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Peripheral overconfidence in a scene categorization task

Nino Sharvashidze

Matteo Toscani

Matteo Valsecchi

Our ability to detect and discriminate stimuli differs
across the visual field. Does metaperception (i.e., visual
confidence) follow these differences? Evidence is mixed,
as studies have reported overconfidence in peripheral
detection tasks and underconfidence in a peripheral
local orientation discrimination task. Here, we tested
whether overconfidence can arise in a task that aligns
with the strengths of peripheral vision: rapid scene
categorization. In each interval, our participants viewed
a scene only in the periphery (scotoma) or only in the
center (window) and categorized it (desert, beach,
mountain, or forest). Subsequently, they indicated the
interval for which they were more confident in their
judgment. Task difficulty was manipulated by varying
the scotoma and window size. Accuracy decreased with
the increasing size of the scotoma and increased with
the increasing size of the window. We computed the
probability of higher confidence in the periphery as a
function of the expected performance difference
between the two conditions. Participants’ points of
equal confidence were systematically shifted toward
higher central perceptual performance, indicating that
higher visibility in the center was needed to produce
matched perceptual confidence and demonstrating
overconfidence in the periphery. This suggests that
changing the task from local orientation discrimination
to global scene categorization (i.e., a task where
peripheral vision outperforms foveal vision) reversed
the metaperceptual bias. Periphery is suited for
detecting objects and processing global information, but
not for discriminating fine details or local features.
Metacognitive judgments seem to follow these inherent
capabilities and constraints of peripheral vision.

Perception is not uniform across the visual field. The
fovea, a central region with the highest density of cone
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photoreceptors and therefore maximum visual acuity,
processes only a small portion of the visual input
(Curcio, Sloan, Kalina, & Hendrickson, 1990). The rest
of the information is processed in the periphery, where
the ability to perceive fine detail declines (Anstis, 1974;
Pointer & Hess, 1989), position uncertainty increases
(e.g., Michel & Geisler, 2011), contrast and high spatial
frequency sensitivity declines (Rovamo, Virsu, &
Naisédnen, 1978), and processing is further impaired by
crowding (Bouma, 1970) (for reviews, see Rosenholtz,
2016; Rosenholtz, 2020; Strasburger, Rentschler, &
Jittner, 2011). Despite these deficits, as Rosenholtz
(2016) puts it, “If we actually had to rely on multiple
foveal views, our vision would be far worse.” We rely
on the periphery to guide our eye movements, to direct
the fovea to the areas of interest (e.g., Nuthmann,
2014). Yet, even in their absence, observers demonstrate
the ability to rapidly and accurately recognize scenes
(e.g., Greene & Oliva, 2009; Loschky et al., 2007).
Although scene gist recognition is to some extent an
artificial task, as we rarely identify the gist of scenes
explicitly in everyday life, it nonetheless mainly relies
on global processing, a core function of peripheral
vision (e.g., Larson & Loschky, 2009; Trouilloud

et al., 2020). Larson and Loschky (2009) tested scenes
with either only the central or the peripheral regions
visible. They found that, although foveal vision is
more efficient for gist recognition, peripheral vision
contributes more overall, likely due to its larger viewing
field (see also Geuzebroek & van den Berg, 2018; Wang
& Cottrell, 2017). While perception varies between

the periphery and the fovea, with perceptual efficiency
depending on the specific task, are we consciously
aware of these differences? Evidence regarding how
accurately our metaperception (i.e., our beliefs about
our percepts) tracks the perception across the visual
field is mixed, so are the methods used to investigate
this question (for a review on metaperception,

see Mamassian, 2016).
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One possibility is that confidence directly tracks
perceptual performance; that is, the more accurate
the perception across the visual field, the higher the
associated confidence. However, although observers
typically show some level of metacognition (reviewed
below, e.g. Kim & Chong, 2024; Pruitt, Knotts, &
Odegaard, 2024), numerous studies have shown biased
confidence judgments. For example, overconfidence in
peripheral vision has been observed in redundancy-
masking paradigms, despite a decrease in accuracy
(Yildirim & Sayim, 2022). A line of research, using
signal detection theory models of confidence, has
reported several further cases of biased metacognition.
The data show more liberal detection criteria in
the periphery, associated with higher confidence,
as such a criterion leads to a higher likelihood to
report peripheral stimuli as present when they are
absent (e.g., Li, Lau, & Odegaard, 2018; Rahnev et
al, 2011; Solovey, Graney, & Lau, 2015). In the study
by Odegaard, Chang, Lau, and Cheung (2018), in
addition to reporting the presence of the stimulus,
observers were explicitly asked to rate their confidence.
The results showed overconfidence in discrimination
judgments and liberal bias in detection judgments in
crowded compared to uncrowded conditions. Notably,
all of these results have been taken as support for the
“inflation”—the phenomenological richness of vision
(at least partially) explained by inflated peripheral
perception (Cohen, Dennett, & Kanwisher, 2016;
Knotts, Michel, & Odegaard, 2020; Knotts, Odegaard,
Lau, & Rosenthal, 2019; for an example of inflation in
unattended peripheral stimuli, see also Tian et al., 2024).

Winter and Peters (2022) investigated how the
knowledge and use of noise statistics across the
visual field influence metaperceptual judgments. They
found that models incorporating accurate empirical
noise priors for both the fovea and the periphery do
not produce metaperceptual biases. In contrast, the
observed increase in peripheral confidence could be
explained by a model in which the perceptual system
relies on an incorrect prior about the shape of the noise
distribution. Boundy-Singer, Ziemba, and Goris (2023)
proposed that confidence arises from a noisy internal
estimate of decision reliability, with the precision of
this estimate varying across conditions. Interpreting
peripheral overconfidence within their framework,
increased meta-uncertainty in peripheral vision can
reduce the precision of this estimate, leading to inflated
confidence despite reduced accuracy.

Interestingly, a more recent study by Pruitt et al.
(2024) examined biases across various horizontal
eccentricities and found stronger support for the
alignment of confidence judgments with task
performance (i.e., unbiased metacognition) rather
than overconfidence. Additionally, the detection
decision criteria varied, being more liberal at medium
eccentricities and more conservative at smaller
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and larger eccentricities. This aligns with other
studies that have found some degree of alignment
between perceptual performance and confidence. For
instance, observers showed partial awareness of their
metacognitive deficits in unattended peripheral arecas
when processing color stimuli (Hawkins et al., 2022)
and for faces along the horizontal meridian (Kim &
Chong, 2024). In a degraded face localization task, Kim
and Chong (2024) found that, although participants
recognized the decline in perceptual resolution with
increasing eccentricity, they were less aware of the fact
that their performance degraded to a larger extent as a
function of eccentricity along the vertical meridian as
compared to the horizontal meridian.

Another example of the dissociation between
confidence and perceptual performance comes from a
study on foveal scotopic scotoma (Gloriani & Schiitz,
2019). Under low-light, scotopic conditions, the fovea,
which lacks rod receptors, exhibits a central blind spot
that typically goes unnoticed due to perceptual filling-in.
In the study by Gloriani and Schiitz (2019), observers
viewed striped gratings that were either continuous or
had a central discontinuity falling within the scotoma.
As expected, in the first experiment, observers failed
to detect central discontinuities when they fell within
the scotoma. In the second experiment, observers were
asked to choose which stimulus to judge, to reveal their
perceptual confidence. They consistently preferred
to judge the less eccentric stimulus and reported
continuity when both stimuli were continuous and even
when the discontinuity fell within the scotoma. Their
preference for judging the peripheral stimulus was only
increased when the peripheral stimulus contained the
discontinuity. The same pattern of results was obtained
under photopic conditions. The authors concluded
that the scotopic scotoma is not accounted for during
perceptual decision-making and that confidence is
assessed at a processing stage where information about
the underlying photoreceptor type is lost and perceptual
filling-in is complete. Relying on central vision under
scotopic conditions is suboptimal, as the percept is not
veridical but instead filled in; yet, observers still tend
to trust it more than veridical peripheral information.
It is worth noting that, although the central and
peripheral stimuli were clearly suprathreshold (i.e., they
were not matched in terms of visibility), the finding
that observers consistently chose to judge the central
stimulus, under both scotopic and photopic conditions,
is suggestive of peripheral underconfidence (for further
striking examples of dissociation between perception
and confidence, see Michel, Gao, Mazor, Kletenik, &
Rahnev, 2024).

Toscani, Mamassian, and Valsecchi (2021)
directly compared central and peripheral vision to
investigate whether confidence differed when perceptual
performance was matched. They adjusted stimulus
difficulty individually for each participant for central
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and peripheral presentations to ensure similar levels
of discrimination performance. In their Gabor
orientation discrimination task, peripheral vision was
associated with underconfidence (see also Knotts, Lee,
& Lau, 2019). These findings suggest that, even when
perceptual performance is equated across the visual
field, confidence bias persists, with peripheral signal
being treated as less reliable during a local orientation
discrimination judgment.

This raises the question of whether this is a
default preference for foveal over peripheral vision or
whether the preference is task dependent. Odegaard
and Lau (2016) argued that the nature of the
decision—specifically, how fine-grained or detailed the
task is—should be taken into account when interpreting
confidence judgments in peripheral vision. Tasks such
as local orientation discrimination or orientation
misalignment discrimination in gratings require fine
detail vision and precise local processing, functions for
which the visual system inherently prioritizes foveal
input. Put simply, no one would rely on peripheral
vision to thread a needle. In this study, we asked
whether tasks in which peripheral vision outperforms
central vision can reverse peripheral underconfidence.
We selected a task that requires global/coarse instead
of local/fine-detail processing: scene categorization.
The reasoning is that, if the visual system holds a prior
favoring peripheral vision for global scene processing,
then confidence judgments should reflect this.

With a confidence forced-choice task (Mamassian,
2020), as in Toscani et al. (2021), we tested scene
categorization accuracy and metaperception in a
paradigm similar to that of Larson and Loschky (2009).
Each trial consisted of two intervals; in each interval, a
scene was shown either only in the periphery (scotoma
condition) or only in the center (window condition),
and for each interval the observers provided a scene
categorization response. After the second interval,
participants indicated the interval for which they were
more confident in their categorization. Task difficulty
was varied by varying scotoma size (more peripheral
information with a smaller scotoma) and window size
(more central information with a larger window). To
anticipate our main result, we found that changing
the task from orientation discrimination to scene
gist categorization also changed observers’ response
patterns from underconfidence to overconfidence in the
periphery.

Participants

We estimated the required sample size by calculating
the effect size from the metacognitive bias results in
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Experiment 1 of Toscani et al. (2021) (Cohen’s d =
2.274). A power analysis conducted using G*Power 3.1
(Faul, Erdfelder, Lang, & Buchner, 2007) indicated that
a sample size of five participants would be enough to
detect the expected effect with a power of 0.95 and

a significance level of 0.05. To ensure robust results,
we planned to recruit 12 participants. A total of 13
naive participants volunteered to participate in the
experiment without compensation. One participant
was excluded due to the inability to keep fixation.

The exclusion resulted in a dataset of 12 participants
(mean age, 24.43 + 4.94 years; range, 2035 years; three
males). They reported normal or corrected-to-normal
vision and provided written informed consents. All
procedures were in accordance with the tenets of the
Declaration of Helsinki and were approved by the
Bioethics Committee of the University of Bologna
(protocol 0122496). The study was not preregistered.

Equipment

The stimuli were presented on a S2522HG monitor
(size, 54.5 x 30.2 cm; resolution, 1920 x 1080 pixels;
refresh rate, 60 Hz; Dell Technologies, Round Rock,
TX). The viewing distance was 56 cm, which resulted
in 34.95 pixels per 1 degree of visual angle (dva) on
the vertical axis. Luminance values of the monitor
were 0.6, 22.1, and 124.2 cd/m? for black (0), gray
(123), and white (255) RGB values. The stimuli
were presented using Psychophysics Toolbox 3.0.19
(Brainard, 1997; Pelli, 1997) with Psignifit 4.0 (Schiitt,
Harmeling, Macke, & Wichmann, 2016) in MATLAB
R2023a (MathWorks, Natick, MA). Gaze position was
recorded with the Tobii Eye Tracker 4C (Tobii Gaming,
Danderyd, Sweden), sampled at 90 Hz, and was used
to ensure participants were fixating at the center
of the screen. The eye tracker was controlled using
custom-made scripts. A nine-point calibration was
performed at the beginning of the experiment. Head
movement was minimized with a chin rest. Participants
responded using a standard keyboard (a, d, h, and
k keys for scene categorization and ¢ and b keys for
confidence judgment). The assignment of category keys
and categories was randomized for each participant,
and the confidence response keys were fixed (¢ for more
confidence in the first interval, b for more confidence in
the second interval).

Stimuli

All stimuli were presented on a gray background
(RGB value = 128; luminance value = 24.04 cd/m?).
The fixation target was a combination of a bull’s eye
and a crosshair (Thaler et al., 2013). The radius of
the outer circle of the fixation target was 10.49 pixels
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Figure 1. Trial procedure and stimuli. (A) Participants first fixated on the fixation target of the first interval for 700 to 1500 ms,
followed by a 200-ms cue indicating the condition. The image was then presented for 50 ms, after which participants made a
categorization decision. The fixation target reappeared for the second interval, followed by the cue, image presentation, and a second
categorization decision. After both intervals, participants made a confidence judgment. Response times were not constrained, and
the interval—condition assighnment was counterbalanced. Although the same image is shown in both intervals here, different images
were used in the experiment. (B) An approximate visual representation of the smallest and largest scotoma and window diameters
with the corresponding degree of visual angle values. In both conditions, the rest of the screen was gray.

(0.3 dva). The cue was a circular ring (1 pixel wide)
displayed around the fixation target. The radius of
the scotoma cue was 400 pixels (11.44 dva), and the
radius of the window cue was 20 pixels (0.57 dva). The
fixation target and cue had the same color, which was
determined by varying the luminance and red—green
components of an approximate DKL color vector on
each trial (Derrington, Krauskopf, & Lennie, 1984).
This was done to minimize the build-up of afterimages.
Notice that we did not measure the chromaticities and
luminance of the monitor RGB primaries and resorted
to standard RGB to estimate the DKL-to-RGB
conversion. The four image categories were beach,
desert, forest, and mountain. The images were sourced
from the SUN Database (Xiao, Hays, Ehinger, Oliva,
& Torralba, 2010) and Flickr. Prior to use, they were
equalized for mean luminance of 19.14 cd/m” and
contrast SD of 1.22 cd/m?, as in Loschky et al. (2007).
In the scotoma condition, only peripheral information
was available; in the window condition, only central
information was available. The outer boundary of the
image was fixed at the radius of 400 pixels (11.44 dva)
for both conditions, with the area beyond this boundary
consistently gray. In the scotoma condition, the central
part of the image was not visible (i.e., was gray). The
minimum and maximum radii for the window were
5 and 200 pixels, for scotoma — 200 and 395 pixels
(Figure 1B). The smallest window of 5-pixel radius
resulted in only the central 10-pixel-diameter patch
(0.29 dva) of the image being visible and the rest of
the screen being gray. The largest window of 200-pixel
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radius resulted in the 400-pixel-diameter patch (11.44
dva) of the image being visible and the screen beyond
that being gray. The smallest scotoma of 200-pixel
radius resulted in the whole image (outer boundary at
400 pixels) being visible except for the central area of
400-pixel diameter (11.44 dva), which was gray. The
largest scotoma of 395 pixels left only a thin ring (0.29
dva) visible; everything beyond was gray.

Procedure

Each trial consisted of two scene categorization and
one confidence judgments (Figure 1A). The trial began
with a fixation target in the center of the screen, which
was presented for a variable period of time between
750 and 1500 ms. A circular cue appeared around the
fixation target 400 ms before the fixation target offset
for 200 ms, indicating the upcoming condition: window
(small cue) or scotoma (large cue). The conditions
were cued to ensure that attention was distributed
equally between the two conditions. Participants were
instructed to maintain fixation at the center of the
screen throughout the trial. If the gaze position moved
more than 2 dva away from the fixation target, they
were warned to keep fixation on the target and the
trial was repeated later. After the fixation target offset,
the image appeared for 50 ms. In each trial, the image
was randomly selected from the dataset of 50 images
per category. After the first interval, participants
categorized the scene by pressing a key to select one
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of four category options. The response options and
corresponding keys were displayed on the screen. This
was followed by the reappearance of the fixation target,
the cue, the presentation of the second image, and

a categorization response. After both categorization
responses, participants indicated the interval for which
they were more confident in their judgment.

The sizes of the scotoma and window were varied.
In the initial phase of the experiment there were five
fixed size values for each condition: for the window
condition, 5, 53.75, 102.5, 151.25, and 200 pixels; for
the scotoma condition, 200, 248.75, 297.5, 346.25,
and 395 pixels. All pairwise combinations of initial
fixed window and scotoma values were repeated across
four categories (5 x 5 x 4). Half of the trials were
assigned to scotoma-window order and the other
half to window—scotoma order. This resulted in 100
randomized trials for the initial fitting. After the initial
fitting, the scotoma and window sizes were defined
based on the sampled difficulty levels. Starting after 100
trials and after each trial, a cumulative Gaussian was
fitted to the proportion correct responses as a function
of the size separately for the window and scotoma
conditions, using the psignifit Fast function (without
guess and lapse rates). Performance for both intervals
was sampled separately and uniformly from a range
between 0.1 and 0.9. The sizes required to achieve the
sampled performance levels were determined from the
fits with the unscaled getThreshold function and were
forced to not exceed the size limits of each condition.
Ten repetitions of all combinations of interval category
and condition order were run after the initial 100 trials,
resulting in 320 additional trials (4 x 4 x 2 x 10). In
total, the experiment consisted of 420 trials. It was run
in one session with five breaks and lasted approximately
1.5 to 2 hours.

Analysis

Categorization accuracy

We expected that the categorization accuracy
would improve with increasing peripheral and central
information, with more peripheral information
corresponding to a smaller scotoma size and more
central information corresponding to a larger window
size. Cumulative Gaussian functions were fitted to
the proportion of correct responses as a function of
scotoma size and window size in pixels. Notice that the
function has a negative slope in the scotoma condition.
Data from all 420 trials were used.

Metacognitive bias

To analyze the metacognitive bias, we looked at
the relationship between the expected performance
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difference between the two conditions and the
probability of choosing the scotoma interval as higher
confidence. To assess performance difference in each
trial, we first calculated the proportion of correct
responses to be expected for each condition separately
based on the window and scotoma sizes and the
respective psychometric fits. The proportions were
then converted to z-scores, similar to Toscani et al.
(2021). The difference in the z-scores between the
scotoma and window conditions was calculated by
subtracting the window z-score value from the scotoma
z-score value. The data from the individual trials were
binned, and a cumulative Gaussian function (with four
parameters, including lapse and guess rates) was fitted
to the responses with higher confidence in scotoma as
a function of the z-score difference values. The points
of equal confidence (PECs) could be estimated. A PEC
value of 0 indicates no metacognitive bias. Negative
PEC values reflect overconfidence in scotoma, where
higher window performance is required to match the
confidence levels in scotoma. Conversely, positive PEC
values indicate overconfidence in the window, where
higher scotoma performance is needed to match the
confidence levels in the window.

Metacognitive sensitivity

To ensure that our participants were able to provide
metacognitive judgments that were related to the
perceptual difficulty of the trial, rather than simply
using window and scotoma sizes as cues to confidence,
we decided to compute metacognitive sensitivity.

To this aim, we compared participants’ perceptual
sensitivity between high- and low-confidence choices.
Cumulative Gaussian functions were fitted to the data,
split according to which trial interval was selected for
higher confidence. High metacognitive sensitivity is
reflected in differences between the 50% thresholds for
high confidence and low confidence choices. In the case
of scotoma, high-confidence trials should have had
higher thresholds, as higher threshold values indicate
better peripheral perceptual sensitivity. In the case of
window, high-confidence trials should have shown lower
thresholds, as lower thresholds indicate better central
perceptual sensitivity. No threshold differences suggest
a lack of metacognitive sensitivity, indicating that par-
ticipants’ confidence decisions were not based on their
accuracy.

General data analysis

For the data analysis, all psychometric functions
were fitted with the Psignifit 4.0 (Schiitt et al., 2016) in
MATLAB R2022a. Further statistical analyses were
conducted in RStudio 4.3.0 using the stats package
(R Core Team, 2023).
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Categorization accuracy

As expected, categorization accuracy decreased
with increasing size of the scotoma (i.e., decreasing
peripheral information) (Figure 2A) and increased
with the increasing size of the window (i.e., increasing
central information) (Figure 2B). The mean estimated
threshold in scotoma was 370.89 + 17.34 pixels (mean
+ SD); in window, 67.19 £ 14.05 pixels (mean + SD).
In order to measure the efficiency of information
extraction per unit in our image categorization task, we
additionally calculated the ratio of the image area at
the threshold radii for both the window and scotoma
conditions. The window-to-scotoma ratio was 0.2601 +
0.15 (mean + SD), i.e. the image area at the thresholds
in the window condition was smaller compared to
the scotoma condition. This result indicates a higher
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efficiency of information extraction per unit in the
center compared to the periphery.

Metacognitive bias

The participants’ points of equal confidence were
systematically shifted toward higher central perceptual
performance (Figure 2D). The mean PEC was —0.915
(95% confidence interval (CI) [-1.578, —0.253]). On
average, PEC was significantly different from zero,
indicating overconfidence in the scotoma condition,
t(11) =-3.0402, p = 0.011.

Metacognitive sensitivity

In the trials where scotoma was selected with higher
confidence (Figure 3C), the mean scotoma threshold
was 389.49 £ 17.38 pixels (mean £ SD). In the trials
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Figure 2. Accuracy and confidence results. (A) The psychometric function of one participant in the scotoma condition shows the
proportion correct responses as a function of scotoma size in pixels. (B) The Psychometric function of the same participant in the
window condition shows the proportion of correct responses as a function of window size in pixels. (A, B) Vertical lines indicate
estimated thresholds at 50%. (C) The psychometric function of the same participant showing the proportion of more confidence in
scotoma responses over performance difference between the two conditions in z-scores. The vertical line indicates a point of equal
confidence (PEC). (D) Scatterplot of PEC values. The pink shaded area represents a region of negative PECs, indicating overconfidence
in scotoma. The gray shaded area represents a region of positive PECs, indicating overconfidence in the window. Light gray dots show
individual participant PECs, vertically ordered from lower to higher values; the black dot represents the mean PEC across participants.
The error bar indicates the 95% confidence interval.
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Figure 3. Metacognitive sensitivity results. (A) Psychometric functions of one participant for selected scotoma trials (higher
confidence in scotoma) (dark pink) and unselected trials (lower confidence in scotoma) (light pink). (B) Psychometric functions of the
same participant for selected window trials (higher confidence in window) (dark gray) and unselected trials (lower confidence in
window) (light gray). (A, B) Vertical lines represent estimated thresholds at 50%. (C, D) Scatterplots of perceptual thresholds of
individual participants (gray dots) with the overall means (black dots) in selected and unselected trials for scotoma (C) and window

(D). Error bars indicate 95% confidence intervals.

where scotoma was not selected, it was 344.20 &+ 21.69
pixels (mean + SD). There was a significant difference
between the selected and unselected scotoma trials,
t(11) =-8.6504, p < 0.001, Cohen’s d = 2.266; the mean
difference was —45.293 (95% CI [—56.818, —33.769]).
In the trials where window was selected with higher
confidence (Figure 3D), the mean window threshold
was 36.92 + 20.03 pixels. In the unselected trials, it was
101.18 £ 19.94 pixels. There was a significant difference
between the selected and unselected window trials,
t(11) = 21.143, p < 0.001, Cohen’s d = —3.216; the
mean difference was 64.259 (95% CI [57.570, 70.948)).
These results indicate that our participants produced
confidence judgments that followed the perceptual
performance in each trial and interval, rather than using
solely window or scotoma size as a cue to confidence.

We combined a forced-choice confidence paradigm
(Mamassian, 2020) with a scotoma/window scene
categorization paradigm (Larson & Loschky, 2009).
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This allowed us to match categorization performance
across peripheral and central conditions and isolate

a metaperceptual bias. The results showed that the
more scene information the observers were presented
with, the better their categorization accuracy in

both conditions. Their points of equal confidence
were systematically shifted toward higher central
perceptual performance. For equal confidence level, on
average, higher central performance was needed to be
matched with peripheral performance, suggesting more
confidence in the periphery compared to the central
vision (Figure 2D).

Although the tasks and stimuli used in our study
and that of Toscani et al. (2021) are different, the
underlying methodological approach is similar,
allowing for a meaningful comparison between the
two. Toscani et al. (2021) employed a fine-grained
orientation discrimination task using Gabor patches,
which relied on foveal processing. In contrast, our task
required scene categorization, which depends more on
global gist recognition mediated by peripheral vision.
Whereas Toscani et al. (2021) found a metaperceptual
bias favoring foveal information, we observed higher
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confidence in peripheral information. We speculate that
this reversal in metaperceptual bias may have resulted
from the shift in task demands from local, detail-
oriented processing to global processing, emphasizing
the role of task type in shaping metaperceptual
judgments.

In the scotoma/window paradigm, peripheral stimuli
need to cover a larger area of the visual field to yield
equal performance as in central vision. Larson and
Loschky (2009) found that, at the radius where the area
sizes overlapped, the fovea showed superior accuracy.
Our data also showed higher efficiency of extracting
information per unit in the center compared to the
periphery. Note that, because we used stimulus area to
titrate performance, the paradigm takes into account
the effects of cortical magnification (i.e., the fact that
a larger cortical area is dedicated to processing of
the foveal input). Increasing the amount of visual
information in the periphery effectively compensates
for the peripheral disadvantage (Larson & Loschky,
2009). On the other hand, this also introduces an
additional difference between conditions. With regard
to confidence in the scene categorization, observers
may feel more confident because they perceive more
of the stimulus in the periphery, even though they can
extract less information per surface unit compared to
the fovea. However, even if greater image area coverage
contributes to greater confidence in the periphery, this
characteristic is inherently linked to the nature of the
peripheral vision. Our periphery covers a larger area of
the visual field and thus specializes in the processing
of global information. This means that controlling
for image area across conditions would fail to capture
characteristics of peripheral vision and would take away
the key factor that contributes to superior peripheral
scene recognition (see also Trouilloud et al., 2020).

What other factors might lead observers to
have overconfidence in their peripheral view while
categorizing scenes based on a partial view? Peripheral
vision is often confronted with the problem of
interpolating missing information over larger areas
of the visual field. To support this process, different
mechanisms exist, for instance perceptual filling-in,
whereby missing visual information is illusorily
reconstructed based on surrounding context and prior
experience (for reviews, see Komatsu, 2006; Pessoa,
Thompson, & Noég, 1998; Weil & Rees, 2011). This
mechanism could create an illusion of perceiving
more of the scene than what was actually presented,
possibly through the spreading of the peripheral
texture-like representation toward the central scotoma,
in turn leading to higher confidence in peripheral
content. Another possibility is amodal completion,
wherein the visual system infers the presence of
occluded surfaces or objects. This would involve
interpreting the gray background as an occluder.
However, since amodal completion typically relies on
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depth cues, which were absent in our experiment, this
explanation becomes less likely. Moreover, one cannot
rule out that similar processes leading to an inflated
representation of the scene would be induced by the
presentation of the central portion of a scene as well,
as evidenced by the boundary extension phenomenon
(Intraub & Richardson, 1989; for a review, see
Hubbard, Hutchison, & Courtney, 2010). Although
broader spatial coverage and filling-in mechanisms
are characteristics of peripheral vision, the nature

of the task and stimuli may also have influenced the
results. Observers might have a tendency to rely on and
eventually over-trust peripheral vision for categorizing
scenes because scene-diagnostic features, or even
scene-diagnostic objects, might tend to be localized
closer to the borders of the scene image, at least for
some scene categories. For example, the outline of the
mountain profile against the sky in a mountain scene
is unlikely to be located at the center of the view in a
canonically taken photograph.

To better understand the observed overconfidence,
we additionally assessed the metaperceptual sensitivity.
The purpose was to make sure that observers’
confidence ratings followed their trial-by-trial accuracy,
rather than relying only on the stimulus size cue for
their confidence reports. The thresholds of selected
and unselected confidence choices were systematically
different, indicating high sensitivity for confidence
in both conditions (Figures 3C and 3D). Given the
complexity and variability built into our stimuli, it
is reasonable to expect a higher level of confidence
sensitivity as compared to the simpler stimuli used by
Toscani et al. (2021). In Toscani et al. (2021), with
their identical Gabors, performance fluctuations must
be mostly due to internal noise (e.g., fluctuations in
alertness), but our stimuli inherently contained some
degree of noise, as some images would be more difficult
to categorize than others. Nonetheless, the difference
between selected and unselected stimuli is a clear
indication that our participants were paying attention,
had access to their performance accuracy, and selected
intervals with higher confidence in which they also
performed more accurately.

Previous research has shown both overconfidence
and underconfidence in peripheral vision. Our data
indicate that whether peripheral vision exhibits
overconfidence or underconfidence largely depends
on the specific task it is required to perform. The
difference in confidence may depend on a concrete task
dichotomy, whether the task involves simply detecting
the presence of an object in the periphery (detection
task) or identifying its details (discrimination task).
Or, more generally, confidence could be predicted
based on whether the periphery or fovea is typically
used and thus is better suited for the task. Studies
that have found overconfidence in peripheral vision
have mostly included detection tasks (Li et al., 2018;
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Rahnev et al., 2011; Solovey et al., 2015). But, this is not
always the case (e.g., the first experiment in Odegaard
et al., 2018), and the distinction between detection
and discrimination alone may not be the universal
explanation for the occurrence of overconfidence and
underconfidence. However, detecting objects in the
environment is primarily a function of peripheral
vision. In some cases, superior detection compared
to discrimination performance has been observed
at increasing eccentricities (Harris & Fahle, 1996;
Levi, Klein, & Aitsebaomo, 1984). Consequently,
it is plausible that confidence in detection is higher
than in discrimination when relying on peripheral
vision. Ziemba and Simoncelli (2021) showed a clear
foveal-peripheral trade-off, where reduced detail
discrimination in the periphery was compensated by
an enhanced capacity for global processing. In the
periphery, observers’ ability to discriminate fine detail
in summary statistics diminishes as the size of stimuli
increases, but the ability to discriminate stimuli with
different statistics improves with larger stimuli. This
specific superior discriminative ability of peripheral
vision leaves room for speculation that there may be
instances where overconfidence is observed in the
periphery for specific discrimination tasks that are
particularly suited to the characteristics of peripheral
vision.

The statistical summary hypothesis (Balas, Nakano,
& Rosenholtz, 2009; Ehinger & Rosenholtz, 2016;
Rosenholtz, Huang, Raj, Balas, & Ilie, 2012) explains
peripheral advantages in scene gist perception through
spatial pooling models (Freeman & Simoncelli,
2011). Larger receptive fields in the periphery capture
broad structures and textures, which are sufficient for
recognizing basic scene categories (Loschky, Hansen,
Sethi, & Pydimarri, 2010; Oliva & Torralba, 2006). The
coarse-to-fine processing model of scene perception
suggests that the peripheral advantage comes from the
rapid processing of low spatial frequency information,
which is primarily handled by peripheral vision and is
sufficient for the gist extraction (Kauffmann, Chauvin,
Guyader, & Peyrin, 2015; Trouilloud et al., 2020).
Zhaoping (2024) refers to peripheral processing as
“looking” to characterize the global, coarse selection
guided by saliency and foveal detailed encoding as
“seeing.” According to her, feedback verification is
what mainly distinguishes peripheral and foveal vision.
Peripheral vision excels at tasks such as monitoring
the environment and perceiving the gist of the scene,
largely because these tasks require minimal feedback
verification. These tasks also align with the innate
role of peripheral vision of guiding saccades and
influencing decisions about when and where to shift
the gaze and are usually performed with remarkable
efficiency (Zhaoping, 2023; Zhaoping, 2024). Although
we seem to be aware of the limitations of peripheral
vision (e.g., Gloriani & Schiitz, 2019; Kim & Chong,
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2024; Pruitt et al., 2024; Toscani et al., 2021), in
everyday life we do trust it to detect and respond to
stimuli and orient ourselves in space (for a review, see
Vater, Wolfe, & Rosenholtz, 2022). Accurate evaluation
of the capabilities and limitations of our peripheral
vision is crucial for the efficient distribution of limited
processing resources. It would be costly not to trust the
larger area of our visual processing with anything based
on its limitations.

We manipulated the amount of peripheral and
central information using the scotoma/window
paradigm to examine confidence in peripheral and
central vision. Participants showed higher confidence
in peripheral input when categorizing scenes, likely
because the global processing needed for this task
benefits from access to a wider visual field. In contrast,
Toscani et al. (2021) observed underconfidence in the
periphery when participants were asked to discriminate
orientation. Together, these findings suggest that
confidence may reflect not just perceptual efficiency but
also the functional advantage of peripheral vision for
certain tasks. This is likely shaped by prior experiences
of relying on foveal versus peripheral vision for different
tasks. In other words, we seem to be aware not only
of the limitations of peripheral vision but also of its
capabilities, indicating an implicit understanding of
which tasks can and cannot be effectively handled by
peripheral vision.

Keywords: metaperception, confidence, peripheral
vision, foveal vision, scene categorization
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