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Abstract

The growing threat of multidrug-resistant Klebsiella pneumoniae, coupled with its role in gut colonisation, has intensified the search for new treat-
ments, including bacteriophage therapy. Despite increasing documentation of Klebsiella-targeting phages, clinical applications remain limited,
with key phage—bacteria interactions still poorly understood. A major obstacle is fragmented access to well-characterised phage—bacteria pairings,
restricting the collective advancement of therapeutic and mechanistic insights. To address this gap, we created the Klebsiella Phage Collection
(KlebPhaCol), an open resource comprising 52 phages and 74 Klebsiella isolates, characterised at phenotypic and genomic levels. These phages
span six families—including a novel family, Felixviridae, associated with the human gut—and target 20 sequence types (including ST258, ST11,
and ST14) and 19 capsular-locus types (including KL1 and KL2), across 6 Klebsiella species. Freely accessible at www.klebphacol.org, KlebPha-
Col invites the scientific community to both use and contribute to this resource, fostering collaborative research and a deeper understanding of
Klebsiella-phage interactions beyond therapeutic use.
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Introduction

The global rise of antimicrobial resistance (AMR) has
prompted urgent action to develop new, effective therapies [1-
6], with bacteriophage (phage) therapy emerging as a promis-
ing option [7, 8]. Phages, as natural predators of bacteria,
can precisely target bacterial pathogens, but a reliable pipeline
from phage isolation to clinical application remains elusive
[9]. Key challenges include limited regulatory frameworks and
gaps in understanding phage-bacteria and phage-host inter-
actions, which are essential for developing safe and reliable
therapies [10].

Klebsiella pneumoniae, a multidrug-resistant pathogen and
one of the six “ESKAPE” organisms (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.),
exemplifies these challenges. Known for causing severe infec-
tions, K. pneumoniae has developed resistance to last-resort
antimicrobials [11], including carbapenems [12], making it a
high priority target for new antimicrobials [13]. K. preumo-
niae infections, including pneumonia, sepsis, and liver abscess,
are often acquired in hospital settings but are also found in
community-acquired cases, especially involving hypervirulent
strains [14-20]. The role of this pathogen in chronic gut colo-
nization has further implicated it in gut conditions like inflam-
matory bowel disease (IBD) [21, 22] and primary sclerosing
cholangitis [23], establishing K. prneumoniae as a significant
gut-associated pathobiont.

A major challenge in phage therapy against K. pneumoniae
is its highly variable capsule polysaccharide (K-types), with
over 180 distinct types now genomically identified [24-27]
and associated with different species [28] and virulence traits
[29]. The diversity complicates treatment because capsule-
specific phages, which depend on capsule polysaccharides to
bind and infect cells, often have limited host ranges [30-32].
While some phages can bind alternative receptors like the O-
antigen [33], capsule diversity remains a critical barrier. Be-
yond receptor diversity, bacterial defence systems and mobile
genetic elements can further restrict phage efficacy [34-37].
These multifaceted interactions highlight the need for well-
characterised phage collections, which can enable researchers
to systematically study and address obstacles to successful
therapy. Several collections of Klebsiella phages have been re-
ported in the literature [33, 34, 38-42]. While these mark
milestones in the field, there remains a fundamental need
for centralising and standardising resources to make them
easily accessible for the academic and clinical communities.
Standardised, referenced collections, such as the BASEL col-
lection for Escherichia coli [43, 44] phages or the CEPEST
collection for Pseudomonas putida phages [45], demonstrate
how accessible resources can foster shared advancements. Ad-
dressing this need, we present the Klebsiella Phage Collection
(KlebPhaCol), an open-source collection that contains 52
phages and 74 Klebsiella strains, each extensively charac-
terised. The open-source nature of KlebPhaCol (available at
klebphacol.org) invites the scientific and medical community
to contribute additional isolates and data, fostering and evolv-
ing this community-driven platform. In addition to informing
phage therapy, this collection can be utilised to study funda-
mental aspects of phage-bacteria interactions. By centralising
and sharing these resources, KlebPhaCol aims to bridge cur-
rent gaps, empowering the scientific community to collectively
advance research on Klebsiella and its phages for both thera-
peutic and broader biological insights.

Materials and methods

Phage isolation and purification

Numbered phages (e.g. Roth01) were sourced from hospital
wastewater effluent collected at the University Medical Cen-
tre Utrecht in the Netherlands in 2020 as previously described
[46], while lettered phages (e.g. RothD) were sourced from ef-
fluent collected at Portswood in Southampton, United King-
dom in 2021. Thirty-two isolates with clinically relevant se-
quence types (ST) were used as isolation hosts (Supplementary
Table S1). Based on ST grouping, seven enrichment cultures
were produced: (i) ST11 (rn = 5), (ii) ST101 (n = 5), (iii) ST15
(n = 4), (iv) ST258 (2= 5), (v) ST14 (n = 6), (vi) ST323 (n =
2), and (vii) the remaining ST-types [ST489 (n =1),ST86 (n =
1), ST38 (7 = 1), and ST23 (n = 2)]. Fifty microlitres of each
overnight culture grown in Lysogeny Broth (LB; Formedium
LB-Broth Lennox) were added to each respective enrichment
containing 50 ml of LB and 50 ul of the phage source filtrate.
Enrichments were incubated overnight at 37°C and shaking
at 180 rpm, and then centrifuged (8000 x g, 20 min, 4°C)
and filter-sterilized (0.45/0.22 um PES). Five microlitres of the
resulting supernatants were spot-tested for the detection of
phage against all 32 isolates using a double-layer agar tech-
nique (top agar 0.6%) [47]. Susceptible isolates were subse-
quently plated with serially diluted phages to identify distinct
plaque morphologies, which were then single picked with ster-
ile toothpicks, dotted, and spread with sterile paper onto fresh
bacterial lawns to purify the phages. This latter step was re-
peated twice to obtain a consistent plaque morphology. Indi-
vidually purified phages were then propagated in LB with their
respective host, centrifuged, filter-sterilized, and stored at 4°C.

Phage host-range

Five microlitres of undiluted phage lysates were first spotted
onto double-layer agar plates for each of the 74 Klebsiella spp.
strains tested. Phages that showed some form of lysis were
then re-tested using 10-fold serial dilutions of stocks normal-
ized at 108 PFU/ml. These were then spotted onto double-layer
agar plates with respective bacterial lawns. The plates were in-
cubated overnight at 37°C, and phage plaques were observed
to distinguish between productive infection (lysis with indi-
vidual plaques), no infection (lack of plaques), and undeter-
mined lysis (opaque lysis without individual plaques). Assays
were conducted in both LB and Tryptic Soy Broth (TSB; Hach
Bacto™ Tryptic Soy Broth) media. Unless otherwise stated, all
other phage assays were done in LB.

Plate reader liquid assays

Overnight bacterial cultures of strains susceptible to phages
infecting strains of the ST323 sequence type (on solid agar)
were diluted 1:100 in LB and incubated at 37°C at 180 rpm up
to an ODggg of ~0.3. Cultures were normalized to an ODg
of 0.1 and dispensed into a 96-well plate. Experimental wells
had phage added at the desired high (>1) or low (<1) mul-
tiplicity of infection (MOI). Growth was monitored every 10
min for 900 min in a Spectrostar Nano (BMG Labtech, UK)
plate reader at 37°C, non-shaking, in either aerobic or anaero-
bic conditions. To ensure the latter, all holes in the plate reader
were plugged as specified by the manufacturer, and N, gas was
consistently pumped at a low rate to eliminate any oxygen for
the entirety of the experiment. Growth curves were converted
to area under the curve (AUC) using GraphPad Prism.
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Bacteriophage insensitive mutants

Bacteriophage insensitive mutants (BIMs) of capsule-deficient
strain 51851 were obtained after spot tests with different
phages. A random selection of 17 BIMs from 51851 strain
were cultured for sequencing and for phage re-testing. Strain
DNA was extracted and sequenced as described below, and
reads were mapped against the wild-type (WT) 51851 strain
to confirm mutations. Phage susceptibility re-testing was per-
formed in a 96-well plate by growth of the BIMs in LB broth
at 37°C with the addition of phage. Growth of the bacterial
isolate in the absence of phage was used as a positive con-
trol. ODgpp readings were taken every hour up to 20 h using a
CLARIOstar Plus plate reader (BMG Labtech, UK). Growth
curves were analysed and, where there was no observable dif-
ference in the presence and absence of phage, the BIM was
classified as resistant.

Phage sequencing, assembly, and annotation

Phage DNA was extracted using phenol-chloroform as pre-
viously described [48]. DNA from 32 phages were sequenced
by BMKGene (Germany). For this, sequencing libraries were
prepared using the Reseq-M DNA kit and paired-end reads
(2 x 150 bp) were generated in the Illumina Novaseq 6000
platform (Illumina, USA). Approximately 3—4 Gb of clean se-
quencing data were produced for each sample, with sequenc-
ing depth >5000x. The remaining DNA was sequenced by
the UKHSA-GSDU (UK health security agency Genomic Ser-
vices and Development Unit) (see Supplementary Table S2).
Libraries were prepared using the Nextera DNA flex library
prep kit (Illumina, USA) according to manufacturer’s instruc-
tions and reads (2 x 150 bp) were generated in the II-
lumina HiSeq 2500 platform (Illumina, USA). A minimum
of 150 Mb of Q30 quality data were obtained for each
sample.

Unless otherwise stated, CLC Genomics Workbench
v23.0.1 (Qiagen, Germany) was used for quality checks, se-
quence trimming (quality limit = 0.05) and genome assembly.
Reads were subsampled then assembled with the de novo as-
sembler tool (default parameters) on CLC. Sequencing reads
for 13 phages (see Supplementary Table S2) were checked for
quality using FastP [49] v.0.12.4 and Soapnuke [50] v2.1.7
with default parameters. For these specified phages, reads
were sampled and trimmed using Seqtk v1.3.0 and then as-
sembled using SPAdes [51] v3.13.0. All produced assemblies
were manually inspected on Bandage v0.8.1 and Geneious
Prime v11.0.18 + 10 (https://www.geneious.com/).

The phages’ closest relative was determined as the top
hit according to the maximum score provided by BLASTn
(March—June 2023 and February 2024, https://blast.ncbi.nlm.
nih.gov/Blast.cgi [52]). Assemblies were mapped to fastq reads
to check for irregularities using Qualimap2 v2.3 [53].

The start of the phage genome was adjusted to allow phage
comparisons with canonical phages, by choosing a conserved
feature to serve as gpl or “start-site” for each of the fam-
ilies represented in the collection. These genome start-sites
were chosen based on historical precedent and/or biology
of infection and/or DNA packaging. For the Straboviridae,
which includes the well-known Escherichia phage T4 (genus
Tequatrovirus), and the genera Jiadodavirus and Slopekvirus,
the 7IIA gene was chosen, in accordance with NCBI record
NC_000866.4 [54]. In cases where a landmark feature over-
lapped another gene, the nearest non-CDS region 5’ or 3’

to rIIA was chosen to avoid software artefacts. The De-
mercviridae contains a landmark member, Escherichia phage
TS (genus Tequintavirus, NC_005859.1) where the first-step-
transfer region encoding dmp, a 5'-deoxyribonucleotidase, is
first to enter the cell upon infection [55, 56]. The Drexlerviri-
dae includes phage T1 (genus Tunavirus, NC_005833.1),
which is known to have terminal repeats at the genome ends
[57]. For Roth32, infection by coliphage T7 (NC_001604.1),
a member of the genus Teseptimavirus of this family, an ~850
bp segment of the virion DNA enters the cell first [58]. For
phages from the Drulisvirus genus, the small terminase sub-
unit was defined as the start of the genome, a convention built
into some automated annotation pipelines [59]. For the novel
Felixviridae family, the core region [genes gp1 (hypothetical
protein) to gp24 (structural protein)] was defined as the start.
Manual assignment of nucleotide start-site was accomplished
using Geneious Prime v11.0.18 + 10 (https://www.geneious.
com).

Final phage genome length and GC content were deter-
mined by EMBOSS v6.6.0.0 [60]. Phage sequences were then
inputted to PhageTerm [61] via the Center for Phage Tech-
nology galaxy portal (https://phage.usegalaxy.eu/) to identify
phage termini and packaging.

Phage coding sequences (CDS) were predicted with PHAN-
OTATE v2019.08.09 [62] using translation table 11, then
annotated using multiPHATE v2.0.2 [63] against the NCBI
database selecting annotations with an Evalue thresh-
old of 0.001. Transfer RNA (tRNA) genes were iden-
tified using tRNAscan-SE v2.0.12 [64] via multiPHATE
and confirmed using ARAGORN v1.2.41 [65], although
tRNAscan-SE findings were kept. Phages were also anno-
tated with the Pharokka [59], Phold [66], and Domaina-
tor v0.7 [67] to highlight additional domain and gene func-
tions (Domainator annotations are available on Figshare
DOI 10.6084/m9.figshare.27794211). Default Pharokka an-
notations were manually curated using Geneious Prime
v11.0.18 + 10 (https://www.geneious.com). In cases where
Pharokka and Phold produced conflicting results, annotations
were curated conservatively, either retaining the most likely
hit or replacing the entry with “hypothetical protein.” Man-
ual curation focused primarily on the conserved region of
RothD (gp1-gp24) and on correctly clearly erroneous anno-
tations, as previously recommended [68]. Anti-defence pro-
teins were predicted using AntiDefenseFinder [69]. Poten-
tial AMR and virulence genes in the phages were predicted
using the Comprehensive Antibiotic Resistance Database
(CARD) [70] and the Virulence Factor Database (VFDB) [71],
respectively.

The lifestyle of the phages was predicted using Bacphlip
[72]. Phage receptor-binding proteins (RBPs) and depoly-
merases were identified using RBPdetect v3.0.0 [73] and De-
poScope v1.0.0 [74], respectively. Structures of the proteins
from RothD’s core genome were predicted using Seq2symm
[75] and ColabFold [76], and subsequently compared to ex-
isting structures using Foldseek search [77].

Phage receptor-binding proteins

The symmetry of all RBPs identified by RBPdetect (7 = 207)
was predicted using Seq2Symm and then used to setup struc-
ture prediction with ColabFold. All resulting structures were
clustered with Foldseek easy-cluster using default parame-
ters. For each cluster, a representative was compared to the
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PDB [78] and AlphaFold2 [79] databases using Foldseek
search. Only clusters with multiple members were retained for
further analysis, except cluster 8 (a singleton with Roth44
gp50), which was included due to its high structural similarity
to Roth47 gp52 from cluster 9, aside from its distinct “tip” -
a feature that may account for their differing host ranges. Ad-
ditionally, RBPs assigned with predicted depolymerase func-
tion by DepoScope were manually curated for depolymerase
activity based on conserved structural elements according to
the method described previously [80] (Supplementary Text).
We used several structural prediction tools including (Phyre2
[81], HHpred [82], and AlphaFold) to increase confidence in
RBP structures and interactions. When a RBP is not identified
as a depolymerase, the RBP is presumed to be a tail fibre that
binds to the bacterial receptor.

Phage comparative genomics

To assign phage taxonomy, genomes were run on PhageGCN
[83] web server and confirmed by clustering on vContact2
v0.11.3 [84], using the default database and visualised us-
ing Cytoscape v3.10.2 [85]. Intergenomic similarity was cal-
culated using VIRIDIC [86] on the web server and similarity
matrices were re-plotted using Pheatmap v1.0.12 [87]. Phy-
logenetic analyses were produced by the VICTOR web server
with default settings, which employs the Genome-BLAST Dis-
tance Phylogeny method adapted to bacteriophages [88]. Tree
images were rendered and rooted at the midpoint using iTOL
v6.1.1. (https://itol.embl.de/) [89] Synteny plots were pro-
duced by Clinker [90] on their web server.

Bacterial DNA extraction and genome assembly

Seventy-four clinical isolates of Klebsiella spp. were used in
this study. Sixty-five are K. pneumoniae, two K. oxytoca, two
K. variicola, one K. aerogenes, one K. pneumoniae subsp. oza-
enae, and three K. quasipneumoniae, see Supplementary Table
S1 for isolate characteristics. Thirty-two strains were used for
phage isolation enrichment cultures, but only seventeen con-
tinued as isolation hosts (Supplementary Table S1). Genomic
DNA for the Klebsiella strains were extracted using the Gene-
Jet Genomic DNA Kit (Thermo Scientific, UK) or the Wizard
DNA Extraction Kit (Promega, UK) according to the manu-
facturer’s instructions. DNA was quantified by a Qubit fluo-
rometer using the high sensitivity dsDNA Kit (Invitrogen, UK)
and Nanodrop (Thermo Scientific, UK). DNA was prepped
and sequenced by UKHSA-GSDU as described above. Fastq
reads were quality trimmed using Trimmomatic v0.39 [91]
and draft chromosome contigs were assembled using SPAdes
v3.15.3 filtering out contigs <1 kb.

Bacterial genome analyses

Genomes were annotated using Prokka v1.14.6 [92]. Strains
were classified by their sequence (ST) and capsular locus
(KL) types using the multilocus sequence typing (MLST)
database (Center for Genomic Epidemiology, https://cge.food.
dtu.dk/servicessMLST/) and Kaptive v3.1.0 [26, 93, 94] us-
ing the K locus primary reference database, respectively.
Strains from the K. pneumoniae species complex (KpSC) [19]
were also classified by the cgMLST-based Life Identification
Numbers (cgLIN codes) available via Pathogenwatch (https:
/lpathogen.watch/) [95] to provide a better phylogenetic res-
olution and precision at a nomenclature-based level [96]
(Supplementary Table S1). Strains were run through the Kleb-

orate [25] pipeline to obtain virulence and resistance scores,
and outputs were visualized using the Kleborate-Viz plat-
form online (https://usegalaxy.eu/root?tool_id=kleborate) (no
markers were found for strain 163575R). The phylogeny of
the strains was calculated via PopPUNK v2.5.0 [97] using the
default fitted model for K. prneumoniae. The tree was rendered
in iTOL v6.1.1 (https://itol.embl.de/) [89].

The bacterial virulence factors, antibiotic resistance, and
stress resistance genes were identified using Abricate v1.0.1
against the CARD [70], NCBI AMRFinderPlus [98] and
VFDB [71] databases. Prophage regions were identified us-
ing Phigaro v2.2.6 [99] on default mode. The defence systems
in the genomes were identified using PADLOC v1.1.0 [100]
and DefenseFinder v1.0.9. [101]. Incomplete defence systems,
VSPR and PDC, were removed from quantification analyses
but are included in Supplementary Table S1. Correlation anal-
yses between encoding defence systems and host range out-
comes were conducted with Spearman’s correlation and plot-
ted in RStudio v2024.04.2 using the ggplot2 [102] package.

Bacterial capsule loci (defined as the genetic region from
galF to uge) [103] were manually assembled for isolation hosts
(17 strains). Assembly was conducted by first looking for the
more conserved regions of galF and uge genes and then indi-
vidually checking and annotating other genes in Seq Builder
v14.0.0 (DNAstar Lasergene). In some cases, due to transpo-
son insertions within the CPS locus, it was not possible to gen-
erate one contig containing the complete locus; for such cases
a string of n’s was artificially added to represent a break in the
contigs.

Antibiotic susceptibility

For clinical isolates obtained at the University Medical Cen-
tre Utrecht (see Supplementary Table S1), antibiotic suscep-
tibility was determined as previously described [46]. For the
remaining clinical isolates, the minimal inhibitory concentra-
tions (MIC) for antibiotics and biocides were determined by
UKHSA using a standard broth microdilution method at a
starting inoculum of 5 x 10° CFU/ml, Phoenix M50 sys-
tem (BD Biosciences, USA) and EUCAST breakpoints, with
the exception that 96-well polypropylene plates (Griener Bio-
One, Ltd., Austria) were used instead of polystyrene plates to
test colistin. Plates were scored by eye, looking for no visual
growth and confirmed by ODgop measurement after 1620 h
with a 0.1 ODygqq threshold using a CLARIOstar Plus plate
reader (BMG Labtech, UK).

Bacterial capsule characterisation

Isolation host strains (z = 17) were inoculated in LB or TSB
broth and incubated overnight at 37°C, 180 rpm. Cultures
were then spun at 3200 x g for 10 min and their pellets
resuspended in 2 ml of 1x phosphate-buffered saline (PBS).
The wash step was repeated once. Density gradients were pre-
pared using Percoll® (P4937, Sigma—Aldrich) at 30%, 60%,
and 80% v/v (diluted in 1x PBS) [104]. One millilitre of each
gradient was gently dispensed into fresh 15 ml falcon tubes
using a 1 ml syringe and 1.5-inch needle. The 30% layer was
pipetted first, followed by the 60% layer beneath it, and finally
the 80% layer at the bottom. Six hundred microlitres of the
prepped cells were then gently layered at the top of the gradi-
ent and samples were spun at 3000 x g for 30 min. The tubes
were then imaged against a black background to visualise the
capsule deposition.
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Genomic comparisons of Felixviridae phages

RothD was taken as the representative phage of the Felixviri-
dae family. To determine the prevalence of Felixviridae phages
within bacterial genomes given their temperate lifestyle, the
BV-BRC (https://www.bv-brc.org/) bacterial strain database
(n = 64 364; 25 384 complete high-quality Klebsiella spp.
and 38 980 complete high-quality non-Klebsiella bacterial
genomes), and associated metadata were retrieved (accessed
July 2024). The core region and the full genome of RothD
were independently searched against the downloaded bacte-
rial genomes using command line BLASTn v2.15.0 with an E-
value threshold of 0.005 with a -max_target_seqs parameter
of 100 000. All hits were extracted and searched for prophage
regions using Phigaro v2.4.0 [99] with default settings. The
ten upstream and ten downstream genes from the hit region
were extracted for analysis.

To investigate the predominance of Felixviridae in the av-
erage human gut, we first looked at the GPD hits used in
the taxonomic characterisation of RothD (see above) and
matched them with the GPD’s available metadata. The pro-
duced dataset was then analysed. Taxonomic characterisation
of RothD revealed several relatives assembled from a singular
study by Tisza et al. [105]. Thus, we gathered all returned hits
from the online BLASTn server and matched accession queries
to those coming from the mentioned study. This resulted in
a total of 229/406 total hits matching their chronic disease
dataset, of which 205/229 (90%) were high-confidence hits
with an E-value <1e-08. We then matched these to the study’s
metadata and analysed the resulting dataset.

The relative abundance of Felixviridae phages was calcu-
lated as follows. The quality filtered reads from a subset of 117
“healthy” human stool metagenomes from the Human Micro-
biome Project [106, 107] were retrieved and aligned to a set of
21 Felixviridae phage genomes using the end-to-end alignment
mode of Bowtie2 v2.5.4 [108]. Bacterial reads were identified
using Kraken2 v2.1.3 [109]. A count table of reads aligned to
contigs and total number of reads per metagenome was gen-
erated with Samtools v1.20 [110] and imported into Rstudio
v2024.04.2 + 764 for analysis. Packages ggplot2 [102] and
ggbreak [111] were used for plots.

To further assess the prevalence and genomic signatures
of Felixviridae phages, the metagenomic and metavirome
datasets from four previous studies [112-115] were retrieved
(n = 826 gut metagenome samples). A set of 54 Felixviridae
genomes were curated, quality-checked with CheckV v1.0.3
[116], and dereplicated using dRep v3.4.2 [117]. Metage-
nomic reads were quality-filtered using fastp v1.0.1 [49], and
host contamination was removed using BBMap v35.85 [118]
against the hg38 reference genome. Reads were mapped to
the dereplicated Felixviridae genomes using minimap2 v2.30
[119], and coverage/breadth was assessed using samtools
v1.22.1 [110]. Genome-level ANI and coverage were calcu-
lated using fastANI v1.34 [120] to avoid overinterpretation
from short gene-level hits. Strain-level diversity and popula-
tion variation were profiled using inStrain v1.3.1 [121]. To
distinguish lytic versus lysogenic presence, we used paired
metagenome—metavirome datasets and confirmed lysogeny
markers with PHASTER v4.0.0 [122]. Abundance was anal-
ysed as specified above.

PCR detection

Primers were designed to target gp7, a hypothetical pro-
tein (or putative virion structural protein by Phold) that

maintains a high conservation across the Felixviridae: For-
ward 5-ATGTTCCGTCAGGGGAAGTTC-3’, Reverse 5'-
AAGCCTGGTTGTTAAAACTGG-3'. Primers were synthe-
sized by IDT. Reactions were done with OneTaq quick load
(NEB M0486) according to the manufacturer’s instructions
on a T100 Thermal Cycler (Bio-Rad, UK) and visualised on
a 0.7% agarose gel. Positive control was RothD. Negative
control was prepared using DNase-free water instead of tem-
plate DNA. Specificity to Felixviridae phages was confirmed
by also testing phages T4 (as a non-Klebsiella phage control)
and Roth32 (as a Klebsiella phage control). The presence of
Felixviridae phages in the environment was also tested by
using filtered raw effluent from sewage plants in Southamp-
ton and Petersfield as well as ocean water from the Isle of
Wight, UK (collected in the summer of 2024), filtered through
a Vivaflow® 200 cassette recirculation system (Sartorius, UK)
and then through a 0.45 pm PES membrane. All controls (ex-
cept for the negative control) were first heated at 95°C for 5
min to break virion capsules before adding as template DNA
to the reactions. Polymerase Chain Reaction (PCR) products
were cleaned and concentrated with the GeneJET PCR pu-
rification kit (Thermo Scientific, UK) and sent for sequencing
at Plasmidsaurus (UK). Reads were trimmed and quality fil-
tered using fastp v0.12.4 on the fastplong parameter and then
mapped to RothD_gp7 using minimap2 v2.28-r1209. Cov-
erage depth was obtained with Samtools v1.20 and Bedtools
v2.30[123] and results were imported in table format to RStu-
dio v2024.04.2 + 764 and plotted using the ggplot2 [102]
package.

Lysogeny assays

Isolation strain 80528 was grown in LB at 37°C, 180 rpm
to an ODggpo of 0.2. RothD was then added to an MOI of
1 and left to incubate overnight at 37°C. The following day,
the cultures (80 528 + RothD, and 80 528 control) were spun
down at 4000 x g for 10 min and washed with LB twice.
The washed pellets were resuspended in 1 ml of LB and 10-
fold dilutions were spotted onto LB agar plates and the plates
incubated at 37°C. The remaining pellets were re-inoculated
and re-infected with the same phage (except for the 80528
control) and incubated overnight at 37°C, 180 rpm. This was
repeated daily for a total of 5 days.

Five colonies of each sample per day were inoculated in
100 ul of sterile diH,O for PCR detection of TerL (For-
ward primer: 5-GGCCGACATTTACCTACCCAC-3/, Re-
verse primer: 5-TAGAGTGCGTCGCCGCTAC-3') as de-
scribed above. Colonies c2, c3, and ¢4 of each sample from
day 1 were then inoculated overnight in LB, and bacterial
DNA was extracted with the GeneJet Genomic DNA kit. DNA
was sent for Illumina microbial sequencing at BMKGene (Ger-
many). The produced raw reads were pre-processed with fastp
v0.23.4 with default parameters to remove adapters and low-
quality bases. Reads were aligned with bwa-mem?2 v. 0.7.17-
r1188 [124] to the combined K. prneumoniae 80 528 genome
and RothD genome. To find the integration site in the bacterial
genome and phage attachment site, discordant reads were ex-
tracted using samtools. Integration sites were identified where
genomic regions presented high coverage of discordant reads
(when mapped to the original 80 528 genome) in experimen-
tal samples (80528 + RothD) compared to control samples
(80 528). Similarly, the phage attachment site was determined
as a peak of discordant reads coverage (when mapped to the
RothD genome). The proportion of integrated phages was de-

G20z JequianoN gz uo 1senb Aq $8£82¢8/22 | LieXb/1LZ/cG/e1o1e/leu/woo dno-ojwapeoe//:sdiy wolj papeojumoq


https://www.bv-brc.org/

termined by dividing the number of discordant reads over the
total coverage at the attachment site. Coverage plots were
made using either the sorted bam files (samtools), or by ob-
taining coverage depth (bedtools); files were imported into
Rstudio and plotted using Gviz [125] or ggplot2 [102], re-
spectively.

To further confirm lysogeny, all five colonies per sample of
day 1 and at least 2 colonies per sample of all other days,
were grown in LB. RothD was 10-fold serially diluted, and
spot tested on lawns made from each of the cultures following
the double-layer agar assay described above. No plaques were
expected in samples where the phage has integrated into the
host genome.

Results

Overview of KlebPhaCol

KlebPhaCol is an open-source Klebsiella phage and strain
collection comprising both biological materials (phages and
strains) and associated data. The collection was designed
to provide easy, cost-effective access to Klebsiella phages
and strains to support collaborative research on phage-
bacteria—host interactions and to facilitate the development
of phage therapy. All data and access requests are man-
aged through a dedicated platform, www.klebphacol.org,
which allows users to explore the collection, download meta-
data tables (e.g. host range, capsule type, taxonomy, and
isolation source), and request material via a simple online
form.

The physical collection is hosted at the University of
Southampton, where a curatorial team oversees sample stor-
age, data curation and updates, and compliance with mate-
rial sharing regulations. New phages and strains can be con-
tributed by external researchers via the website; all submis-
sions are manually reviewed to ensure metadata consistency
and quality. The platform also includes a “board of discus-
sions” feature (currently run via a mailing list), which facili-
tates community input on metadata standards, future features,
and the integration of new tools or datasets.

KlebPhaCol includes 52 phages isolated using 32 clinically
relevant Klebsiella spp. strains (Fig. 1A, and Supplementary
Tables S1 and S2). These phages were characterised at ge-
nomic (phylogeny, synteny, and gene content), phenotypic
(plaque morphology and TEM imaging), and behavioural
(one-step growth curves and host range) level. Detailed de-
scriptions of the characteristics of these phages, organised by
genera, can be found in the Supplementary Text. The KlebPha-
Col phages span 7 genera across five of the 13 reported
Klebsiella phage families, and the newly proposed Nakavirus
genus and Felixviridae family [126] (Fig. 1B and C). To facili-
tate reproducibility and shareability, we selected seven strains
as production hosts for the entire collection (Fig. 1D and
Supplementary Table S1).

Currently, the collection includes 74 Klebsiella strains,
of which 69 are clinical isolates from different coun-
tries (Supplementary Table S1), while the remaining five
are ATCC/NCTC-type strains. These 74 strains represent
six Klebsiella species, 41 known sequence types (STs), 32 cap-
sule locus (KL) types, and 11 O-antigen (O) types (Fig. 1E
and Supplementary Table S1). The most prevalent ST-types in
KlebPhaCol include clinically relevant types associated with
AMR, ST258 (n = 8 strains), ST14 (n = 8), ST11 (n = 6),

ST101 (nz = 5), and ST15 (n = 4) (Fig. 1E). Regarding KL-
type, KL2 is the most prevalent in the collection (z = 10
strains) and is highly clinically relevant due to its strong asso-
ciation with virulence traits [127, 128]. The other notoriously
pathogenic KL-type, KL1, is covered by two of our strains
[128-130]. Other common KL-types include KL24 (17 = 6),
KL106 (n=135),and KL17 (n = 5) (Fig. 1E). Lastly, KlebPhaCol
strains represent 10 of the 13 known O-antigens for Klebsiella
[131] (Supplementary Table S1). One strain also has OL103,
a currently unclassified O-antigen. The most represented O-
antigen is Olab (n = 23), followed by O2afg, O2a, and O3b
(n =10 for each). OL101 recently classified as a 13th class of
O-antigen (O13) is found in four strains [131]. The strains
were also characterized in terms of prophage, virulent fac-
tors, stress resistance, AMR, anti-phage defence systems, and
capsular locus integrity. Regarding virulence, we identified 44
virulence genes, with an average of 14 £ 6 per strain (Fig.
2A). The most common virulence genes were entB, ompA,
fepC, ykgk, and genes from the yag cluster (Supplementary
Table S1), which contribute to enterobactin siderophore pro-
duction [132], host immune evasion [133], and biofilm for-
mation [134]. Stress resistance genes were prevalent in the
KlebPhaCol collection, with strains encoding an average of
17 + 6 genes (Fig. 2A). The most frequently found gene was
fieE, present in 70 out of 74 strains, responsible for iron and
zinc efflux [135]. Genomic analysis revealed the presence of
genes potentially mediating resistance to 22 antibiotics, in-
cluding 6 aminoglycosides, 2 amphenicols, and various others
(Fig. 2A). On average, strains had resistance genes for 8 + 4
antibiotics. High carriage of genes associated with resistance
was observed for phenicols, quinolones, B-lactams (in gen-
eral, including cephalosporins), and trimethoprim (Fig. 2A).
These analyses do not necessarily predict phenotypic resis-
tance, with the possibility of resistance being mediated by
genes operating in a multifactorial manner and intrinsic re-
sistance associated with poor cell penetration and/or efflux.
Therefore, experimental validation of these predictions was
carried out for a defined selection of clinically important an-
tibiotics using MIC. Carbapenem resistance predictions were
100% accurate, but resistance to gentamicin and tobramycin
was higher in laboratory conditions than predicted (28 ver-
sus 23 strains and 31 versus 22 strains, respectively), and
amikacin resistance was slightly lower than anticipated (23
versus 25 strains, Fig. 2A and Supplementary Table S1). This
demonstrates the difference between genotypic resistance pre-
dictions and phenotypic susceptibility determination. Finally,
the strains in this collection encode a total of 93 distinct de-
fence systems, with an average of 11 & 4 systems per strain
(Supplementary Fig. S1). Most systems were rare, with 54 out
of 93 systems present in fewer than five strains. Only RM
type IV and AbiE systems were found in ~85% of the strains.
Other notable defence systems included Mok Hok Sok, RM
types I and II, and SoFic, present in >50% of the strains
(Supplementary Fig. S1).

To facilitate access to the strains and their metadata and en-
courage comparisons to other Klebsiella strains, we have de-
posited the K. preumoniae strains into a Pathogenwatch [95]
collection (see Data availability).

Roth phages infect up to 19 KL-types

The Roth phages demonstrated a broad ability to infect a wide
range of Klebsiella strains, with notable success across multi-
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Figure 1. Overview of the Klebsiella Phage Collection (KlebPhaCol). (A) Phylogeny of the 52 phages of the collection and associated data. The
phylogenetic tree was calculated using a Genome BLAST Distance Phylogeny method and midpoint rooted. (B) Quantification of the phage taxa covered
by the phages in KlebPhaCol. (C) Distribution of Klebsiella phages families in the ICTV taxonomy (as of March 2025). Bars show the number of exemplar
Klebsiella phages reported for each family in ICTV. Red circles indicate the families represented in KlebPhaCol. (D) Phylogeny of the 74 strains of the
collection and associated data. Phylogenetic tree was produced by PopPUNK and midpoint rooted. (E) Quantification of the species of Klebsiella, their
sequence type (ST), and capsule locus type (KL), included in KlebPhaCol. All trees were rendered in iTOL.
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Figure 2. Characteristics of the 74 strains in KlebPhaCol. (A) Phylogeny of the 74 strains matched with the number of stress resistance genes (out of a
total of 51), virulence genes (out of a total of 44), prophage predictions, and presence/absence of AMR genes. The MIC of 13 antibiotics was also tested
for each strain and resistance patterns are illustrated in the coloured heatmap. Virulence and resistance scores were calculated with Kleborate. (B)
Kleborate predictions of strains with multidrug resistance (MDR) genes and genes conferring hypervirulence are organized by ST-type. *ST528 strain

KLEB3 typed as ST716 by MLST CGE typer.

ple ST, KL, and O-antigen types (Fig. 3A and Supplementary
Fig. S2). Among the 74 strains tested, 36 (49%) were suscepti-
ble to the Roth phages, including 20/42 (48 %) ST-types, 19/32
(59%) KL-types, and 7/11 (64%) O-antigen types. Among the
representative phages shown in Fig. 3A, Roth16 from the Jiao-
davirus genus was the most effective, infecting 18/74 strains
(24%), including 12 ST-types, 12 KL-types, and 6 O-types
(Fig. 3A and Supplementary Fig. S2). Slopekvirus Roth88
was the second most effective phage, infecting 16/74 (22%)
strains (Fig. 3A), including 11 ST-types, 11 KL-types, and 7
O-types (Supplementary Fig. S2). Slopekvirus exhibited no-
table success against KL2 strains, infecting up to half of the
strains tested (5/10). Interestingly, ST258 strains are resistant

to Slopekvirus, but efficiently targeted by all Jiaodavirus, Sug-
arlandvirus, and Webervirus.

Roth phages were able to infect strains associated with
seven of the ten known O-antigen types in the KlebPha-
Col collection, except for O2ac, 012, O13, and OL13
(Supplementary Fig. S2). Slopekvirus were most successful
against strains with O-antigen Olab, while Jiaodaviruses ex-
celled at targeting O2afg.

Whereas K. pneumoniae is the most pathogenic species
among Klebsiella spp., other species are emerging with se-
rious pathogenic concerns [136, 137]. KlebPhaCol phages
demonstrated lytic activity beyond K. preumoniae, includ-
ing K. oxytoca (164413U/2, KLEB11), K. quasipneumoniae
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Figure 3. Klebsiella Phage Collection host range in LB broth. (A) The host range of representative phages (17/52 KlebPhaCol phages) against 74 strains in
LB broth is shown as efficiency of plating (EOP) relative to the isolation strain (red boxes). An asterisk indicates undetermined lysis. (B) Quantification of
each strain susceptibility to the complete collection of 52 KlebPhaCol phages.

(NCTC_13368), and K. variicola (921530F) (Fig. 3). To-
gether, these findings indicate that the KlebPhaCol collection
could be expanded to study interactions across a broader
range of Klebsiella species.

Capsule-independent phages dominate the
KlebPhaCol collection

For most reported Klebsiella phages, the capsule is the pri-
mary surface receptor to which they attach [32, 34, 40,
46], although other surface receptors like O-antigen and
lipopolysaccharide (LPS) have also been shown to serve as
primary receptors for some Klebsiella phages [33, 34, 138].
Therefore, phage host range in Klebsiella is largely dictated
by the presence or absence of the capsular polysaccharide
[33, 34]. We examined the capsule composition of the 17
strains used for phage isolation, using a combination of ge-
nomic and experimental approaches. Specifically, we anal-
ysed the capsule locus architecture (Supplementary Fig. S3),
performed capsule typing with Kaptive [93] (Supplementary
Fig. S3 and Supplementary Table S1), and assessed capsule-
associated density phenotypes using Percoll gradient cen-
trifugation [104] (Fig. 4A). Based on these analyses, five of
the isolation strains are likely capsule-null (CFI_134_NDMI,
NCTC_7427, CFI_001_VIM1, NCTC_13 438, and 51851),
with an additional strain (MDRT1) showing a low-capsule
phenotype (Fig. 4A). The remaining strains either had in-
tact capsule loci, lacked evidence of disrupted mutations or
showed high buoyancy in the Percoll assay consistent with
capsule production.

The strains with disrupted capsule production were used
for the isolation of 23 of the 53 KlebPhaCol phages
(Supplementary Table S2). Interestingly, these phages are not
capable of infecting a significantly broader range of cap-
sular types compared to phages isolated from capsulated
strains (Fig. 4B). This observation suggests that using capsule-
deficient strains did not inherently select for phages with
broader capsular tropism, and therefore the broader host
range of the KlebPhaCol phages is not simply due to the use
of capsule-deficient hosts for phage isolation.

Since most phages display a broad host range, we hypothe-
sised that they do not rely on the capsule as their primary re-
ceptor. Exceptions are phages Roth32 (Gajwadonguvirus), and
RothG, Rothl, and Roth] (Drulisvirus), which exhibited nar-
row host ranges (1-2 KL-types) and were isolated on strains
with intact capsule loci (80528, M6, and RSUH15; Figs 3
and 4A). Together with evidence that these phages encode cap-
sule depolymerases (Supplementary Text), this suggests they
likely target the capsule as their primary receptor.

For the remaining phage families, we further analysed BIMs
that emerged after phage exposure on the capsule-deficient
strain 51851. Culturing and sequencing these BIMs, fol-
lowed by re-testing phage infectivity, revealed that KlebPha-
Col phages from the Sugarlanvirus, Webervirus, Slopekvirus,
and Jiaodavirus families use either the LPS O-antigen, the
outer membrane protein FhuA, or both as receptors (Fig. 4C
and D), confirming they are capsule-independent. Interest-
ingly, these phages can still infect capsulated strains, suggest-
ing that the capsule does not substantially interfere with their
access to surface receptors.
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Figure 4. Capsule quantification and KlebPhaCol phage receptors. (A) Capsule quantification of 17 K. pneumoniae strains based on Percoll gradient
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KlebPhaCol phages encompass 14 different RBP
structural clusters

To further investigate receptor—phage interactions, we anal-
ysed the 207 predicted RBPs of the phages (Supplementary
Table S3). Structural modelling using AlphaFold2 [139] fol-
lowed by clustering with Foldseek [77] revealed that the pre-
dicted RBPs are highly diverse, forming 14 distinct clusters
ranging from singletons to groups with up to 23 members (Fig.
5A). The myo- and siphophages each had six different clusters
of RBPs, whereas podophages represented two of the clus-
ters. The predicted structures included long (Roth23 gp275,
Roth01 gp268, Roth08 gp50, Roth10 gp54, Roth04 gp177,
and Roth23 gp11) and short tail fibres (RothD gp33), tail
spikes (Rothl gp8), central tail fibres (Roth44 gp50, Roth47
gp52, and Roth37 gp176), and other unclassified RBP struc-

tures (Roth37 gp195 and RothG gp62) (Fig. SA). Interestingly,
three clusters (2, 7, and 8) included members with domains at
the tip of tail fibres that are structurally similar to intramolec-
ular chaperones [140] that undergo auto-proteolytic cleavage
after aiding in protein folding. Cluster 6 consists of a single
tail fibre protein (RothD gp33) that has a rare polyglycine
rich domain consisting of a conserved sandwich fold with
hypervariable loops known to target both protein and LPS
targets [141]. The proteins in cluster 12 showed high struc-
tural similarity to the central tail fibre protein pb5 of phage
TS5, which is known to bind to FhuA [142]. Therefore, we
sought to predict the interaction complex of Roth37 gp195
with FhuA (PDB: AOA483VTA4; Fig. 5B), which had little de-
viation from the pb5-FhuA complex (RMSD = 0.8A; PDB:
8B14). As Roth37 was isolated against non-capsulated strain
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NCTC_7427, we also predicted its RBP (gp1935) interaction (Fig. SE) (FhuA-Roth93_gp53 pTM = 0.83, iPTM = 0.45;
to both NCTC_7427-encoded FhuAs with similar interaction =~ FhuA-Roth93_gp54 pTM = 0.84, iPTM = 0.75).
scores (Fig. 5C and D).

As our BIM data showed that several weberviruses (ex- . L )
cept Roth44) were sensitive to FhuA-associated mutations Phage infectivity is influenced by bacterial growth
(Supplementary Fig. S3), we also searched for Webervirus pro- media
tein(s) interacting with FhuA, in addition to those predicted ~ The availability of surface receptors on the bacterial surface is
by RBPdetect [73]. Comparisons of different Webervirus rep- strongly influenced by media composition [143], and as a re-
resentatives revealed two proteins with interacting potential, ~ sult can affect phage infectivity. To assess possible influences
gp53 and gp54 in Roth93, which are not present in the of media in phage host range, we performed additional host
insensitive phage, Roth44. Structural prediction with FhuA ~ range assays in TSB, a medium that is commonly used in Kleb-
from Roth93’s isolation strain showed that only gp54 was  siella research and with different nutritional composition to
able to form a reliably predicted complex with this protein LB [33, 144].
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The impact of media composition on phage infectivity was
evident in the differential success rates observed between TSB
and LB (Fig. 6A, Supplementary Fig. S4, Supplementary Table
S4, and Supplementary Text). In TSB, 638 total phage in-
fections were recorded, compared to 486 in LB, indicating
higher infectivity overall in TSB. The media-specific differ-
ences were particularly pronounced for certain phages. For
instance, Slopekvirus phages Roth88, Roth26, and Roth27
infected up to 25 strains in TSB; but in LB, Roth88 and
Roth26 infected only 16 strains while Roth27 infected only
12. Moreover, some strains were only infected in one of the
two media. For example, CFI_127_NDM1, 2619, and KLEB7
were only infected in LB by 1-4 phages, while strains K5962,
ATCC_11296,46 704, KLEB2, 163895Q, 922221W, KLEBA4,
163862E,and L1392 were exclusively infected in TSB (Figs 3B
and 6A, and Supplementary Fig. S4).

Interestingly, phage infectivity varied by genus in response
to media composition (Fig. 6B). Jiaodavirus and Slopekvirus
showed higher success rates in TSB, with ~1.2x and 1.6x

more infections recorded in this medium, respectively. For ex-
ample, Slopekvirus Roth26 and Roth27 can infect up to 19
different KL-types in TSB, whereas in LB they infect 9 and 10
different KL-types, respectively (Fig. 6B and Supplementary
Fig. S2). Furthermore, analysis revealed that capsule produc-
tion in the three strains (K6500, MDRT11, and KLEB12) with
the greatest medium-dependent differences in phage suscepti-
bility was similar (Fig. 6C), suggesting that changes in phage
host range between media are not attributable to capsule vari-
ation alone, but may also involve differences in the expression
of other surface receptors and/or anti-phage defence systems.

Abundance of defence systems does not correlate
with phage susceptibility

Anti-phage defence systems pose a barrier to phages once
inside the cell [145-147]. We observed that some of the
least susceptible strains like L1522 and L0738 harboured
a disproportionately high number of defence systems com-
pared to the rest of the strains (22 and 31, respectively,
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Supplementary Fig. S1A). To investigate whether phage sus-
ceptibility was associated with the number of defence systems
in each strain, we calculated and visualised Spearman rank
correlations between the number of defence systems and var-
ious infection outcomes, including productive infections, no
infections, and undetermined infections (i.e. “lysis from with-
out”) (Supplementary Fig. S1B). This analysis revealed that
in the panel of phage and clinical isolates tested, there was no
significant correlation between the number of encoded defence
systems and phage susceptibility, regardless of the media type.
The recently reported PhageHostLearn model for K. preumo-
niae phages suggests that RBP variability accounts for most
of the host spectrum diversity [148], hinting at a lesser role of
phage defence systems in shaping host range. However, con-
flicting findings have been reported for non-capsulated species
[149], and further investigation is needed. Specifically, future
analysis of phage adsorption to strains without productive in-
fection may provide new insights and uncover correlations not
evident with the current dataset.

Additionally, we predicted the putative anti-defence pro-
teins harboured by the Roth phages to explore whether these
might influence phage infectivity. We identified three putative
anti-defence genes in the Jiaodavirus and Slopekvirus phages
(Supplementary Table S2). In Jiaodavirus, these included two
anti-CBASS and one anti-TA, whereas the Slopekvirus en-
coded two anti-CBASS and one anti-RM proteins. We also
identified an anti-RM gene in a subset of Webervirus phages,
specifically those branching from the second clade within the
Webervirus group (Fig. 1A).

Phage activity against gut-associated K.
pneumoniae under aerobic and anaerobic
conditions

Certain K. pneumoniae sequence types are commonly asso-
ciated with specific host or disease contexts. For example,
ST323 has been linked to enrichment in the gut microbiota
of patients with IBD and shown to exacerbate inflammation
in a mouse model [21]. Although the ST323 strains used in
our study were not isolated from IBD patients, we aimed to
assess whether KlebPhaCol includes phages capable to target-
ing this gut-associated lineage. Four phages—RothD, RothG,
Roth], and Rothl—were found to infect two ST323 strains
(RSUH15 and 80528, both KI.21) as well as three non-ST323
strains (ST91, ST635, and ST1875) (Fig. 7A).

Given the relevance of oxygen availability in the gut en-
vironment, we evaluated the ability of these phages to in-
hibit bacterial growth under aerobic and anaerobic condi-
tions. Liquid infection assays were performed in both con-
ditions, at two MOIs, and phage efficacy was quantified by
comparing the area under the growth curve (AUC) relative to
the no-phage control (Fig. 7B, and Supplementary Fig. S5 and
Supplementary Table S5). As expected, bacterial growth was
limited under anaerobic conditions. Nonetheless, several Roth
phages remained active: RothG, Roth], and Rothl retained
activity against RSUH135, albeit at reduced levels, while all
four phages inhibited strain 80528 at high MOI, with RothG
showing activity even at lower MOI (Fig. 7B and C). Among
the non-ST323 strains (L0240, 921530F, and ATCC_11296),
RothD showed the highest efficacy in anaerobic conditions,
particularly against L0240 and 921530F, although none of
the phages were active against strain ATCC_11296 in anaer-
obic conditions (Fig. 7D-F). Overall, these findings suggest
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that some KlebPhaCol phages retain functional activity in gut-
relevant, low-oxygen conditions, an important consideration
for future therapeutic applications.

Felixviridae are found in human gut metagenomes
Proposed new taxonomy for phage RothD

While most Roth phages could be classified into existing vi-
ral taxa, RothD could not be assigned to any existing viral
family using standard classification tools like PhageGCN and
vContact2. Therefore, we propose the establishment of a new
family, Felixviridae (40-60 kb), and genus, Nakavirus, to ac-
commodate these phages (see Supplementary Text).
Although RothD shares little overall similarity with its rel-
atives, it encompasses a highly conserved region from gpl
to gp24 (1-20, 241 bp). Genomic synteny analysis of the
proposed Felixviridae family revealed that the conserved re-
gion spanning the first 20,241 bp is shared across all mem-
bers. Additional annotation by Phold, and comparison of the
predicted structures with the PDB database, demonstrated
that this core region is mostly composed of structural pro-
teins (Supplementary Fig. S6). Most core proteins were asso-
ciated with the phage capsule, neck, tube, or baseplate. The
structural similarities to another myophage assembly [150] al-
lowed for confident functional assignments of these proteins
(i.e. major head protein, head-to-tail connector, neck collar
protein, tail-sheath initiator, tail tube protein, and baseplate
components). Interestingly, the two gene products gp9 and
gp15 were annotated as hypothetical proteins by Phold and no
similarities to functionally annotated proteins could be found
with Foldseek, but homologs (80% and 67.3 % sequence iden-
tity) were present in bacterial species associated with the hu-
man gut (i.e. Citrobacter spp. and Serratia marcescens, respec-
tively). Outside this core region, gene conservation was mini-
mal, further emphasising the uniqueness of these phages.

Nakavirus phages of the Felixviridae family are associated
with Enterobacteriaceae

Most Felixviridae phages have a predicted temperate lifestyle,
and thus we wanted to assess the prevalence of the cor-
responding prophages in bacterial genomes. We analysed
64,364 complete bacterial genomes from the Bacterial and
Viral Bioinformatics Resource Center (BV-BRC) database for
homologues of RothD and found that all matches (n = 7603,
Supplementary Table S6) were exclusive to the Enterobacteri-
aceae family.

Klebsiella species were the most common hosts (566/708;
80%), spanning eight species and 111 ST-types, with ST231
appearing most frequently (127 hits). The second most rep-
resented species was Salmonella enterica (66 hits, 9%). These
phage—host associations were found across 67 countries, indi-
cating a widespread global presence of these prophages. Host
metadata revealed that most isolates (521) are derived from
humans, although samples from other hosts including chick-
ens (10), sea lions (10), pigs (7), birds (4), sheep (3), cattle (2),
hedgehogs (2), and even termites (4), suggest a broader super-
host range (Supplementary Table S6). However, the location
of the isolate within these other organisms is unknown.

We also examined predicted prophages within these
genomes to determine whether our identified hits were lo-
cated within the respective genomic regions. Of these hits, only
two were entirely within prophage regions. The majority were
either outside predicted prophages (n = 431/708, 61%) or
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Figure 7. Infectivity of ST323-targeting Roth phages in aerobic and anaerobic conditions. (A) Heatmap of the infectivity patterns of the ST323-targeting
Roth phages in LB medium represented as EOP compared to isolation strains (red box). The capsule locus (KL) type of susceptible strains is written
above, and ST323 strains are marked with an asterisk. (B=F) Growth curves of the ST323-targeting phages against the susceptible strains in aerobic and
anaerobic conditions, tested using two multiplicities of infection (MOI > 1 and < 1), and represented as AUC ratio compared to the uninfected bacterial

control.

partially within one (n = 266/708, 36%). To further inves-
tigate the gene neighbourhood of hits outside prophage re-
gions, we extracted the ten upstream and downstream genes
from each hit. In 259/431 (60%) of the cases, a lysozyme gene
was found within 10 CDS upstream of the hit region. Addi-
tionally, in seven of these 259 cases, an integrase gene was also
identified within 10 CDS downstream of the hit region. These
observations suggests that some hits may indeed reside within
prophage regions that are not detected by the prophage iden-
tifier tool, possibly, because many of the felixvirus prophages
could be deteriorating, highlighting the importance of exam-
ining gene neighbourhoods for more comprehensive analysis.

Felixviridae phages are found in the gut

The taxonomic characterisation of the Felixviridae RothD,
suggests that Felixviridae phages are present in the mam-
malian gut. Several groups of gut-related phages have been
established, including the orders Crassvirales [151], as well
as the familis Flandersviridae and Quimbyviridae [152], and
the still unclassified Gubaphages [153]. The order Crassvi-

rales includes the most abundant phages identified in the
mammalian gut to date [151, 154]. Crassviruses have been
shown to persist overtime, potentially via several specific
adaptations to the gut environment [155, 156]. To deter-
mine the abundance of Felixviridae phages in the human gut,
we examined their prevalence in the Gut Phage Database
(GPD). We found 355 high-quality unique hits across 38 iso-
lates and 317 metagenome-assembled genomes, correspond-
ing to 0.86% of the high-quality phage genomes in the
GPD (Supplementary Table S7). These phages appear glob-
ally widespread, with metagenomic samples collected from 15
different countries (Supplementary Table S7). Consistent with
the analysis of the BV-BRC database above, analysis of GPD
metadata confirmed that these phages are restricted to hosts
of the Enterobacteriaceae family, with Klebsiella spp. being
the most common (172/186 hits with available host-predicted
data).

Felixviridae-related sequences were predominant in in-
fant and adult cohorts, representing 82% of hits where
data was available (Supplementary Table S8) and spanned
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both healthy and disease-associated microbiomes, highlight-
ing their prevalence across ages and health statuses. In sev-
eral (554/1345) metagenomes, multiple Felixviridae-related
phages were present, suggesting that individuals could har-
bour diverse populations of these phages.

When examining disease associations, Felixviridae ap-
peared in cohorts with chronic conditions like obesity, IBD,
and rheumatoid arthritis (Supplementary Table S9) [105].
However, no significant associations were found, suggesting
these phages persist in various gut environments without clear
links to disease states.

Felixviridae reside in the gut in both free phage and prophage
form

To assess the abundance of Felixviridae phages in the human
gut, we analysed 117 healthy stool samples from the Human
Microbiome Project [157]. This analysis detected Felixviridae
sequences in 89% of the samples (average £+ SD abundance:
0.00014% =+ 0.005%). These phages constituted a minor but
consistent fraction of the gut microbiome (Fig. 8A). After
removing bacterial reads, Felixviridae phages remained de-
tectable in only 14% of samples, suggesting that they mainly
reside as prophages in the gut.

To extend this analysis, we examined 826 additional hu-
man gut metagenomes from previous studies [112-115]. Af-
ter quality control, host read removal and read mapping
against a curated and dereplicated genome dataset, only 7
samples (~1%) exhibited > 50% phage genome coverage
(Supplementary Table S10), representing an average £+ SD
abundance per metagenome of 0.015% = 0.006%. All 54 Fe-
lixviridae phages were represented in this dataset except for
Pantoea phage PdC23 (NC_071008.1) and the most abun-
dant phage genome was GPD phage uvig_371030 at 20.9%
average relative abundance. Although lower identity or par-
tial matches were found in additional samples, genome-wide
ANI analysis showed these did not meet thresholds for true
presence (>90% ANI, >50% coverage). Nevertheless, retain-
ing these partial matches maintained a similar average abun-
dance per metagenome to that of the ‘true’ matches (aver-
age + SD: 0.016% =+ 0.231%). Additionally, all of the de-
tected phages encode lysogeny-associated genes (i.e. integrases
or repressors), indicative of a temperate lifestyle and no high-
confidence lytic Felixviridae-like signatures were observed.
These phages were only detected in the metagenomic portion
of paired metagenome-metavirome datasets, further support-
ing their temperate lifestyle (Supplementary Table S10). These
findings suggest that Felixviridae are present in the human
gut microbiome at low prevalence and exist primarily as inte-
grated prophages.

Given the strong evidence of lysogeny for these phages,
we sought to investigate if RothD could actively lysogenise
the host. After five consecutive days of exposing the isolat-
ing host, 80528, to RothD at an MOI of 1, we analysed bac-
terial colonies recovered from each day for the presence of
the terL gene via PCR. We were able to detect terL in all
colonies from day 1 (Fig. 8B), suggesting RothD was able
to integrate into 80528. To further confirm integration, we
spotted RothD against these colonies, showing no infection
by RothD, suggesting superinfection exclusion due to the
integrated prophage (Fig. 8C). Additionally, we sent three
colonies of each sample from day 1 for sequencing. Map-
ping of the sequencing reads to the host strain 80528, re-
vealed that RothD always integrates at the same site within
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a 33 bp region in 80528. This site was located within the
genomic positions 4,000,393-4,000,415 bp inside the cod-
ing open reading frame of a hypothetical protein (Fig. 8D;
full reads coverage in Supplementary Fig. 7A). Additionally,
mapping of reads to RothD revealed that the corresponding
attachment site in the phage genome is located upstream of
the integrase gene (gp34) at positions 26,519-26,542 bp (Fig.
8E; full reads coverage in Supplementary Fig. 7B). This in-
tegration structure is conserved in the two most closely re-
lated prophages (IMGVR_UViG_2571042619_000002 and
IMGVR_UViG_2588254063_000001; Supplementary Text
Fig. 7E), whereby the same integrase gene is inserted as the first
gene of their lysogen versions in a Klebsiella host, and the last
gene is a homolog of RothD_gp33 (Supplementary Fig. 7C).
Additionally, read coverage analysis demonstrated that there
is an integration rate of ~40%, indicating that in these experi-
ments ~60% of virions remain as ‘free’, non-integrated phage
(see methods).

Felixviridae are detectable in the environment

To assess the feasibility of PCR detection of Felixviridae in
environmental samples, we designed primers against the con-
served predicted virion structural protein gp7 of the Felixviri-
dae family. We screened for these phages in environmental
samples collected from a wastewater facility in Portswood
and Petersfield, and from the sea of the Isle of Wight (all UK-
based). Felixviridae were present in the two sampled wastew-
ater facilities but not in the sea water sample (Fig. 8F), which
we confirmed by long-read sequencing of the PCR prod-
ucts (Fig. 8G). These preliminary results are consistent with
a link between Felixviridae and human-associated environ-
ments, and demonstrate that PCR-based detection of these
phages in environmental samples is feasible.

Together, these data suggest Felixviridae, particularly
Nakavirus, are widely distributed across diverse human and
animal hosts, persisting throughout life stages and health con-
ditions. This broad host range, coupled with environmental
presence, positions Felixviridae as integral, even if relatively
minor, yet understudied components of the gut virome, merit-
ing further exploration for their ecological and potential clin-
ical impacts.

Discussion

Here we introduce KlebPhaCol, an open-source collection
containing 52 phages targeting Klebsiella spp., covering seven
genera, and 74 Klebsiella strains spanning 41 known ST-types
and 32 K-types. By offering a centralised, no-cost, and well-
documented collection, KlebPhaCol democratises access to es-
sential resources for researchers worldwide.

KlebPhaCol includes strains from six different species of
the Klebsiella genus including members of the K. pneumoniae
species complex (KpSC), K. variicola and K. quasipneumo-
niae, that are emerging as public health concerns [136, 137].
Because K. pneumoniae is the most pathogenic and preva-
lent species of this genus [158], the collection includes 65 dif-
ferent isolates of this species. Although most isolates in the
collection originate from Europe, they represent some of the
most antimicrobial resistant clones circulating globally, in-
cluding ST258, ST11, ST14 and ST15 [12, 19, 159]. Asymp-
tomatic gut colonization of K. pneumoniae has been demon-
strated to increase the susceptibility to subsequent infections
in other tissues [160-162], and high abundance of K. pneu-
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Figure 8. Felixviridae detection. (A) Abundance per metagenome of Felixviridae-ike phages from 117 healthy human metagenomes. (B) PCR detection
of Felixviridae terL gene in colonies from cultures of strain 80528 exposed to RothD over five consecutive days. Yellow circles indicate colonies sent for
lllumina sequencing to confirm lysogen presence. (C) Plaque forming units (PFU)/ mL of RothD spotted against selected colonies from (B) to confirm
lysogen presence by the lack of infection. (D) Discordant read mappings to 80528 wildtype genome shows the region of insertion (represented by
increased coverage) was the same in all three sequenced colonies. (E) Discordant read mappings to the RothD genome shows the site of lysogen
insertion was the same in all three sequenced colonies, a few base pairs before the integrase gene. (F) Primers to the gp7 (putative virion structural
protein) of the core region of RothD can detect related phages in environmental samples by PCR. (G) Positive PCR products from (F) sequenced by
long-read sequencing and displayed as coverage depth when mapped to the gp7.



moniae has been linked with IBD exacerbation [21]. A par-
ticularly relevant ST type in this context is ST323, which is
also present in the collection [21, 163]. With this in mind,
KlebPhaCol phages were isolated using enrichment cultures of
antimicrobial-resistant relevant clones and gut-relevant clone
ST323. The resulting host range revealed high specificity of
such clinically-relevant clones, positioning the collection —
both phages and bacterial strains - for studying these interac-
tions in classical tissue infections as well as in gut colonisation
contexts that at present remain largely unexplored [164].

Although KlebPhaCol spans six of the 13 currently recog-
nised Klebsiella phage families, several known families remain
underrepresented or absent. This likely reflects methodologi-
cal biases during phage isolation, including the use of stan-
dard laboratory media (e.g. LB), selective targeting of clinical
ST-types, and the reliance on sewage as the main environmen-
tal source. Similar limitations have been noted in other phage
studies [165, 166]. To improve phage diversity in future iter-
ations of KlebPhaCol, we plan to broaden the range of host
strains and vary isolation conditions, as well as continue to
incorporate phages from external contributors. This amend-
ment will help capture a more complete representation of the
Klebsiella phageome and facilitate broader applications across
ecological and clinical contexts.

Genomic analyses of the phages in KlebPhaCol revealed
high intergenomic similarities among several phages. It has
been shown that even small polymorphisms within phages
can result in differences worth investigating, including dif-
ferences in host-range. For instance, despite phages T2, T4
and T6 being highly similar, these phages have different DNA
hypermodifications and different extents of genomic DNA
modification [167], and can bind to different receptors [168].
Moreover, characterisation of other Klebsiella phages shar-
ing high similarity (>97%) demonstrated small differences in
behaviour that could be attributed to differences in their L-
shaped tail fibres [169]. KlebPhaCol includes 17 representa-
tive phages, for most of which closely related phages are avail-
able to investigate nuances. The importance of studying a rep-
resentative collection of phages is exemplified by the advances
that followed the establishment of the T phages [170-173].
Although the remarkable diversity of phages is increasingly
being explored, focusing on a representative set of phage-
bacteria interactions could, in a therapeutic context, offer a
more tractable path toward a deeper understanding of phage
biology and practical application.

To support such efforts, we expanded our analysis of
RBPs and identified 14 distinct structural clusters among the
KlebPhaCol phages. These clusters include both predicted
capsule depolymerases and alternative adhesin-like proteins,
which could reflect differences in receptor usage. We also
tested spontaneous Klebsiella mutants across all 17 represen-
tative phages, revealing patterns of receptor dependence con-
sistent with RBP diversity. Together, these findings underscore
the utility of the collection for dissecting structure-function
relationships in phage infection.

Traditionally within the Klebsiella field, phage therapy has
mainly been considered as an alternative treatment for tissue
infections. However, given the relevance of Klebsiella as a gut
colonising pathobiont and a driver of subsequent infections
and disease, considering phage therapy applications for gut
microbiome modulation is becoming more relevant [21, 174].
In this study we show how phage efficiency can differ when
environmental conditions of testing are changed (e.g. media
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type, oxygen supply). Our results suggest that tailoring phage
therapy to specific infection environments by taking into ac-
count nutrient availability and other site-relevant physiolog-
ical conditions, could improve phage efficacy. Additionally,
consistent with previous studies, we show that non-capsule
targeting phages can have a broader host range [33, 34, 175].
This observation suggests that non-capsule targeting phages
could offer versatile treatment options, especially when cap-
sule types vary widely among infections. Indeed, Klebsiella
phages encoding multiple depolymerases may also achieve a
similar outcome [32], by being able to target multiple cap-
sule types, albeit limited by the presence of these receptors in
the bacterial strain. Multiple studies have shown that capsule
expression and production, or lack thereof, result in fitness
trade-offs for the bacterium [143, 164, 176]. Acapsular strains
are substantially attenuated, due to the increased susceptibil-
ity to immune mechanisms [29, 177]. However, lack of capsule
can facilitate biofilm formation [178, 179] and cell adhesion
[180]. Different factors have been shown to drive capsule loss
or maintenance including nutrient availability [143], oxygen
availability [181] and insertion sequence repertoires [164]. In-
deed, capsule loss in Klebsiella strains has been demonstrated
upon gut colonisation [164] and in urinary tract infections
[182]. Thus, both capsule and non-capsule targeting phages
are relevant for therapeutic applications, and the preference
for the former or the latter might depend on the targeted in-
fection site, emphasising the need to better understand Kleb-
siella behaviour in different infection sites to improve phage
selection for therapeutic purposes.

In this work, we identified a novel gut-associated phage
family, Felixviridae, represented by KlebPhaCol phage RothD
of the Nakavirus genus. Felixviridae-like phages are largely
temperate phages with notable association to Enterobacteri-
aceae members, which include key human pathogens. With
most of these being uncultured phages, we were only able
to confirm the ability to lysogenise for RothD. Felixviridae-
like phages are geographically widespread and present across
human age groups, from pre-term infants to adults, and the
presence of these phages in healthy gut microbiomes points
to potential roles in the human gut virome. Felixviridae pres-
ence in the gut could simply reflect their host ecology par-
ticularly given their lysogenic nature. However, detection of
homologs of RothD core proteins gp9 and gpl5 (shared
within Felixviridae phages) only in gut-associated bacterial
genomes, suggests potential evolutionary gene acquisitions
of this phage family to survive in this niche, requiring fur-
ther investigation. Other Klebsiella-targeting phage groups,
such as weberviruses, have been recently identified in the gut
[183]. These findings underscore the importance of exploring
the roles of various Klebsiella phage groups within the gut
microbiome, now facilitated by the inclusion of Nakavirus
RothD and several Webervirus in KlebPhaCol. PCR detec-
tion of gut-associated phages has been shown to be a cost-
effective method with extensive applications, including eval-
uation of the prevalence of the most abundant human gut
phage group, crAssphage, as proxy for human faecal contam-
ination [184-186]. By establishing PCR detection protocols
for Felixviridae, our findings lay the groundwork for future
research on these phages, both in clinical and environmental
contexts.

Altogether, KlebPhaCol provides an openly accessible re-
source for studying Klebsiella phage interactions. It offers a
uniquely broad scope, spanning critical pathogenic strains,

G20z JequianoN gz uo 1senb Aq $8£82¢8/22 | LieXb/1LZ/cG/e1o1e/leu/woo dno-ojwapeoe//:sdiy wolj papeojumoq



18

non-capsule-targeting phages with versatile applications, and
a newly described gut phage family with potential implica-
tions for human health. In addition to these broader features,
the collection offers granular experimental and bioinformatic
insights, including defined RBP structural clusters, receptor
usage patterns, and phenotypic differences among closely re-
lated phages, that can drive new mechanistic studies. Recog-
nising the lack of standardised open biosharing regulations
and pipelines, we actively participate in discussions to address
this crucial need for research progress [187]. We expect that
KlebPhaCol will not only facilitate new discoveries in microbi-
ology and therapeutic research but also inspire contributions
from the broader scientific community to further expand and
improve this evolving resource.
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