssnss 8
FIGURE 1.4 SPECTROGRAM OF THE WORD “KIT . vtuueereecernrensrsecereensrsscsseansrsssssssrssssssssssorssssansssssns 9
FIGURE 1.5 GENERAL TTS SYSTEM....c0ooteeeeecrecessssassressesssstrersessorsessssssnssessiossssssssssssssssssssnsasarsas .14
FIGURE 1.6 NATURAL LANGUAGE PROCESSING MODULE .....ccctmremtrecienrenmrenscesersssccssasesccnssccassas 15
FIGURE 1.7 A TYPICAL CONCATENATIVE SYNTHESIS SYSTEM ...cccttiirisenrisesscssranessaannnescsesssesses 21
FIGURE 1.8 THE PSOLA OPERATION ....ccctettieieeserserserssassstsassessessssnssssssanssstasssssssesssssssssssesssossssss 32
FIGURE 2.1 PRAAT SOFTWARE EDITOR WINDOW ..cceuctteercisensersessesssncsossasnsascrssssseossassesssasssessanes 46
FIGURE 2.2 TD-PSOLA PITCH AND DURATION MODIFICATION IN PRAAT ...cceeeeiciiiiiiiinninnnnee, 47
FIGURE 2.3 TD-PSOLA DISTORTIONS: AMPLITUDE MODULATION ...cccoeeinersrnnsnncanssenannaansencanees 49
FIGURE 2.4 TD-PSOLA DISTORTIONS: FREQUENCY MODULATION....ccccesternmmnnniossncsssnnsssnaccenn. 50
FIGURE 2.5 SPECTRA OF TD-PSOLA DISTORTIONS IN SINGLE FORMANT STIMULL: FM

IV ODULATION «.ontteteeeetieeesesenssassssssssssssnssssssesssssensesssstsssssossssssssssssesssssassssrsssstassasasssanstaesstans 51
FIGURE 2.6 WAVEFORMS OF SYNTHESISED AND TD-PSOLA MODIFIED VERSIONS OF

00.9HZ FUNDAMENTAL SIGNAL .ocutveriereceessecsssssrsessaresseassasssssssassssssssssssssssssssssssssassssrasasanns 53
FIGURE 2.7 SPECTRA OF SYNTHESISED AND TD-PSOLA MODIFIED VERSIONS OF 90.9HZ

FUNDAMENTAL SIGNAL..otueeeireeeesnsserssssersssssosossssssesssssssnssssssssssssssssnsssnsasasssssssasassssssssasssons 53
FIGURE 2.8 MAGNIFIED VIEW OF THE FIRST FORMANT REGION.....cccetvtierenensniscssssscssanenanencacnens 54
FIGURE 2.9 WAVEFORMS, SPECTRA AND FIRST FORMANT REGION OF SYNTHESISED AND

TD-PSOLA MODIFIED VERSIONS OF 95.24HZ FUNDAMENTAL SIGNAL ......cccocevrienneannnn.. 55
FIGURE 4.1 BOXPLOT OF PITCH MANIPULATION AND DISTORTION LEVELS.....cccccceeeneranceavensenee. 94
FIGURE 4.2 COMPARISON OF PARTICIPANT RESPONSE ..ccctecernncnuiscessarenancseccsnnnansssronisssssrossensonse 96
FIGURE 4.3 BARCHART OF CVC SYLLABLES AND DISTORTION RATINGS.....c.ccccceerrerrentnanncannene 98
FIGURE 4.4 STIMULUS IDENTITY AND DISTORTION RATINGS ....ccoevrimericrrniemmniescinsenciseresnnsennannes 08
FIGURE 4.5 POSITIVE AND NEGATIVE PITCH MANIPULATION AND DISTORTION RATING ........ 106
FIGURE 4.6 SCATTERGRAM OF RELATIONSHIP BETWEEN +VE AND -VE MODIFICATIONS........ 107
FIGURE 4.7 SCATTERGRAM OF DISTORTION LEVELS FOR INDIVIDUAL STIMULI ......ccccoceevunnen. 108
FIGURE 4.8 BARCHART OF SYNTHESIS INVENTORIES WITH DISTORTION AND HUMANNESS

R A TING S . eeetteeeeeeerieseeessonssssssssssssessssersasssssssssssssssnssessesasssssasssssanesssssesensrassssessssssssansasnsss 117
FIGURE 4.9 BARCHART OF SENTENCES SYNTHESISED FROM TWO INVENTORIES AND

DISTORTION AND HUMANNESS RATINGS ....cccetesseerrearereesonessssssssasssnscssssssrssssosssssssssessassoses 118
FIGURE 4.10 COMPARISON OF DISTORTION FOR FOUR VOICES AT 5 LEVELS OF PITCH

IMLANIPULATION covtetenesiessnorssssesssssessssssessssssssssssssesssssssssssssssssssssensessssassassssersssssssnsssssssanses 126
FIGURE 4.11 BOXPLOT OF DISTORTION LEVELS IN CONSONANT AND VOWEL SPEECH

S OUNDS . ceeeereereerersseeesssesssssssssssnsossseasanssssssessssssssassssseessssssnssssssonsessnsssssnnseansssossssannnssnnssnans 128
FIGURE 4.12 BARCHART OF VOICE 1 CVC STIMULI and DISTORTION.......c.cccccuteeceernserssescananenes 129
FIGURE 4.13 BOXPLOT OF VOICE 1 CVC STIMULI VERSUS DISTORTION ...cceevereeereeceeressesnnances 129
FIGURE 4.14 STIMULI IDENTITY AND DISTORTION FOR VOICE ] AND 2 .....ouveriirieennirrennernnnnenes 130
FIGURE 4.15 SCATTERGRAM OF STIMULI IDENTITY AND DISTORTION FOR VOICE 1 AND 2 AT

159 PITCH MANIPULATION .o.uveettetsesscrsessssssssasssssssssorsssssssssonsssssssssssonssssssssssssssssssssssenssnss 131
FIGURE 4.16 WAVEFORM OF THE WORD “CART” WITH ASYMMETRY ......... vereresessesessnnesrannes 136

FIGURE 4.17 FOUR VERSIONS OF 6 VOWEL STIMULI AND DISTORTION DETECTION LEVELS... 139
FIGURE 4.1 8 FOUR VERSIONS OF 7 CONSONANT STIMULI AND DISTORTION DETECTION

Xi



FIGURE 4.19 GLOTTAL SOURCE FOR THE PRODUCTION OF /A .urettitirieirenccrissescrenseensecrossnssenes 144

FIGURE 5.1 % DISTORTION DETECTION FOR CHECKED AND FREE VOWELS ......ccoiiiiieiiierennnn. 152
FIGURE 5.2 DISTORTION RATINGS FOR CHECKED, MONOTHONG AND DIPHTHONG VOWELS .. 154
FIGURE 5.3 BARCHART OF % DISTORTION DETECTION FOR PHONEME CATEGORIES............... 156
FIGURE 5.4 DISTORTION RATINGS FOR VOICE 1 PHONEME CATEGORIES...cccttticrrereracerrancanees 159
FIGURE 5.5 DISTORTION FOR ALL VOICES FOR PHONEME CATEGORIES....ccccceretermsenrecrsnnceeees 160
FIGURE 5.6 SCATTERPLOT OF COST AND MOS SCORES....cccvuererermrerrerannssrsvsestsssssicsscssssarsssssssnns 174
FIGURE 5.7 SCATTERPLOT OF WEIGHTED COST AND MOS RATINGS ....coevcriiiiirrnrnnenenniiciienens 176
FIGURE 5.8 VOICED FRICATIVE MODIFICATION....ccccvtieserrsenncsssersonsssssssssssssassossssssssssassasssssananss 178
FIGURE 6.1 SCATTERGRAM OF MOS RATINGS AND SIGNAL PROCESSING COSTS....cccccovvuvueere 193
FIGURE 6.2 BARCHART OF DISTORTION FOR VOICED FRICATIVE SELECTION METHODS ......... 194
FIGURE 6.3 DISTORTION LEVELS FOR STIMULI SYNTHESISED FROM TWO CORPORA................ 195
FIGURE A.1 SELECTION OF NUMBER OF STIMULI FOR EXPERIMENT «ccceucrvernrencaccrnrenseenieosennenne 205
FIGURE A.2 MOS INTERFACE FOR EXPERIMENTS 1, 2,3, 4 AND 6.cuernnrrcciaicneniiinneeniinnennacans 205
FIGURE A.3 INTERFACE FOR EXPERIMENT D.eecvetreercerseserssessosaessrorsossssssssssssassssosessassesssasssssasaans 206
FIGURE A.4 FORM B X PERIMENT ..ouiettntieressanccsssarassessrscresssossnssnsssssssssssssonssssssessossassssssnssnsssass 206

X1}



LIST OF TABLES

TABLE 1.1 PHONEMES OF THE ENGLISH LANGUAGE .....ctcctieteienrerrrereererrensecesssnsssessassessssassosssnens 13
TABLE 2.1 SUMMARY OF ACCEPTABLE EXTENT OF TD-PSOLA MODIFICATIONS ....c.coveuneeneee. 59
TABLE 4.1 % PITCH MANIPULATION AND CORRESPONDING FO VALUES IN MELS AND HZ ....... 01
TABLE 4.2 SUMMARY STATISTICS: DISTORTION LEVELS FOR % PITCH MODIFICATIONS........... 93

TABLE 4.3 SUMMARY STATISTICS: MEDIAN DISTORTION FOR +VE AND —VE MODIFICATIONS 105
TABLE 4.4 SYLLABLES AND FUNDAMENTAL FREQUENCY CONTOURS OF TEST SENTENCES.... 113

TABLE 4.5 SYNTHESIS FUNDAMENTAL FREQUENCIES OF SYLLABLES .......ccoviennvntsccsicnnnasencane 114
TABLE 4.6 SUMMARY STATISTICS: MEDIANS OF DISTORTION AND HUMANNESS. .................... 116
TABLE 4.7 FUNDAMENTAL FREQUENCY VALUES FOR VOICES ......ceicieciniiiiircmsssnnnnnnnneisiinnnne 124
TABLE 4.8 SUMMARY STATISTICS: DISTORTION RATING FOR FOUR VOICES ....ccotceesnsanunninanan 126
TABLE 4.9 CORRELATIONS OF VOICES AT EACH PITCH MANIPULATION LEVEL..............cccc..... 132
TABLE 4.10 SUMMARY STATISTICS: % DISTORTION DETECTION FOR 4 VERSIONS OF 6 CVC

S Y L L A B LE S . eeuuetnseeeernereeessssesssssssssssssssonsssanssssssssassssnasssassnssnssssnssssnsesssrasssasassssssssastasssassvons 138
TABLE 4.11 SUMMARY STATISTICS: % DISTORTION DETECTION FOR 4 VERSIONS OF 7 CVC

S Y L L A BLES . ..eeteuieeeennneeessseesassssesssessssssnssssssssssssesesssesnsossnssansssossssasssssrsssnssssstussssessrsssssesas 140
TABLE 5.1 VOWEL DATA (EXPERIMENT 5)...uutiecircemeeeeiisissinreissssssnnessssansessasssssssnssssansasssssssssss 151
TABLE 5.2 VOWEL DATA (EXPERIMENT 1)..ccceiicuieiicsiunnnesennnnnnisninsssssnssssnsissnssisssseissnnsssssannes 153
TABLE 5.3 CONSONANT DATA (EXPERIMENT 5).uucceiercesinssnnnnnniscsssniesssssnncsssssnissssnssacsssascsssssnes 156
TABLE 5.4 CONSONANT DATA (EXPERIMENT 4) ...ccciiiiinmmnirennennsrenisssssissssnnssannassinssssssssssnnsosses 158
TABLE 5.5 PERCENTAGE DISTORTION DETECTION FOR DIFFERENT PHONETIC CATEGORIES ... 172
TABLE 5.6 WEIGHTS FOR DIFFERENT PHONETIC CATEGORIES .....ccceeeeciienmmireccionsenenannecicnnnnne. 176
TABLE 6.1 SEGMENTS AND TARGET FO VALUES ...ccccctrecrseraccrsucsessrssncsrsssasassanscnsssssassssssssesenssns 184
TABLE 6.2 FREQUENCIES OF OCCURRENCE OF PHONEMES IN SPOKEN TEXT AND CORPUS

RE P RESENTATION touitettitttteseesssssssssssssssssssesssssssssssssssssnsasesssssssssssssssssssssssssssessssssasnsssnsnsnans 188
TABLE 6.3 PHONEME REPRESENTATION IN THE TD-PSOLA BALANCED CORPUS......ccccerrenen 189
TABLE 6.4 STIMULI AND SIGNAL PROCESSING COSTS ... ciuitcrrrecencenncrnecssessoncesssssssrssssessasssonnss 190
TABLE 6.5 FO CONTOURS AND DURATION POINTS FOR VOICED FRICATIVES ....cccooerirenrsennennnes 191
TABLE 6.6 SUMMARY STATISTICS: SENTENCES, COSTS, AND MOS RATINGS .....cccooveeiirennnnnne 192
TABLE 6.7 SUMMARY STATISTICS: MOS RATING FOR VOICED FRICATIVE SELECTION

IMETHODS ..oeereeereenssrensessesesssssssssssssssssssssosssssssssssessonssstnsesssssssssansesnastasssssnsssssssssssansensassnns 194
TABLE 6.8 SUMMARY STATISTICS: MOS RATINGS FOR PHONETICALLY AND TD-PSOLA

BALANCED CORPUS STIMULL ..eouueeseeeessssssressessassssssesessssssssssssessssassescesesssesnssassssssssssssssnses 195

X111



BELANK IN ORIGINAL



This research was funded by Bournemouth University.

First thanks go to my supervisors, Dr Martin Lefley and Dr Chns Cowley who have
supported and advised me throughout the course of the research. Without them this would

not have been possible.

I would also like to thank my colleagues for their friendship and technical support, and
especially for their participation in many of my expenments.

Finally, thanks to my family for the continuing support of my path through life.



BELANK IN ORIGINAL



I hereby declare that the research documented in this thesis was carried out by myself i1n the
Design, Engineering and Computing Department at Bournemouth University.

Jenny Longster

The following conference and journal papers were published during the course of this work:

Longster, J., Sahandi, R. & Vine, D.S.G. (1999). Prosody Generation in the Time Domain. In:
Proc. SPECOM 99, Moscow, 170-173.

Vine, D.S.G., Sahandi, R. & Longster, J. (1999). Recording Concatenative Units for Speech
Synthesis using a Reference Pitch Prompt. In: Proc. SPECOM 99, Moscow, 174-177.

Vine, D.S.G., Longster, ]. & Sahandi, R. (1999). Reference Pitch Prompting: A Recording
Method for Concatenative Speech Synthesis. In: Proc. IEE Collogsaum on Interactive Spoleen
Dialogue Systems for Telephony Applications, London.

Longster, J., Sahandi, R. & Vine, D.S.G. (1998). Facial Animation to Support Bi-Modal
Communication. In: KT°98 International Conference on Knowledge Transfer through Multimedsa &
Viirtual Realsty, Cairo, 13-14 Aprl 1998, 137-144.

Sahandi, R., Longster, J. & Vine, D.S.G. (1998). Text-to-Speech Animation. Informatica, 22,
445-450.

xvil



BELANK IN ORIGINAL



Chapter 1. Introduction

1.1 Area of Research and Motvaton

1.1.1 Area of Research

Text-to-Speech (TTS) is the art of designing talking machines, whereby arbitrary sentences 1n a
textual format are automatically transformed into the spoken word. Speech technology potentally

provides an efficient mode of communication between human and computer, and has a wide

range of applications from reading machines for the visually impaired, to hands and eyes free
operations of controls in avionics. In recent years, many text-to-speech systems have been
developed that are able to provide intelligible, unlimited vocabulary output, however it 1s sull
possible to distinguish the resulting synthetic speech from natural speech (Sproat ef 4/ 1999,
Black 2002). Text-to-speech synthesis is a complex interaction between two very different fields
of research, namely Natural Language Processing (NLP) and Digital Signal Processing (DSP).
Syrdal ef al. (1998b) suggest that text-to-speech systems may be improved in terms of naturalness
by addressing the three areas of linguistic analysis, prosody modeling, and speech synthesis
models. There remain aspects needing attention in all stages of the text-to-speech process but 1t 1s
the domain of speech synthesis that is the focus of this work. A major issue in speech synthesis
research is concerned with maintaining the resulting speech quality at the digital signal processing
stage, and it is this challenge that provides the motivaton for the thests.

1.1.2 Statement of Problem

There are three main speech synthesis approaches: articulatory, formaat, and concatenauve
synthesis. Concatenatve synthesis is currently the most promising approach, providing intelligible
speech output in an efficient manner. Its main drawback is 1n the use of pre-recorded speech
segments stored in an inventory, which makes this approach somewhat inflexible i1n terms of
spectral modificadons. When synthesising a2 new utterance, such modificatons are often
necessary if segments with suitable prosody cannot be found to exst in the inventory. To
increase flexibility, corpus-based approaches to concatenative synthesis store multple versions of

speech segments. These segments are extracted from different phonetc and prosodic contexts



and hence have varying voice qualities and prosody (pitch and durations). Dunng synthesis, the
‘best’ segment is selected from the corpus, in terms of criteria such as phonetic context, position
in syllable, word and phrase, and pitch and duration using a process known as wmiz selection.
However, the prosody of these segments may stll not be suitable when synthesising arbitrary
sentences; 1t 1s not possible to store every combination of pitch and duration due to the
vanability of speech. Whilst the corpus-based approach reduces the distance (in Hz and seconds)
of the candidate values of the segments in the corpus to the target values of pitch and duration, a
signal processing algorithm may still be necessary to perform small modifications. The Time-
Domain Pitch-Synchronous OverLap-Add (TD-PSOLA) algorithm provides an efficient and
generally successful solution, although certain modifications introduce distortion in the form of
‘Duzzyness’ into the speech. During the thesis, the perceptble distortion that occurs 1n speech
after the application of the TD-PSOLA algorithm will be termed ‘buzzyness’. Unless otherwise

stated, the term distortion is defined as subjective perceived distortion, as opposed to objective

signal distortion.

In a corpus-based approach to concatenative synthesis, the design of the speech corpus is usually
phonetically balanced, not balanced to the additional needs of the signal processing algorithm.
This lack of consideration may lead to the introduction of increased perceptible distortion in
certain circumstances when signal processing algorithms, such as TD-PSOLA, are used for
prosodic modifications. Indeed, research often reports results for TD-PSOLA modified speech

as ‘success 1n the main’ or as giving ‘the best and worst’ results.

For corpus-based systems, unit selection algotithms are used to select the best candidate segment
from the corpus duning synthesis. Current unit selection processes that take into account the cost
of signal processing in terms of the distortion that may be introduced, often do so by calculating
the distance of the candidate values available in the corpus to the target values of the construct to
be synthesised. The distance can be defined as the amount in Hz or seconds that the signal
processing algorithm must modify the pitch or duration of the speech segments. This cost 1s
estimated as an absolute distance for all segments, rather than weighting the distance according to
the peculiariies of the particular algorithm. This neglect may lead to increased perceived

distorton.



The thesis is concerned with maintaining the speech quality at the digital signal processing stage
of the speech synthesis process, by minimising the perceptible distortion in the output.

1.1.3 Research Aims & Objectives

The thesis attempts to address the specific problem of the introduction of distortion, perceived
as ‘buzzyness’, when speech is modified in pitch using the TD-PSOLA algonithm. The aim of the
research is to develop a framework, which will facilitate the synthesis of speech using TD-
PSOLA with reduced distortion. The framework will consist of a speech corpus design, tailored
to the needs of the TD-PSOLA algorithm, and a signal processing distortion measure, weighted
according to the effect of the algorithm on individual speech segments. The design of the corpus
and signal processing measure will be guided by the results of investigative expenments
undertaken to determine the effect of TD-PSOLA on speech. This will allow the development of
an approach to speech synthesis which best minimises perceived distorton. The implementation
of the speech corpus design and signal processing measure will be formally evaluated to
determine whether the framework reduces distortion when speech is modified using the TD-
PSOLA algorthm. To this end, the work has the following research objecuves:

1. Idendfy extant speech synthesis models: The first objective is to identify and cnucally
evaluate the popular models for the generation of synthetic speech. The remainder of this
chapter reviews the entire speech synthesis process to set the work in context, provides
the terminology and background required, and ends by identifying the main speech
synthesis models in existence to meet this objective. The model considered most
potentially successful for the future of speech synthesis is identfied and justified as the
choice for further investigation during this thesis.

2. Analyse the effect of the TD-PSOLA algorithm: The second objectve is to identify some
of the potential distortions associated with the algorithm. Chapter 2 begins by presenung
the operadon of the TD-PSOLA algorithm mathematcally and then describes the
implementation of the algorithm to be used during the research. Throughout the thesis,
the Praat speech software (Boersma & Weenink, 1999) is used to analyse speech samples
and provides the implementation of TD-PSOLA under invesugaton (see Secuon 2.3 for
an introduction to this software). The basic distortions TD-PSOLA introduces into

abstract signals, such as pure sine waves and single formant signals, are then investugated.




The distortion referred to here is in the form of objective signal distordon, rather than
subjective perceptible distortion. The chapter then attempts to determine whether the
objecuve distortions observed are perceptible, and whether they may be perceptible 1n
more complex signals such as natural speech. To this end, extant research concerning
TD-PSOLA 1s reviewed, identifying parameters that may lead to the occutrence of
perceptble distortions.

. Review speech assessment techniques: Chapter 3 presents a review of current, popular
subjective techniques and practices for the assessment of intelligibility and quality of
speech. This 1s used to inform the design and procedure of expeniments carried out
dunng this work.

Investigate the effect of TD-PSOLA on natural speech: Chapter 4 documents a sentes of
subjective listening experiments undertaken to investigate the effect of the TD-PSOLA
algonthm on resulting distortion levels, when used for pitch-modification of natural speech.
The results of these expenments are used to suggest parameters that may contrbute to
perceptible distortion.

. Develop a framework for producing synthetic speech with less perceived distorton:
Chapter 5 documents how the results of the investigative experiments were analysed to
inform the development of a novel speech corpus, tailored to the needs of the TD-
PSOLA algorithm. The data were also analysed to develop a signal processing distortion
measure. The measure is weighted according to the phonetic identty of the individual
speech sounds to reflect how each segment responds to the algonthm in terms of
perceived distortion levels. Finally, a special-case selection process was developed for
highly problematic voiced fricative phonemes.

Evaluate the framework: Chapter 6 describes an experiment to determine the success of
the speech corpus at producing synthetic speech, with less perceived distortion than a
standard approach. It also evaluates the validity of the signal processing distortion
measure to justify the need for such a measure in standard unit selecion procedures.
Finally, the special-case voiced fricative selection process is evaluated in terms of its

ability to produce TD-PSOLA-modified versions of these phonemes with less perceived

distortion.



The following introductory material in Chapter 1 explains the context for the work and provides
the necessary conceptual underpinning. Initially, an overview of human speech production and its
physical and phonetic representation is given, followed by an introduction to the overall text-to-
speech process. Following this, a detailed and critical examination of some current, more popular
techniques used at the speech synthesis stage is presented. The chapter then discusses the
selection of concatenative synthesis, using a corpus-based approach in conjunction with the TD-
PSOLA algorthm, as a promising direction for speech synthesis and for further investugation
during this research. Finally, the chapter reiterates the structure of the remainder of the thesis.

1.2 Overview of Speech Production and its Representation

Speech synthesis is a complex rescarch field. To fully appreciate this complexity and the
challenges of speech synthesis research, knowledge of the human speech production process is
essential. It is also necessary to understand the physical representation of the resulting speech

signals and be conversant with phonetics to be able to describe speech 1n an abstract symbolic

representation.

1.2.1 Speech Production

Phonation or human speech is produced by the vocal organs, which are depicted in Figure 1.1. The
respiratory organs of the lungs and the diaphragm produce and force air up the trachea and
through the vocal cords (or folds) to the main cavities of the vocal tract: the pharynx, and the

oral and nasal cavites.

The opening between the vocal cords is called the glottis. Air flows freely through the glotus
during breathing or unvoiced speech such as /s/ or /f/, but during voiced speech, such as /1/ or
/E/, the cavity containing the vocal cords (the larynx) is obstructed.
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FIGURE 1.1. THE SPEECH PRODUCTION ORGANS (FROM DUTOIT, 1997)

Increasing air pressure forced upwards causes the vocal cords to open to release this air, leading
to a pressure drop and the closure of the glottis. In this way, the vocal cords modulate the airflow
by rapidly opening and closing, causing a vibrating sound. This is in the form of a glttal waveform
or a sequence of pulses that are fed into the vocal cavities, from which voiced speech is
produced. The frequency of this sound depends on the mass and tension of the vocal cords, and
is known as the fundamental frequency. Average fundamental frequencies (f0) range from 70 to 200,
150 to 400, and 200 to 600Hz for men, women and children respectvely (Dutoit, 1997).

Dunng unvoiced speech, the airflow in the vocal cavities is turbulent due to several constrictions
in the vocal tract, which may occur anywhere between the glottis and the mouth. Some speech

sound production requires both this turbulent noise and a glottal waveform to be present at the
same time, for example duning the production of the voiced fricative /v/. Alternatively, the air
from the lungs may be stopped totally by the closure of the vocal cords, called a glttal stop or by a

closure somewhere in the vocal tract, such as the lips.

The pharynx and oral cavity are used for most sounds, although nasal sounds (/m/ or /n/)

require the nasal cavity to be shunted with the oral cavity by lowering the velum. The size and
shape of the oral cavity are altered by movements of the palate, tongue, cheeks, lips and teeth,

which determine the tmbre of the sounds produced.



1.2.2 Physical Representation of Speech

The perceptual aspects of speech such as pitch, rhythm, loudness, and tmbre have acoustic
correlates of fundamental frequency, duration, intensity, and spectral energy distribution that can
be represented diagrammatically in the time and frequency domain.

In the ime domain, the basic representation of a speech signal is the waveforms, which depicts the
speech signal as a series of pressure changes in air as a function of ume. Figure 1.2 shows a time-
domain waveform of the word “kit” recorded by a female voice.

FIGURE 1.2 TIME-DOMAIN WAVEFORM OF THE WORD “KIT”

The acoustics of the speech originate from the production. Voiced speech has a fundamental
frequency (f0), produced by the opening and closing of the vocal cords, and the harmonic
components of this frequency. Unvoiced speech has no fundamental frequency and no harmonic
structure; it may be viewed as white noise caused by air forced through the constricted vocal
tract. The waveform in Figure 1.2 shows the periodic, or voiced parts of speech (/1/), and the
noisy, or unvoiced parts of speech (/k/ and /t/) in the word “kit”. It also shows the loudness or

intensity of the speech as the amplitude of the pressure changes from the resting value.

The frequency domain representation of a speech signal, or spedrum, can be generated by
calculating the Discrete Fourier Transform (DFT) of the time-domain signal. As most speech

sounds are bounded 1n tme, or are only guasiperiodic, meaning they vary slightly from one period



to the next, the spectrum of a speech signal 1s usually calculated at one particular point in ame.
This 15 achieved by applving an analysis window, such as a Hamming or Hanning window, which
makes the small portion of sound of interest fade in and out and renders the rest of the signal
zero. The window 1s usually of 10ms to 30ms duration, over which time the signal is assumed to
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FIGURE 1.3. SPECTRUM OF PHONEME /1/

In Figure 1.3, the spectrum of the phoneme /I/ clearly shows the many different frequency
components, and the 1ntensity of these components, that make up a complex signal at a particular
instant. The first spike or narrow peak at 240 Hz represents the fundamental frequency, with the
other spikes representing the harmonics of this frequency. The timbre of speech depends on the
overall spectral shape, called the spectral envelope, which appears as a series of broad peaks showing
higher energy levels. The peaks and troughs in the spectral envelope are determuned by how the
vocal tract modifies the excitanon signal due to its resonant frequencies, causing formants (poles)
and sometumes antiformants (zeros). The first, second and third formants (f1, £2 and {3) are
visible, with their bandwidths and amplitudes, at approximately 500Hz, 2400Hz and 3000Hz

respectvely. These values were confirmed using the Praat software (Boersma & Weenink, 1999)



and found to lLie within the typical ranges for the female productuon of /I/. The formant

frequencies depend on where and to what extent the vocal tract is constricted (Flanagan, 1972).

For speech applicanons, it 1s not always convenient to view only one particular instant of the
signal in the frequency domain. Spectrograms (Koenig e al., 1946) provide both a time and
frequency domain representation of speech and are composed of a collection of spectra.
Frequency 1s shown on the vertical axis and time on the honzontal, with a third dimension of
amplitude represented by shade of grey. The speech sounds may be shown as the temporal

evolution of the spectral components and their varying intensity.
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FIGURE 1.4 SPECTROGRAM OF THE WORD “KIT”

Figure 1.4 shows a spectrogram of the word “kit”. Voiced sounds can be seen to have more
energy focused at lower frequencies with each formant centre frequency, bandwidth and
amplitude evolving over tme. Unvoiced consonants are more silent, having lower energy levels

usually focused at higher frequencies. Unvoiced sounds are also less steady involving rapid

changes.



1.2.3 Phonetics

Phonetics 1s concerned with transcrbing written text into the cotrect pronunciation of the
spoken word using a symbolic representation. Each language has its own phonetic alphabet that
describes every possible phoneme. A phomerre is an abstract unit that may be defined as the
smallest contrastive unit in a language (Crystal, 1987) or alternatively as a group of sounds
classified as the same by native speakers of that language. An example given by Gelfand (1998)
ilustrates the phoneme /p/ in “pipe” is recognised as a2 /p/ in both positions in the word,
although in fact they are produced differently (the first is accompanied by a burst of air, the
second is not) leading to two allgphones of that phoneme, or dissimilar members of the same
phonemic class. The acoustic realisation of a phoneme is often called a phore. There are
approximately 40 phonemes in the English language (Breen ez 2/ 1996, Donovan 1996) although

the number cannot be determined easily due to the complexity and vadability of speech.

The IPA (International Phonetic Alphabet) notation (IPA, 1949) has been developed to associate
phonetic symbols to sounds using Greek letters, which unfortunately do not lend themselves to
processing with computers not in possession of correct character sets. The SAMPA (Speech
Assessment Methods Phonetic Alphabet) notation (Wells e al, 1992) provides a machine-
readable phonetic transcription. The SAMPA notation will be used throughout the thesis to

describe the speech under investigation.

It is often useful to group speech sounds into phonetic classes (articulatory phonetics) according
to manner of articulation i.e. the type of articulation needed to produce the speech sound. The

English language i1s compnised of two main classes: vowels and consonants.

English vowels can be grouped as either checked (of short duration) or free (of longer duration).
The free vowels are made up of monothongs (one vowel sound in a single syllable, such as /i:/ in
“ease”) and diphthongs (two vowel sounds in a syllable, such as /U@)/ in “cures”) although it 1s
often difficult to classify them as such. There is also one unstressed vowel /@/, occurring for
example at the beginning of the word “another”. A review of vowel perception may be found in
Kent & Read (1992).

10



Consonants may be described as fricatives, affricatives, plosives or stops, nasals, and semi-vowels

(glides and liquids). Their manner of articulation is described below and examples are given in

Table 1.1.

e Fricatives and Affricatives (Hughes & Halle, 1956): during the production of fricatves,
the vocal tract is constricted at vardous places such as the glottis, hard palate, teeth or lips
making the airflow turbulent. Affricatives begin as plosives, but when the vocal tract is

released, a fcative sound emerges.

o Plosives (Halle 7 a/., 1957): the vocal tract is closed causing a build-up of pressure. When
it reopens, a burst of sound 1is released.

e Nasals (Fujimura, 1962): when the vocal tract is closed and the velum is lowered, air flows
out through the nasal cavity.

o Semivowels (O’Connor ef 4/, 1957) consist of two groups: glides and liquids. Production
of glides involves a fast transition from a vowel-like open position, producing a fricanon.
Liquids involve vowel-like articulations, which are produced in conjunction with partial
closure of the vocal tract with the tongue.

English consonants can be further grouped into obstruents (plosives, atfncauves and fncaaves)
and sonorants (nasals, liquids and glides). The obstruents may be loosely classified as voiced or

voiceless although this depends heavily on their context. O’Shaughnessy (1987) provides a more
detailed classification. '

Table 1.1 describes the speech sounds in the English language, grouped according to manner of
articulaton. The SAMPA notation, an example word, and the transcription of this word are

given. In the final column, consonants are classified as either voiced or unvoiced, and vowels

(which are all voiced) are classified as either monothongs or diphthongs.
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Table 1.1. Phonemes of the English Language

Speech sounds may also be described by place of articulation i.c. the location of primary constricdon
needed to produce the speech sound, depending on whether the sounds are produced at the

front or back, with an open or closed mouth etc. The more common places of articulation are

listed here:
e Labial: lips e.g. /p,b, m/
¢ Dental: teeth e.g. /T/ as in “thin”
e Labio-dental: lower lip and upper teeth e.g. /f, v/
e Alveolar: blade/ up of tongue with dental ridge e.g. /t/
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e Palatal: tongue and roof of mouth e.g. /dZ/ as in “jam”

¢ Palato-alveolar: as alveolar but tongue tip is lowered e.g. /S/ as in “shoe”
® Velar: back of tongue and roof e.g. /k, g/

¢ Glottal: momentary closure of throat e.g. “go’ a lo” 0’ bo’lle”

Vowels may be described from front to back in terms of tongue elevaton and lip rounding.
Front vowels (/1:, I, el, E, {/) are produced with the lips retracted while back vowels (/u:, U,
@U, O:, Q, A:/) require rounded lips. Middle vowels (/V, @, 3:/) are produced when the tongue
elevation is in the vicinity of the hard palate. Vowels may also be described as tense or lax
depending on the degree of muscle contraction e.g. /i:/ (“peat”) is tense and /I / (“pit”) is lax.

1.3 The Text-to-Speech Process

A Text-to-Speech (TTS) system automatically converts textual input into audible speech. Figure
1.5 shows a general TTS system, consisting of a Natural Language Processing (NLP) module and
a Digital Signal Processing (DSP) module.

NATURAL [ DIGITAL

LANGUAGE [ SIGNAL
PROCESSING | | PROCESSING |

FIGURE 1.5 GENERAL TTS SYSTEM

The NLP module takes the textual input and produces a phonetic transcription of the sounds

that are to be produced. It also predicts prosodic information from the text, describing how the
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sounds are to be produced in terms of rhythm and intonation. The DSP module synthesises the

required speech by transforming this symbolic information into a physical waveform.

In the following sections, a brief descripton of each process that occurs in these two modules is
given. This illustrates the complexity of text-to-speech and sets the topic of this research of speech
synthesis at the DSP stage in context.

1.3.1 The Natural Language Processing Module

Figure 1.6 shows a more detalled diagram of a general Natural Language Processing (NLP)
module. The NLP stage 1s extremely difficult, as mere text does not contain all of the informaton

needed to produce speech.
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FIGURE 1.6. NATURAL LANGUAGE PROCESSING MODULE

The first block of the NLP module converts the text to phonetic information and may be further
broken down into a fext normalization process and a word pronunciation process. The second block
produces prosody information from the text and from the output of the word pronunciation

process. It is broken down into smaller processes that determine accenting, phrasing, duration, and

intonation. For a review, see Edgington e a/. (1996a).
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1.3.1.1 Text Normalization
A text normalization module, or text preprocessor, allows any ambiguous text, such as numbers,
dates, abbreviations, acronyms and idiomatics, in any format to be resolved. It parses the text

Into sentences and organizes these into lists of smaller units such as words.

1.3.1.2 Word Pronunciation
Once the sequence of words has been generated, their pronunciation can be determined. Where
words are pronounced as they are written, a simple set of letter-to-sound rules may be applied.
Where this is not the case, a morpho-syntactic analyser may be used to tag the speech with
vanous identities, such as prefixes, roots and suffixes, and organizes the sentences into |
syntactically related groups of words, such as nouns, verbs, and adjectives. The pronunciation of
these can then be determined using a lexicon. Finally, a phonetizer prdvides the sequence of

phonemes to be pronounced.

1.3.1.3 Prosody Prediction
The naturalness of speech can be described mainly in terms of prmsody. Prosody may be defined as
the linguistic use of pitch, loudness, tempo and rhythm (Crystal, 1987), although these aspects are

usually accompanied by variations in phonation and voice quality.

The pattern of prosody is used to communicate the meaning of sentences (Sonntag & Portele,
1996). For example, the sentences “Open the window.” and “Open the window?” have very

different prosody. In terms of intonation contour, the first sentence is declarative and has a

relatively flat pitch contour, whereas the second is questioning and exhibits a dse in pitch at the

end of the phrase.

The naturalness of a TTS system is a function of prosody (Dutoit, 1997). Prosody prediction 1s
performed by the Text-to-Prosody module, which determines the accenting, phrasing, intonation

and duration for each sentence. Intensity variations are perceptually the least important aspect of

prosody (Howell, 1993), and are often ignored.

Accenting. Accent or stress assignment is based on the category of the word e.g. context words

(nouns, adjectives and verbs) are typically accented and function words (prepositions and
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auxiliary verbs) are usually not. This information is used to help predict the intonauon and

duranon.

Phrasing. Sentences are broken down into phrasal units and phrase boundaries are assigned to the

text. These boundaries indicate pauses and the resetting of intonation contours.

Intonation: Intonation clarifies sentence type and hence its meaning such as questioning,

declarative etc. In addition, pitch varations convey information about stress, emphasis, gender

and emoton.

The intonation module generates a pitch contour for the sentences. Pitch contours may be
stylized; not all variations of pitch seen in natural speech are perceptible (‘t Hart ez a/, 1990). The
contour acts across complete phrases and can be split into a hierarchical pattern (Sagisaka, 1990)
down to single pitch targets associated with syllables or parts of syllables.

This module requires informaton from the phonetic, accent, duration and phrasing modules.
Text can be labeled using the Tones and Break Indices (ToBI) formalism (Silverman ez 4/, 1992).
Pertinent prosodic events are marked with one of four tone labels: initial boundary tones, pitch
accent tones, phrase accent tones, and final boundary tones. Two tones are recognized: a high

tone (H) and a low tone (L), which are relative to each other.

Fundamental frequency target values corresponding to these tone labels can then be calculated.

Pitch variations occur between decéination lines, which define the maximum and minimum pitch of
the speaker. Sets of rules (Jilka ez 4/, 1999) are used to calculate a percentage of this pitch range to
give physical fO values, which are then assigned to the voiced parts of speech. Transitons
between target values are specified as either linear interpolations or more complex transinons
such as exponentils, to provide a stylized pitch contour. The pitch movements can be

characterized by direction (rise and fall), rate of change (slow or fast) and size (half or full) and
timing (early, late, very late in the syllable).

Duration. Segmental duration is an essential aspect of prosody (Carlson ¢ al., 1979) that affects the

overall thythm of the speech, stress and emphasis, the syntactic structure of the sentence, and the
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speaking rate (Klatt, 1979). Many factors contribute to the duration of a speech segment, such as
the identity of the phone itself, the identity and characteristics of neighbouting phones, the
accent status of the syllable containing the phone, its phrase position and the speaking rate and
dialect of the speaker. Duration prediction is usually achieved using a rule-based model, which
takes these factors into account (Klatt 1979, Bartkova & Sorin 1987). For a complete review of
prosody prediction, see Edgington ez 2/, (1996b).

1.3.2 Digttal Signal Processing Module

Once the phoneme list has been generated from the text-to-phonetics stage, and the prosody has
been predicted in terms of duration and frequency values, the physical speech may be
synthesised. The required speech sounds are extracted from an inventory and joined together.
The extracted speech segments may already have the desired prosody or it may be imposed on "
the segments using signal processing techniques to fit the new utterance. '

The following section describes the existing approaches to speech synthesis, which forms the. h
broad area of this research. The advantages and disadvantages of each approach are discussed to

determine the currently most promising synthesis strategy for further investigation.

1.4 Speech Synthesis Strategies

There are currently three main approaches to synthetic speech producﬁon: articulatory synthesis,
synthesis by rule (also known as formant synthesis), and concatenative synthesis. Before
discussing each of these, the sourve-filter model of speech is introduced, upon which articulatory
synthesis, formant synthesis, and Linear Predictive (LP) synthesis (a form of concatenatve

synthesis) are based.
1.4.1 Source-Filter Model of Speech

The source-filter theory of speech production (Fant 1960, Velhuis 1998) is based on the

assumption that human speech can be modeled as an excitation source and a vocal tract response
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that are independent of each other. During synthesis applications, the excitation signal is modeled
by two sound sources; one to model the vibration of the vocal folds that occurs dunng volced
speech, and one to model the turbulent noise caused by air pushed through the vocal tract dunng

unvoiced speech. These consist of a quasiperiodic train of pulses and a noise signal respectively.

A filter models the frequency response of the vocal tract and the radiation charactenstics of the

lips and nostrils. The resonance characteristics of the vocal tract are caused by many factors but

the most important are the length of the vocal tract and the cross-sectional area profile.

1.4.2 Articulatory Synthesis

Articulatory synthesis (Kroger 1992, Rahim e a/ 1993) models the movement of the speech
organs themselves based upon the source-filter model of speech described above. Articulatory

control parameters may be lip aperture, lip protrusion, tongue-tip height and position, tongue
height and position, and velic aperture. Excitation parameters may be glottal aperture, cord
tension and lung pressure. Articulators are modeled as a set of mathematical funcuons between

glottis and mouth for each phonetic segment.

Whilst modeling the speech organs provides intelligible synthesis (Klatt, 1987), 1ts main drawback
is the difficulty in determining the control parameters. The parameter data are historically denved
from X-ray analysis of the production of natural speech. Unfortunately this does not provide
sufficient data for the complex articulatory movements. The second drawback is that it 1s

computationally expensive (Kroger, 1992) and hence remains essentally a research tool rather
than finding applications in commercial speech synthesis systems. As analysis methods progress

and computational power increases, articulatory synthesis may eventually provide the way

forward to more natural synthenc speech.

1.4.3 Synthesis by Rule

Synthesis by rule, or formant synthesis (Holmes 1983, Allen ¢ al. 1987), models the speech signal
itself based on the source-filter model of speech.
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Speech is synthesised using a data table of up to 60 continually varying acoustic parameters for -
cach speech sound (Stevens, 1990). Examples of such parameters are voicing f0, degree of.
voicing in excitation, formant frequendies, antiformant frequencies, bandwidths, and amplitudes
etc. It 1s difficult to determine these parameters and the rules govering their dynamic evolution,
which are found by laborious analysis of natural speech. At synthesis time, these rules are
matched to the phonetic input and a parametric speech signal is generated, which is fed into 2
bank of filters, representing each formant frequency.

A fundamental frequency control determines the frequency of the pulses generated and 2 mixer
controls the amount of voiced/unvoiced excitation signal. An amplitude control is used to vary

the loudness at the input to the filters.

Formant synthesis is infinitely flexible in terms of prosody generation and speaker independence.
Formant synthesisers e.g. JSRU (Holmes ef 4/, 1964), Klattalk (Klatt, 1982) (the predecessor to
the Digjtal Equipment Corporation’s DECtalk) and MITALK (Allen & 4/, 1987), provide
intelligible speech, although the resulting speech has an inherent buzzy sound that makes it sound
synthetic (Edgington ef 4/, 1996b). A more detailed description of rule-based synthesisers can be "
found in Holmes (1983) and Allen ez 2/ (1987).

1.4.4 Concatenative Synthesis

Concatenative synthesis has been in existence since the late 1970’s and is capable of produang
highly intelligible speech (Dutoit & Leich, 1994). It is the synthesis strategy chosen for this

research because it gives rise to significant advances in terms of simplicity and lack of inherent

buzzyness when compared to articulatory and formant synthesis respectively. This is mainly
because concatenative synthesis makes use of pre-recorded segments of speech and hence does
not model either the way humans generate speech or the speech signal itself. A typical

concatenative synthesis system 1s shown in Figure 1.7.
Concatenative synthesis takes pre-recorded segments of natural speech and joins them together,

or concatenates them, to produce new utterances. A concatenative speech synthesis system uses

small speech segments extracted from natural speech, which are stored in either a parametric
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form, as waveforms in an inventory, or as continuous speech in a corpus. To provide the

required synthetic output, the appropriate segments are selected from the inventory at run-time

and concatenated.
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FIGURE 1.7 A TYPICAL CONCATENATIVE SYNTHESIS SYSTEM

The major drawback of concatenative synthesis is its limited flexibility due to the use of pre-
recorded speech, which may not allow necessary prosody varations when synthesising novel
constructs. The synthetic voice is also restricted to the voice of the speaker used for the
recording. Concatenation at segment boundaries may be a problem when segments are extracted
from different contexts due to spectral differences, and prosody modification is more difficult.
Such issues can be addressed by choice and size of speech segments to be stored in the inventory,

and the careful design and creation of the inventory. These issues and possible solutions are

discussed in the following sections.
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1.4.4.1 Choice of Speech Segment
The type of speech segment stored in the segment inventory has great bearing on the flexibility -
and quality of the resultng synthetic speech. Such decisions often involve trade-offs between
storage requirements, performance, and the extent to which signal processing is required. For
example, fewer segments require less storage, but may lead to poorer quality speech and require
more signal processing to achieve adequate flexibility. Storage requirements are becoming less of
an 1ssue with the advent of cheaper memory and greater processing power; however the time to '
record, segment and annotate a speech inventory is still an issue. Semi-automatic annotation
systems (Wightman & Talkin, 1996) are becoming available although manual correction is still a '

necessity.

Varnous types of speech segment have been used in concatenative speech synthesis systems.
Phonemes, the smallest contrasting unit in the language, are an attractive choice (Witten 1982,
Chappell & Hansen 1997) due to the small number of units required (approximately forty for the
English language), keeping storage requirements to a2 minimum. The greatest disadvantage 1s the
coarticulation problems that occur at boundanes between phonemes. Coarticulation describes the
way in which hutmans produce continuous speech as a result of articulating a series of isolated
words. The articulatory movements are adjusted for different contexts to minimise the effort
needed to produce the speech. Coarticulation occurs as each articulator moves continuously from
the production of one phoneme to the next and appears in even the most careful speech.
Complex rules are needed to deal with this (Linggard, 1985). An additional problem of the use of
phonemes is that all joins occur at the least stable part of the waveform where one phone

changes to the next, which may cause audible discontinuities.

The use of the diphone provides a soludon (Lenzo & Black, 2000). A diphone consists of the
transition from the centre of one phoneme to the centre of the following one (Dixon & Maxey,

1968). In this structure, the transitional information between phonemes is captured. A set of

diphones for the English language numbers approximately 1600, since there are 40 2 possible
combinations of phoneme pairs. Simple diphone speech synthesis requires slightly more storage
than phoneme synthesis and still has the disadvantage of a high density of concatenation points
(one per phoneme). A large number of concatenation points produces the percepton of
uanaturalness (Donovan & Woodland, 1999) as spectral discontinuities may occur when
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segments are selected from different contexts. This places heavy reliance upon smoothing
algorithms, which may also degrade quality (Chappell & Hansen 1998, Wouters & Macon 2000).

A varation of the basic diphone system makes use of polyphones such as triphones, half
syllables, or even quadraphones and pentaphones (Boéffard e7 4/, 1993). Muluphone constructs

of varying length may be included in the segment inventory to deal with highly coarticulated
speech.

Larger constructs such as gllables or words deal with problems of coarticulaton as most
coarticulation occurs within syllable boundaries (Fujimura & Lovins, 1978). The disadvantage 1s

the large amount of storage necessary for such inventories; there are approximately 10,000
syllables for the English language. These approaches are usually valid for limited vocabulary

systems, or closed domain applications, such as train umetable systems, talking clocks etc. Here
the necessary word varations are recorded and the required word may be slotted into a standard
sentence. This approach often suffers from a lack of coarticulation at the word boundanes,
resulting in unnaturalness. Mismatches in loudness, tempo, pitch and voice quality may also lead
to disfluent speech if the recordings have not been carefully controlled.

More recent research has extended the simple diphone approach to n-diphone synthesis
(Klabbers & Veldhuis, 2001). In n-diphone synthesis, more than one example of each diphone
may be stored. This takes into account various coarticulation effects that can occur over a syllable
or further over several syllables. The ‘best-fit’ diphone is selected at synthesis ime to minimise
spectral differences between adjoining segments. Klabbers & Veldhuis (2001) extend the diphone

inventory with additional context-sensitive diphones to reduce the occurrence of audible

discontnuities.

The latest developments to improve the flexibility of concatenatve synthesis involve corpus-
based speech synthesis systems. During natural speech, prosody vardes for speech sounds in
terms of f0 and duration and also in terms of voice quality. Acoustcs of speech sounds vary due
to their position in the phrase and the context of the utterance. If all segments are uttered 1n 2
neutral manner as in typical diphone systems, these variations are lost. Corpus-based synthesis

overcomes these hmitations by storing hours of continuous natural speech. This approach also
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minimises the large number of concatenations; segments of longer length are selected if they exist
together in the corpus. Large prosody manipulations are also reduced by storing and selecting .
segments having acoustic characteristics that are closer to the target values. The corpus-based
approach has been chosen for further research due to its ability to increase the flexibility of
concatenative speech synthesis. Corpus-based synthesis introduces its own problems and s -
discussed further in Section 1.5.5.

1.4.4.2. Creating a Speech Inventory _
Creating a large speech inventory is a long process. It involves choosing the phoné set, designing -
the carrier material, generating prompts, recording, segmentation, labcling, pruning and quality .
control. Designing the optimal speech inventory is one of the most important research issues
(Mobuus, 2000); it has a huge impact on quality.

The most important criterion is that the inventory must provide adequate phonetic coverage; all |
segments should be represented. Phonetically rich inventories, used for diphone systems, contain

every possible diphone transition, where even the rarest combinations are represented.

Inventories for corpus-based synthesis are often designed to contain sets of phonetically balanced
sentences e.g. CHATR (Black & Campbell, 1995), where the phones appear in the same
distribution as they appear in normal language. This may be achieved by recording radio news
sentences (Black & Campbell, 1995) or a short story of the speaker’s choice (Campbell, 1999) for |
example. This is perhaps contrary to the opinion that it is important to design a database
including all relevant realizations of phonemes.

Corpora can be designed specifically for limited-domain applications, such as a speaking clock
(Black & Lenzo, 2000b), or 1t may be énough to record only the required words for applicatons
using a ‘slot filler’ approach, where the relevant word is inserted into a standard sentence.

Speech segment inventones require carrier materal for the segments to be recorded. The choice
of carrier material should reflect the application of the synthesiser. It may be important to keep a
fixed speaking rate, durations, and perhaps monotone speech for a simple diphone inventory. To

achieve this, segments can be extracted from nonsense syllabic sequences (logatoms), or isolated

24



words. The use of logatoms ensures coverage although there may be a loss of naturalness due to
the abstract nature of the material and boredom of the speaker. The recording of segments only

in word stress positions in carrier sentences, not providing any reduced segments, may lead to

over-articulated speech.

For greater prosodic coverage, natural sentences, of possibly longer passages are used. The use of
such text means the speaker is more relaxed; overall quality may be less consistent fatling to
produce exactly the desired speech segments. It also gives rise to greater vanability of the speech,
which may cause grcatci? spectral discontinuities between joining segments during synthests.

The recording of the segments simuld .bc performed in a quiet room, preferably an anechoic
chamber. Audio settings for the recording process must be fixed, and the speaker should be at a
fixed distance from microphone, which can be achieved using a head-wom microphone.
Problems occur due to the time gaps between successive recordings; the emotional state and
health of the speaker may vary, leading to changes in speaking style and voice quality. Inter-

session vanations anse due to the increasing boredom of the speaker over a long session.

Once recorded, speech units are segmented from the carrier matenal. This is performed either
manually, or semi-automatically (usually involving manual corrections). The units are stored as
segments extracted from logatoms or natural speech, or as part of a speech corpus from which
they are extracted at runtime. The segments are tagged with the information required for segment
selecdon, prosody modifications and synthesis. Such labels may be the segment idenuty, duraton,
pitch, intemal phoneme boundaries, position in phrase etc. The segments may be coded or given
a parametric form as a temporal sequence of vectors of parameters. Coding reduces memory
loads and may be required for speech models that use a parametric form to allow concatenation

and prosody matching. The speech model used in the synthesis system obviously determines the
storage and tagging formats.

1.4.5 Summary

The three main existing approaches to synthesis have been presented. Articulatory synthesis
provides high quality speech but is extremely complex. It may well be the preferred approach 1n
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the future as processing power increases, but is essentially a research tool at the present time.
Formant synthesis has the advantage of great flexibility, but suffers from an inherent ‘buzzyness’
that cannot be avoided due to its parametric nature. The concatenative approach currently
provides better quality synthetic speech than formant synthesis in terms of buzzyness, although it
does not have the flexibility of parametric speech models. Additionally, concatenative synthests
does not suffer from the complexity of articulatory synthesis, making it an attractive choice for
many successful commercial systems such as BT’s Laureate (Page & Breen, 1996) and the AT&T
Next-Gen system (Beutnagel ef 2/, 19992).

The aim of this thesis is to design a framework that provides high quality speech for open
domain applications. To this end, it should provide adequate phonetic coverage and also be
capable of producing a prosodically rich output. As a result of its high quality output and -
efficiency, concatenative synthesis was chosen for further investigation. As previously stated,
concatenative synthesis does not possess the flexibility of parametric speech models, in terms of
the ability to synthesise various types of phonation and with a wide range of prosody. With the
advent of cheaper memory and processing power, increasing the size of the inventory from a
simple diphone approach can reduce this inflexibility. The development of the corpus-based
approach retains details such as varations in phonation and also provides greater ability to
achieve the desired prosody when creating novel utterances by storing multiple versions of -
segments. However, even the largest inventory cannot contain every possible combination of
segments in every prosodic context due to the high varability of speech. In order to increase
flexibility further and ensure a robust output, whereby all prosodic targets can be met, it may be
advantageous to employ a speech synthesis model to concatenate the segments and allow
prosodic modifications. The following section describes and analyses the current, popular
concatenative synthesis speech models used to concatenate segments and facilitate prosody

modifications.

1.5 Speech Models for Concatenative Synthesis

Concatenative synthesis speech models must be able to concatenate a sequence of segments, and

adjust them for new prosody when Creating arbitrary sentences. The model must maintain high
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speech quality with minimal introduction of artifacts or reduction in naturalness. There are many

models in use and the more popular ones are discussed in turn in the following sections, leading
to a discussion on the choice of the model chosen for this research that provides the most

promising approach to concatenatve speech synthesis.

1.5.1 Linear Predsction

The Linear Prediction (LP) model (Markel & Gray, 1976) was orginally designed for speech
coding, providing accurate estimates of speech parameters, but can be used successfully for both
coding and synthesis (Sproat & Olive, 1995). It is based on the source-filter model of speech;

human speech is modeled as the response of a time-varying digital filter to a perodic or random

excitation signal.

For Linear Prediction coding purposes, the natural speech signal is separated into the response of
the vocal tract and the excitation signal. The response of the vocal tract, in terms of its formant

frequendies, is removed from the signal to be stored as digital filter coefficients ie. the digital
filter coefficients are estimated automatically from frames of natural speech. LP theory assumes

the current speech sample y(n) can be approximated or predicted from a linear combination of

p previous samples y(n—1) to y(n—k) with an error term e(n), called the residual signal.

y(n) = e(n)+ 3 a(k)y(n—k) Eqn 1.1

and e(n) = y(n)-D_ a(k)y(n—k) = y(n)-¥(n) . Eqn 1.2

where J(n) is a predicted value, p is the linear predictor order, and a(k) are the linear
cocfficients. The coefficients are found using an adaptive algorithm such as the Least Mean

Square (LMS) algorithm which minimises the mean-square error between the predicted signal and

the actual signal. Autocorrelation or covariance methods are often used for this (Markel & Gray,
1976).

These effects are then removed from the speech signal and if the predictor coefficients are

accurate, only the pure excitation signal remains (a harmonic structure and/or white noise), the
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intensity and frequency of which can be calculated. This process is known as imverse filtering and
the remaining excitation signal is called the residwe. The values of the formants and the residue are

stored in an inventoty.

LP synthesis reverses this process using 2 synthetic excitation or the residue to create the source
signal and the formant values to create the filter. During synthesis, the speech information stored
in frames (usually representing 25 ms of speech and characterized by 10 or 12 LP parameters) is
fed to the synthesiser every 25ms. The frame parameters are used to update the digital filter

coefficients and select the excitation source and amplitude.

The exaitation, which is filtered with the digital filter having the coefficients a(k), may have a

different fundamental frequency, therefore providing a new harmonic structure. The fiter
requires an order (number of coefficients) of 10 to 12 at 8kHz sampling rate and 20 to 24 at
22kHz sampling rate. To obtain intelligible speech and smooth spectral transitions, the
coefficients are updated every 5-10ms by interpolating between the previous and current frame

parameters.

The main drawback of LP synthesis is that it is inherently buzzy due to its parametric nature, and
this degrades speech quality (Klatt, 1987). LP is an all-pole model; phonemes such as nasals and
nasal vowels that contain antiformants are not modeled sufficiently thereby decreasing
intelligibility. A more detailed explanation may be found in Markel & Gray (1976).

Variatons of the basic LP model have been developed to improve the quality although these are
computationally more expensive. The excitation signal may be more complex and the source and
filter may not be treated as separate. Multpulse LPC (MLPC) (Moulines & Charpenter, 1988)
uses a complex excitation constructed from a set of several pulses. Residual Excited LP (RELP)
(used in Lernout & Hauspie’s commercial TTS system) uses the error signal as an excitaion

signal. Code Excited LP (CELP) (Campos & Gouvea, 1996) uses a2 number of excitations that are

stored in a code-book.
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1.5.2 Stnusotdal Models

Sinusoidal models are based on the assumption that all signals can be composed of a sum of sine
waves with vanous phases, amplitudes and frequencies (McAulay & Quatien, 1986). This is
expressed 1n Equation 1.3.

s(n) = i A, cos(wn+¢,) Eqn1.3

/=1

where L 1s the total number of sinusoids, 4,(n) and @,(n) are the amplitudes and phase of
each component with frequencies w,. Parameters 4,(n)and @,(n) are found by taking the

Discrete Founer Transform (DFT) of the windowed signal. Frequencies w, are estimated by
peak picking of the DFT magnitude.

Synthesis reverses this process. Duration modifications are achieved by modifying the parameters
corresponding to the vocal tract, so they evolve faster or slower, and the excitaton can be
stretched or compressed whilst maintaining the same pitch. Pitch modification is achieved by

scaling the frequency of the excitaton function. The vocal tract is unmodified, which may not
model actual human speech production where the vocal tract characteristics alter during higher or

lower pitch speech.

Sinusoidal models (Macon & Clements 1996, Crespo ¢ 4l 1996) perform well for periodic
signals; they are particularly adept at synthesising singing speech, which is characterized by
elongated vowels. They do not perform so well for unvoiced speech. Sinusoidal approaches make
use of glottal closure instants, which does not always provide successful concatenation and may
lead to poor quality due to phase mismatch at segment boundares. Similar models have been
developed, such as the hybrid Harmonic plus Noise model (Laroche ¢7 g/, 1993), which propose a

different noise model for unvoiced speech whilst maintaining the harmonic model for speech.
These models are discussed in the following section.
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1.5.3 Harmonic plus Noise Models

The Harmonic plus Noise Model (HNM) (Stylianou, 1998) assumes that speech 1s composed of
determirustic and stochastic components. The harmonic part models the pedodic parts, or voiced
speech, and the noise models the stochastic, or unvoiced, parts of speech. The deterministic
component 1s modeled by sums of harmonically related sinusoidal components with various
amplitudes. The stochastic part comprises the residual signal when the sinusoidal components
have been extracted from the original signal i.c. rather than modeled purely in the frequency
domain, the stochastic part is obtained from real parts of speech, for example from plosives or

fricatives etc.

The synthesis signal s(¢) is modeled as the sum of harmonic components and a noise signal as
shown in Equation 1.4.

A K(t
s(t) = ZfA,‘ (t)exp(jktw, (1) + e(2)) Eqn 1.4

kw=K(1)
where 4,(1) is the complex harmonic amplitude at time ¢, w,(f) is the fundamental frequency
and e(r) is the stochastic component. These parameters are updated at specific time-instants.
The parameters are estimated as follows:
e Fundamental frequency w,(#) is estimated using a standard time-domain pitch detection
algorithm, such as Hess (1983).

¢ On voiced parts of speech, the values of the amplitudes and slopes of pitch harmonics
are esumated using a weaghted least-squares method (Laroche, 1989).

 The residual signal 1s obtained by subtracting the deterministic part from the onginal

signal in the ime-domain.

At synthesis time, the deterministic and stochastic components are synthesised separately then
added together. The deterministic part is synthesised by overlap-adding a stream of ST-signals

5,(t) at dme-instants ¢, in a PSOLA synthesis manner (Moulines & Charpentier, 1990). The ST-
signals are obtained from the harmonic parameters by applying 2 Hamming window centered at

;. The stochastic component is obtained by filtering Gaussian noise. Time-scale modifications
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are achieved by determining the number of synthetic pitch-peniods that need to be generated

from the parameters at time ¢, .

The mixed voice segments are free from any buzzy quality as the stochastic and deterministic
components are dealt with separately. As it is a parametnc model it is very flexible allowing

modification of speaker voice qualities and timbral aspects of speech quality (Syrdal ¢# 4/, 1998b).

1.5.4 Pitch-Synchronous OverLap-Add

The family of Pitch-Synchronous Overlap-Add (PSOLA) techniques (Charpentier & Stella, 1986)
was developed by France Telecom. The PSOLA algorithm and its vanants do not synthesise
speech themselves, but allow pre-recorded segments of speech to be concatenated and can
modify the prosody (pitch and duration) of the speech signal, which may be necessary when
creating novel utterances. This technique avoids parameterization of the speech; parameterization
inherently degrades the segmental quality. This is opposed to LP and sinusoidal models, which

decompose the signal into separate source and vocal tract models.

The PSOLA algonthm 1nvolves three stages: analysis, modification and synthesis. The three
stages are illustrated 1n Figure 1.8. Speech waveforms are first analysed, the speech signal is broken

down into a sequence of Short-Term (ST) signals by windowing it at successive intervals with a
sequence of pitch-synchronous windows, such as Hanning windows. The Hanning window is a

symmetrical window that restricts the analysis to the section of waveform under the window by
rendering the rest of the signal zero. The Hanning windows are centred pitch-synchronously on
pitch markers (which are placed at the glottal closure instant dunng voiced portions of the signal,
and at a constant rate for unvoiced parts). The length of the Hanning window is set so that

adjacent ST-signals overlap. Generally, each window’s length is set to be twice the local pitch
period. If the window 1s short enough, the signal under the window can be considered stationary.
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FIGURE 1.8 THE PSOLA OPERATION

Prosodic modifications can then be imposed on this intermediate representation. Pitch
modifications are produced by altering the spacing between the ST-signals; the orginal pitch
period is altered to a new period. Duration modifications are achieved by repeating or deleting
the ST-signals.

Synthesis is achieved by the recombination of the modified intermediate representations to
produce the final synthetic signal using an overdap-add (OLA) operation (Moulines &
Charpenter, 1990) that adds the new ST-signal sequence together. '

The family of PSOLA algonthms for manipulating the prosody of speech waveforms all use this
three stage technique, although the above explicidy describes Time-Domain PSOLA. The

PSOLA vanations are described in the following section.

1.5.4.1 PSOL.A variations
Several vanations of the PSOLA operations are available, such as Time-Domain (TD),

Frequency-Domain (FD), Linear-Prediction (LP), and Multi-Band Resynthesis (MBR) PSOLA.
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Time-Domain (ITD) signal processing algorithms, such as the Time-Domain Pitch-Synchronous
OverLap-Add (TD-PSOLA) algorithm (Hamon ez a/. 1989, Moulines & Charpentder 1990), are of

particular interest as they are computationally inexpensive.

TD-PSOLA generates natural speech with minimal effect on segmental quality (Bigorgne er 4/,
1993, Moulines ¢/ a4/ 1990), although some pcrccpt:iblc distortion 1s introduced for certain
prosodic modificatons. TD-PSOLA provides limited smoothing capabiliies between
concatenated speech segments; pitch and spectral mismatches at segment boundanes are not
minimised, which may lead to audible discontinuities. It would be ideal to eliminate such
mismatches before applying the TD-PSOLA algorithm.

One such solution involves resynthesising the voiced parts of the segment inventory with a
standard pitch, as performed in the Multi-band Resynthesis PSOLA (MBR-PSOLA or MBROLA
for short) algonthm (Dutoit & Leich, 1993). Additionally, all of the harmonics in the voiced
instances of speech are given fixed initial phases for each period. Elimination of pitch
mismatches 1s achieved inherently by the resynthesis process. As the two segments to be

concatenated have the same pitch and identcal harmonic phases, spectral mismatches can be

eliminated by simple ime-domain interpolation.

MBROLA provides a speech signal with minimal mismatches between segments upon which the
TD-PSOLA algonthm can be applied to generate the required prosody. MBROLA has good
segment smoothing capabilities and good prosody matching, producing a natural speech output.
This is at the expense of much greater distortion, in the form of buzzyness, introduced during the

resynthesis process.

A Linear Predicuve Pitch-Synchronous OverLap Add (LP-PSOLA) approach has also been
developed (Moulines & Charpentier 1990, Edgington & Lowry 1996). LP analysis is performed
on the speech signal to separate the signal’s source and filter componeants; at cach time instant the
spectral envelope 1s esumated and used to extract the excitation. TD-PSOLA pitch and duration
modifications can then be applied directly to the LP filter’s excitation or residua/ signal. After
modifications, the new signal is produced by recombining the modified source with the spectral
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envelopes. Moulines & Charpentier (1990) report that LP-PSOLA produces perceptibly less
distortion when applied to the residual waveform than conventional TD-PSOLA, although this 1s

at the expense of far greater complexity.

A frequency-domain version of PSOLA has also been proposed (Moulines & Charpentier, 1990).
In FD-PSOLA, the Short Term Fourier Transform (STFT) for each analysis window is calculated
to provide a frequency-domain representation of the short-term signals; the signal i1s separated
into source and filter components. The pitch and duration modifications are performed in the
frequency domain, allowing better control over the spectral envelope, by altering the spacing
between the pitch harmonics. The modified representation of the signal is then converted back
into the time-domain by taking the inverse Fourier Transform. FD-PSOLA is more flexible than
TD-PSOLA and also supports modifications of voice quality (Valbret ¢f 4/, 1992), by alteraton
of the speech signal’s spectral characteristics. The main drawback is that FD-PSOLA 1s much

more complex.

1.5.4.2 Drawbacks of PSOL.A

The PSOLA method requires the use of small Hanning windows (Linggard, 1985), which must
contain only a single pitch pulse for the signal to be considered stationary. If this is not the case, 2
mismatch occurs during synthesis between the new synthesis frequency and the frequency
inherent to each short-term signal. Conversely, when too small a window is used, formant
bandwidths are broadened due to the poor estimation of the spectral envelope for each ST-signal.
This results in some alteration of the amplitude of pitch harmonics for voiced speech, and can
cause a reverberation to be heard. It is therefore important that the implementation of PSOLA
uses a robust pitch detecton algonthm.

Even when the correct sized window is used, PSOLA can introduce artifacts, descnbed as

‘hoarseness and roughness’ by Kortekaas & Kohlrausch (19972) and ‘buzzyness’ durnng this
thesis, into the signal. Kortekaas and Kohlrausch state that these artifacts are often difficult to
predict, and even if modification with PSOLA does not lead to the perception of artifacts, it does

affect its spectral content.
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PSOLA matntains good quality for moderate modifications. Problems can occur when increasing
the durations of unvoiced sounds. Slowing speech involves repeating the unvoiced short-term
signals, which for modifications of greater than a factor of two can result in tonal noise or
‘buzzyness’. This can be avoided for unvoiced sounds by removing this local periodicity through
reversing the time axis for repeated short-term signals. Voiced fricatives also suffer similar
problems for increasing duration and increasing pitch, but this solution cannot be applied here

due to the voiced component. Buzzyness qualities may also appear for large pitch modifications
especially for female and children’s voices.

1.5.5 Corpus-based Techniques

Simple diphone speech synthesis systems store only one segment per phonetic type in a
waveform inventory, which have usually been excised from prosodically neutral speech and so
fail to model the dynamic characteristics of prosody. Prosodic parameters, such as fundamental
frequency, duration and intensity, can be manipulated by algorithms such as TD-PSOLA, but
these parameters may not be the only important aspects of prosody (Campbell & Black, 1996).
Spectral effects, which cannot be modeled by TD-PSOLA, are responsible for other additional
aspects, such as vanauons in phonation or changes in voice quality (breathy voice, pressed voice
etc). The corpus-based approach aims to preserve these aspects by storing one segment for each
phonetic and prosodic context (Campbell & Black, 1996) in a corpus of prosodically rch,
continuous speech, leading to tens or hundreds of instances of each segment. The key issue then,

is to select the longest available string of segments that will sound natural in a given phonetic
context. This non-uniform approach was first investigated by Sagisaka (1988) and Takeda e’ 4.

(1990) for rule-based synthesis. Later parallel research was carried out, known as mit selection, by
Black & Campbell (1995) for concatenative synthesis. Ideally the whole of the required utterance
would be found and simply played back requiring no concatenation points and no prosodic
modifications. This 1s extremely unlikely, although constructs longer than diphones may be found
and less signal processing may be required. Automatic segment or unit selection (Hunt & Black,
1996) from the corpus is achieved by minimising distance measures (Gray & Markel, 1975)
between target segments (predicted by preceding modules of the synthesis system) and segments

in the corpus.
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Storing such diverse segments may give larger potential pitch and spectral mismatches between
joining segments, leading to possible audible discontinuities. A synthesis specificaion 1s
generated giving phoneme identities, target durations and fundamental frequencies. All phonemes
with the same name in the inventory are selected. A trade off between good prosody matching
and good segment concatenation is necessary. Campbell and Black (1996) achieve this by
balancing two sets of distance measurements. The first is the objective distance between features
of the selected segment and the target segment, and the second is a measure of the quality of the
join between a selected segment and its previously adjoining segment. To compute the target
vector, only features that can be computed by analysing the input text are available. To compute
the continuity or join vector, all features are available that have been computed during the offline
annotation of the speech segments. Their distance measures are calculated using weighted vectors
of features such as phonetic context (neighbouring phonemes, position in phrase, direction of
pitch/power change etc.), duration, log power, and mean fundamental frequency. A network 1s
constructed and the costs are assigned to each unit and to the links between each unit. The

lowest cost path through the network 1s then selected.

Labelling such a large speech corpus with so many features is labour intensive, but the main
drawback of this approach lies in finding the relevant features for the distance measures and the
correct weighting between them (M&bius, 2000). Research by Boéffard ¢f al. (1992) and Campbell
& Black (1996) indicates that minimising certain distances between segments does not necessarily
lead to perceptually better speech outpug; litte is known about the perceptual relevance of such
distance measures (Wouters & Macon, 1998). Problems arise due to the fact that human

perception cannot be measured objectively and additionally, acoustic properties that can be

measured are sometimes imperceptible (Dutoit, 1997).

Distance measures used in synthetic speech remain difficult to assess in terms of human
perception. The most common way to test them is to measure participants’ perceptions of the
synthesised speech using a particular speech corpus. Unfortunately, such conclusions about a

certain measure may not be valid when applied to a different corpus.

Finally, the speech corpus cannot be infinitely large, implying that even the best segment

selecdon technique will not provide an exact prosodic match for the desired utterance. The
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CHATR TTS system (Black & Taylor 1994, Campbell ¢f 4/, 1998) uses no signal modification. It
performs better for closed-domain synthesis as increasing quality is only achieved by substantially
increasing the amount of source data. Conkie (1999) concludes that signal processing may be
applied selectively alongside the corpus-based strategy. Though some signal processing may be
required, the manipulation of pitch and duration of the segments is minor, introducing minimal

distortion.

Deketelacre ef ai. (2001) state that the corpus-based approach is a promising technique and is
possibly the future of speech research, although quality is achieved with extremely high storage
requirements. They provide an example of the AT&T NextGen system, which requires several

hours of speech and runs over a server via the Internet, making such systems unusable for

current low-cost or hand-held electronic devices.

1.6 Choice of Synthesis Model

Current speech models available for concatenating speech segments and imposing prosody have
been critically evaluated.

TD-PSOLA (Moulines & Charpentier, 1990) is cutrendy one of the most popular concatenation
methods (Syrdal ¢ a/., 1998b). It involves very low computational loads and provides high quality
synthesis in the main. TD-PSOLA does not suffer from the inherent buzzyness of LP #ntbesis
as it is not 2 parametric model. TD-PSOLA also retains fine spectral details without the
smoothing or distorting effects of formant or LP approaches. Moulines & Charpentier (1990)
claim all PSOLA algonthms (TD-, LP-, FD-) are comparable in quality of output, and all are
better than LP synthesis in formal listening tests.

TD-PSOLA has hmitations being a non-parametric method; only the voice of the speaker may be
synthesised and spectral mismatches may occur at concatenation boundaries unless units are

chosen carefully. Finally, a buzzy quality may be perceived when some prosodic modifications are
appled.
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Sinusoidal approaches (Macon & Clements, 1996) and hybrd stochastic approaches (Stylianou,
2001) are more flexible than TD-PSOLA and MBROLA for compression, modification and

smoothing but are ten times more computationally expensive.

Many alternative methods to PSOLA have been developed (Syrdal e 4/ 1998b, Violaro &
Boéffard 1998). Laroche e al (1993) use a Harmonic and Noise Model (HNM), which they
found to eliminate many of the artifacts that occur during duration modification with PSOLA.
HNMs also eliminate the buzzyness that occurs during modification of mixed-voice segments.
Breen (1998) and Stylianou ef 4/ (1995) conclude that although these models perform better on
voiced frcatives and unvoiced frames, and provide better spectral control, they are
computationally more expensive, not as robust, and produce speech of a slightly lower quality
than PSOLA overall.

Dutoit & Leich (1994) compared an LP model, TD-PSOLA, a pitch-asynchronous hybnd
Harmonic and Noise model and the MultiBand Resynthesis PSOLA (MBROLA) in terms of
naturalness and intelligibility. MBROLA was considered comparable with TD-PSOLA, with the
HNM and LP model third and fourth. Violaro and Boéffard (1998) compared TD-PSOLA and 2
HNM and found their quality to be similar but judged naturalness to be better for unvoiced
speech using the HNM method. Charpentier & Stella (1986) compared PSOLA and LP and
concluded that PSOLA provides 2 more natural output than both an LP and 2 multipulse coding
system (Stella & Charpentier, 1985). Overall, TD-PSOLA compares comparably and often
favourably in terms of intelligibility and naturalness, with other models.

The corpus-based approach provides concatenative synthesis with greater flexibility by stonng
more diverse speech units and threatens to eliminate the need for signal processing in the future.
Currently, although it does reduce the amount of modification, signal processing may still be
necessary as it is not possible to store every combination of segments in every prosodic context.
Conkie (1999) using a corpus-based approach found that synthetic sentences were preferred
when no prosodic modifications were performed, although limited prosodic modification did
appear to be beneficial in terms of improved naturalness by smoothing mismatches at segment

boundaries and allowing suitable prosodic modifications for new utterances.
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Portele (1998) advocates that TD-PSOLA should be used in conjuncton with a corpus-based
approach, and currently this combination appears to provide the most promising solution to
generatung high quality, natural synthetic speech. The use of a speech corpus increases the
flexibility of concatenative speech by retaining details, such as variations in phonation or changes
in voice quality, that simple diphone approaches cannot model. Unfortunately, even the largest
corpus cannot provide every prosodic combination of pitch and duraton. The use of a signal
processing algonthm such as TD-PSOLA, has the advantage of producing a less distortion
output due to its non-parametric nature. Conversely, this lack of a parametric representation
means it is inflexible when required to model spectral aspects of speech such as vanations in
phonation and voice quality if used with a simple diphone system. The use of a corpus and TD-
PSOLA together provide the most flexible approach to concatenative synthesis; TD-PSOLA

allows small prosodic modifications if such values are not present in the corpus, and the corpus

retains spectral details of speech that TD-PSOLA cannot model.

The TD-PSOLA algonthm is of great interest to the speech synthesis community due to its
overall simplicity and success for moderate modifications. Its main drawback is the introduction

of perceptible distortion into speech, in the form of buzzyness, for some modifications, and it is

this issue that 1s addressed in the thesis to improve the quality of the speech output.

The research 1nvestigates the effects of the application of the TD-PSOLA algorithm on natural
speech when used for small prosody modifications that may be necessary in a corpus-based
system. The aim 1s to develop a framework that minimises the introduction of perceived
distortion and thus retains the quality of the speech output. This may be achieved by careful
design and use of a speech corpus tailored to the needs of TD-PSOLA.

1.7 Summary

In this chapter, a bret descrption of human speech production, its physical representation and
phonetics, used to descrbe the speech in an abstract format, was presented. During the thesis,
the speech under investigation will be described using the SAMPA notation and waveforms,
spectra and spectrograms will be used to depict and analyse the speech.
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A descapton of a general TTS system was then given. Speech synthesis, the main area of this
research, was set in context as part of the whole TTS process, and the complex interaction of the

modules in a TTS system was illustrated.

The three main synthesis strategies were then descrbed and their advantages and disadvantages
discussed. Articulatory synthesis, although capable of producing high quality synthesis, is deemed
too complex for current applications. Formant synthesis is inherently buzzy and relies on the
careful choice of parameters, which is a notorously difficult process. Concatenative synthesis
performs well in terms of intelligibility and quality although it suffers from inflexibility due to the

use of recorded speech.

Concatenative synthesis is currently a very popular approach and the issue of inflexibility may be
overcome by the choice of synthesis strategy employed. The more common synthesis strategies
used during concatenative synthesis were then examined. The corpus-based approach shows
promise in terms of efficiency and flexibility and currently appears to be one of the more
attractive strategies. The corpus stores multiple versions of segments in many contexts and hence
retains details such as varying phonation and voice qualities. Due to the vanability of natural
speech, it is not possible to store all speech segments in every prosodic context, and so a signal
processing algorithm may still necessary. LP models were found to be inherently buzzy,
sinusoidal models were found to perform poorly for unvoiced speech, and some of ﬁe PSOLA
family (FD- and LP-PSOLA) were found to be complex operations. TD-PSOLA does not suffer
the inherent buzzyness of the parametric models although this leads to some inflexability when
spectral aspects need to be modelled if used with a simple diphone inventory. The strategy of
employing TD-PSOLA in conjunction with a corpus-based approach provides greater flexibility;
the corpus provides aspects of speech that TD-PSOLA cannot model, and TD-PSOLA ensures a

robust output if segments in the corpus do not have suitable prosody for arbitrary sentences.

TD-PSOLA is a very popular and efficient algorithm, but its main drawback is the introduction
of perceptible distortion, 1n the form of buzzyness, into the signal during some prosodic
modifications. This research focuses on developing a framework to reduce such distortion and



retain the resulung speech quality when TD-PSOLA is used for moderate modifications in a

corpus-based system.

The remainder of the thesis is structured as follows. Chapter 2 descrbes the TD-PSOLA
algonthm in greater detail and reviews previous research into the effect of the algorithm on
speech quality in terms of the introduction of perceptible distortdon. The aim is to suggest
parameters that may contrbute to the occurrence of this distortion. These may then be
investigated further to determine how to design a framework to remove or reduce such artifacts.
Chapter 3 descnibes existing subjective listening tests and procedures used to evaluate the
performance of vanous aspects of speech synthesis systems. These tests and practices are applied
where possible in the listening tests documented in Chapter 4. The listening tests are undertaken
to determine the perceptual effects of the TD-PSOLA algorithm when used for pitch
modificaion of natural speech. Chapter 5 analyses data for patterns of co-occurrence and
proposes a framework to reduce distortion. This is in the form of a novel corpus design tailored
to the requirements of TD-PSOLA, a signal processing distortion measure that may be used to
select a segment from the corpus that will result in less distortion, and a special selection process

for highly problematic phonemes. Chapter 6 documents a listening experiment that evaluates the
performance of such a framework. In Chapter 7 the findings of the research are discussed and

possible future work is recommended.
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2.1 Introduction

Many commercial speech synthesis systems such as the ProVerbe TTS system (Elan
Informatique) mncorporate the TD-PSOLA algorithm with great overall success. Speech, which
has been pitch and duration modified using the algorithm, is reportedly of high intelligibility and
quality in the main (Moulines & Charpentier 1990, Donovan & Woodland 1999, Laroche ¢ 4/.
1993, Dutoit & Leich 1994). The research does indicate though that PSOLA may introduce
perceptble distortion into the speech signal in the form of buzzyness for certain modifications.

This chapter describes the operation of the algorithm in greater detail using a mathematcal
model and then illustrates the Praat software (Boersma & Weenink, 1999) implementation of the
algonithm. The next section seeks to identify some potential problems associated with TD-
PSOLA. To this end, existing research concerning the algorithm is documented, and some of the
work is replicated to ilustrate the basic objective signal distortions introduced by the algorithm
on pure sine waves and then more complex single formant signals. Such signal distortions may

not always be perceptible, especially for more complex signals such as natural speech. Possible
causes of perceptible distortion are then discussed. These consist of incorrect pitch marking by
the algonithm, the influence of the choice and size of the analysis window used by the algorithm,
the extent of manipulation applied to the speech, and the speech type upon which the algonthm
is acting. Finally, the chapter concludes with a discussion of these issues raised by existing
research, and how they may be addressed to inform the design of a framework to reduce

perceptible distortion.
2.2 The TD-PSOLA Algorithm

This section describes the operation of the algorithm based on Moulines & Charpender (1990).
The TD-PSOLA algonthm involves three steps; analysis, modification and synthesis.
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2.2.1 Analysis

An onginal speech signal x(1) i analysed to produce an intermediate representation. This

.. . . . . x, (n
representation i1s non-parametric and consists of a series of short-term signals ") These are

obtained by multiplying the original signal with a sequence of pitch-synchronous analysis

windows h,, (n) :

Xm (H) = hm (tm - n)x(n) Eqﬂ 2.1
The analysis windows are positioned at successive instants on pitch marks 7, , which are located

at pitch-synchronous intervals on the voiced parts of speech and at a constant rate on unvoiced
parts. The windows are Hanning windows and have 2 length determined by the local pitch
period. They are longer than one pitch period so that there is some overlap between adjacent
short-term signals and may range from twice the local perdod to four times, giving 50% and 75%
overlap respecuvely. |

2.2.2 Modification

This sequence of analysis short-term signals *n (1) is modified into a new sequence of synthesis

"

: ~ : - . I, -
short-term signals X, (n), which are repositioned on a new set of synthesis pitch matks . Pitch

modification requires modifying the delays between the short-term signals and duration
modification requires the modification of the number of short-term signals; increased pitch

requires decreasing the delays, and increased duration involves the repetiion of some of the

short-term signals.
2.2.3 Synthesis

Several overlap-add (OLA) methods exist that may be used to recombine the short-term signals

to give the modified synthetic speech signal (1) | Moulines & Charpentier (1990) describe the
least-square overlap-add synthesis method (Griffin & Lim, 1984) and a more simple overlap-add



procedure (Allen, 1977). The overlap-add operation is at its simplest when the synthesis window

i1s twice the local pitch period and may be reduced to a linear combination of the modified short-

g Eqn 2.2
The basic operation of the TD-PSOLA algorithm has been presented, and the following section
describes the Praat software (Boersma & Weenink, 1999) implementation of TD-PSOLA that
will be used durning this work.

2.3 The Praat Software Implementation of the TD-PSOLA Algorithm

Praat (Boersma & Weenink, 1999) is a system for doing phonetics, developed by Paul Boersma
and David Weenink in the Phonetic Science Department at the University of Amsterdam. It is a
shareware program, which provides a flexible tool for speech research allowing pitch analysis,
spectrographic analysis and speech synthesis amongst many other functions. For more

information,  see  http:/www.fon.humuvanl/praat/ or contact Dr Boersma:

paul.boersma@hum.uva.nl.

The following sections describe how the stages of analysis, modification and synthesis for the
TD-PSOLA algonthm are achieved using this software.

2.3.1 TD-PSOL.A Analysis

Pitch analysis is performed on the time domain waveform using an acoustic periodicity detection
algorithm based on an autocorrelation method (Boersma, 1993). This method is reported to be

more accurate, robust and noise-resistant than methods using cepstrum or combs, or onginal
autocorrelation methods. The minimum default pitch is set at 75Hz; any candidates below this
level will be ignored.

A pitch contour results from this analysis, giving frequency values and voiced/unvoiced

decisions. The pitch contour is converted to a frequency of points structure representing glottal
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pulses which are positoned on the voiced intervals on the waveform. Figure 2.1 shows the Praat
software editor window. In the top section, the time domain waveform is seen with glottal pulses
(shown as vertical lines) positioned on the voiced parts of speech. The middle section shows the
original pitch contour of the voiced parts of speech, which in this example, is flat or static and

has a fundamental frequency of 223.8Hz. The bottom section facilitates the modification of the

duration of the speech.

FIGURE 2.1 PRAAT SOFTWARE EDITOR WINDOW

2.3.2 TD-PSOL.A Modification

The pitch contour when converted to the point structure may then be viewed or edited 1n the
editor window. The editor in Figure 2.2 shows the orginal sound with the point structure
representing the glottal pulses. The pitch points in the middle section may be simplified by
removing certain points, and can be edited by moving them up or down to increase or decrease

the resulting pitch. In the duration window points can be added and edited to manipulate the

relative durations of parts of the waveform.
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FIGURE 2.2. TD-PSOLA PITCH AND DURATION MODIFICATION IN PRAAT

2.3.3 TD-PSOL.A Synthesis

The modified sound waveform is obtained from the analysis phase by taking the new pitch
contour informaton (consisting of a time-stamped pitch contour without voiced/unvoiced

information) and generating new points along the entire ime-domain waveform.

The new acoustic pitch contour is interpreted as the frequency of occurrence of points
representing the sequence of glottal closures during vocal fold vibranon. The points are generated

along the entire waveform as the voiced/unvoiced information 1s not taken 1nto account yet.

The period information in the pulses is used to remove all points that lie in voiceless regions of
the time-domain waveform. This is judged to be places where the distance between adjacent

points in the original pulses is greater than 20ms.

The voiceless parts are then copied from the source waveform to the target waveform, repeating

some ST-signals or deleung some ST-signals if the local duration 1s greater or less than 1.

For each new target point, the nearest source point 1s identified and the ST-signal centred on the
source point is copied to the target sound and positioned at the target point. The window used is

bell-shaped, called a Hanning window, whose left-hand length is the minimum of the left hand
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periods adjacent to the source and the same for the right-hand side giving a2 window size of 2P,
where P 1s the local period of the signal. The ST-signals are then overlap-added together.

This section has described the operation of the Praat software implementation of the TD- |
PSOLA algorithm. The following section investigates some of the basic distortions that the

application of this TD-PSOLA implementation introduces bjr illustradng its effect on pure sine

waves.

2.4 The Basic Distortions introduced by TD-PSOLA in Pure Sine Waves

Kortekaas & Kohlrausch (19972) pitch manipulated a single pure tone to illustrate the basic signal
distortions produced by the PSOLA operation. The pure tone may be thought of as 2 component
of 2 harmonic spectrum e.g. 2 1000Hz sine wave may be assumed to be the 10th harmonic of a
100Hz fundamental, or the 4th harmonic of 2 250Hz fundamental.

Their work has been replicated here using the Praat software (Boersma & Weenink, 1999) to

illustrate these distortions and to determine whether such distortions are perceptible. The following

terminology will be used: T, the analysis rate (ms) or the rate at which the signal is decomposed,
T, the synthesis rate or the rate at which the signal is recombined, F,, the fundamental
frequency of the original signal, and F, the fundamental frequency of the synthesised signal.

Initally, a 1000Hz sine wave was generated with the Praat software using the formula
/2*sin(2*pi*1000*x). This signal was analysed as described in Section 2.2.1 to produce an
intermediate representation of a series of Short-Term (ST) signals. In Praat this involved setting
the maximum pitch to be considered in the analysis to 120Hz (found by trial and error) so that
Praat pulses are positioned every 10th cycle of the 1000Hz waveform; assuming the pure tone is a
harmonic of a 100Hz fundamental, pulses are positioned on each hypothetical cycle of the 100Hz

fundamental. As a result, the signal will be windowed or decomposed every 10ms (T“=10m5)-

The window length was set to 0.02 seconds, which represents 2*local pitch length of a 100Hz
fundamental.
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This signal was then TD-PSOLA modified by AF=-2.44% using the following relatonship:

fl‘—“-ﬁ_—f-'“f- x100%
wa “ Eqn 2.3

giving a value of Fo =97.56 Hz.

AF =

This was achieved using the Praat editor window by removal of existing pitch points and addition

of a new pitch point at the synthesis frequency of 99.56Hz. The original waveform shown in

Figure 2.3 (a) was decomposed at intervals of T"=10ms, then TD-PSOLA modified to

I, =10.25ms to produce the waveform in 2.3 (b). The TD-PSOLA modified

waveform shows amplitude modulaton (AM) in its envelope when compared to the original

Fue =97.56 Hz at

waveform.

(a) original waveform (b) TD-PSOLA modified waveform
FIGURE 2.3 TD-PSOLA DISTORTIONS: AMPLITUDE MODULATION

The distortion can also be seen in the &equenﬁy domain by calculaung the Fast Fourer
Transform (FFT) of the signal using a Hanning window (FFT size 4096). Figure 2.4 (a) shows the
spectrum of the unmanipulated 1000Hz signal, and 2.4 (b) shows the TD-PSOLA modified
version. The spectrum of the signal in Figure 2.4 (b) shows frequency modulation (FM) in the
fine structure. Broadening of the spectral envelope due to the addition of side components in the
form of harmonics of the assumed 100Hz fundamental is evident.
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(a) spectrum of original signal (b) spectrum of TD-PSOLA modified signal

v

FIGURE 2.4 TD-PSOLA DISTORTIONS: FREQUENCY MODULATION

These images illustrate some of the basic TD-PSOLA signal distortions on a pure sine wave. This
distortion may be perceptible; the timbre of sound is determined by the shape of the spectral
envelope and informal listening finds the modified version very rough or ‘hoarse’ sounding in
companson to the unmodified pure tone. The investigation in the following section extends to

more complex single formant signals.

2.5 TD-PSOLA Distortions in Single Formant Stimuli

Kortekaas & Kohlrausch (19972a) investigated the effect of TD-PSOLA pitch manipulation on
single formant stimuli and the work is recreated here to illustrate the effect of the algorithm on
more complex waveforms. Initially, a signal was generated with a fundamental frequency of 87Hz
and a formant frequency of 1000Hz with a bandwidth of 50Hz. A second signal was generated
with a fundamental frequency of 100Hz and a formant frequency of 1000Hz, with a bandwidth

ot 50Hz. This signal was then TD-PSOLA modified to produce a signal with a fundamental

f'rcqur:ncy of 87Hz.

Kortekaas & Kohlrausch (1997a) also investigated the effect of incorrect marking of glottal
closure instances. This was achieved by altering the positon of the pitch markers and hence the
position of the analysis windows on the 100Hz signal to an offset of 50%. This signal was then

pitch-modified to 87Hz.



The single formant signal was created using the Praat software by generating a source (pulse

train) at 87Hz and a filter, having a passband at 1000Hz with a 50Hz bandwidth. The single

formant signal was created by filtering the pulse train.

Figure 2.5 (a) shows the spectrum of the unmanipulated single formant signal composed of a F0
of 87Hz and a formant frequency of 1000Hz, formant bandwidth 50Hz, 2.5 (b) the TD-PSOLA
manipulated signal generated with an FO of 100Hz, formant frequency of 1000Hz, decomposed

' =

at = * =100Hz and resynthesised with a fundamental frequency of ~ * =87Hz, and 2.5 (¢) a

signal synthesised with the window offset by 50%.
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(a) signal svnthesised with fO 87Hz (b) TD-PSOLA modified signal from fO 100Hz to 87FH 2
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(¢) TD-PSOLA modified signal with 50% window offsct

FIGURE 2.5 SPECTRA OF TD-PSOLA DISTORTIONS IN SINGLE FORMANT STiMuLl: FM
MODULATION

Figure 2.5(b) shows that the shape of the spectral envelope remains almost unaffected. The

spectrum of the signal with the pitch markers set to a 50% offset 1n Figure 2.5(c) shows



pronounced notches in the spectral envelope, which is very discontinuous. These modifications
may produce perceptible distortions; informal listening finds the timbre of the signal in 2.5(b).
slightly modified, and the signal generated with the 50% analysis window offset in 2.5 ().

extremely ‘hoarse’.

2.5.1 Thresholds for Discrimination of TD-PSOL.A Modified Single Formant S timuli

Kortekaas & Kohlrausch (19972) performed experiments to determine the thresholds for TD- ]

PSOLA discimination of modified single-formant stimuli. F was varied according to

1 =+1,2,3
F = H , h n S , , lllll omS n2.4
“ =T v nl 4 z, where Eq

Using a subjective experiment, a non-monotonic behaviour was found for TD-PSOLA
discnmination. More precisely, participants were less likely to perceive any distordon for {0
manipulatons when T, was set to integer multiples of the formant frequency. For example, for a

signal of F,, =100Hz, £1=1000Hz, sub-threshold discrimination was found for T, = 12, 11, 9ms

(Ims=1/1000Hz) when T,= 10ms (10ms=1/100Hz), giving ©* values of 83.33, 90.9, and
111.11Hz. Similarly, for a signal of F, =250Hz, f1=500Hz, sub-threshold discnmination was

found for T, = 8, 6, 2ms (2ms=1/500) when T, = 4ms (4ms=1/250Hz), giving F values of

5

125, 166.7, and 500Hz etc.

There appeared to be a relationship between the degree of manipulation and the first formant

I, to a multiple of the formant period results in in-phase addition of the fine

value. Setting
structure of adjacent windows, resulting in minimal distortion of the temporal envelope. In
spectral terms, a harmonic 1s produced which coincides with i:he centre of the formant frequency.
The waveforms in Figure 2.6 show (a) 2 waveform synthesised with f0 90.90Hz, f1=1000Hz and
(b) 2 waveform synthesised with fO 100Hz, f1=1000Hz which has been TD-PSOLA modified to

give a signal with a fundamental frequency of 90.9Hz.
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(a) signal svnthesised at f0 90.9Hz (b) TD-PSOLA modified 100Hz to 90.9Hz

FIGURE 2.6 WAVEFORMS OF SYNTHESISED AND TD-PSOLA MODIFIED VERSIONS OF 90.9HzZ
FUNDAMENTAL SIGNAL

Figure 2.6 shows there 1s little difference in the shape of the temporal envelope of the two
signals. The corresponding spectra are shown in Figure 2.7. The spectral slope remains

unchanged and the harmonic energy levels have suffered little attenuation.
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(a) swonal f0 90.9H z (b) TD-PSOLA modified 100 to 90.9Hz

FIGURE 2.7 SPECTRA OF SYNTHESISED AND TD-PSOLA MODIFIED VERSIONS OF 90.9HzZ
FUNDAMENTAL SIGNAL

Figure 2.8 shows a magnified view of the first formant region. A harmonic has been produced
which corresponds to the centre of the first formant at 1000Hz, resuling in minimal signal
distortion. This does not appear to produce perceptible distortion; informal listening indicates it

may be impossible to discriminate between the unmodified and modified signals.
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(a) unmodified signal (b) TD-PSOLA modified signal

FIGURE 2.8 MAGNIFIED VIEW OF THE FIRST FORMANT REGION

T'he tollowing set of diagrams in Figure 2.9 show an instance where “¢ is not a multiple of the
formant frequency period but has been set to 10.5ms resulting 1n a 95.24Hz fundamental

frequency signal. The strongest harmonic is not at the centre of the first formant and a new

harmonic 1s introduced. The diagrams on the left represent the signal synthesised at 95.24Hz, and

the diagrams on the night show the TD-PSOLA signal modified from 100Hz to 95.24Hz.
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(a) synthesised 0 95.24Hz (b) TD-PSOLA modified: 100 to 95.24Hz
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(c) signal 0 95,241~ (d) TD-PSOLA modified to 95.24Hz

>4



Gha

(d)

unmodified signal (e) TD-PSOLA modified signal

FIGURE 2.9 WAVEFORMS, SPECTRA AND FIRST FORMANT REGION OF SYNTHESISED AND TD-
PSOLA MODIFIED VERSIONS OF 95.24HZ FUNDAMENTAL SIGNAL

This distortion may be perceptible; informal listening can detect a very shght difference in ambre.
The spectra show attenuation of harmonics around the first formant centre frequency of 2-3dB,
although the spectral shape remains unaffected. Changes 1n the intensity of the spectral
components that occur in the spectral region of the formant could be the cue for discrimination;
formant frequency JNDs (Just Noticeable Differences) tor harmonic level differences at 500,

1000 and 2000Hz formant values have been identified at 2, 2.5 and 4dB respecuvely (Zera e/ al,
1993).

This section has illustrated the acoustic distortions that pitch modificatton with TD-PSOLA
introduces into simple signals under certain condittions. Some of the distorton may be
perceptible although, as Kortekaas & Kohlrausch (1997a) note, it is not known whether these

conditions could be used as cues for TD-PSOLA discimination in more complex signals, such as

natural speech.

2 6 The Influence of Pitch Marker Position

The effect of incorrect pitch marker positon on single formant stimuli was illustrated in Section
2.5. Moulines & Charpentier (1990) found that minimum phase distortion 1s achieved when pitch
per:iods and hence windows are synchronized on the instants of glottal closure. Failure to do so

results in distortions of the formant amplitudes (Moulines ¢/ @/,