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Abstract 

T he gro wing threat of multidrug-resistant Klebsiella pneumoniae , coupled with its role in gut colonisation, has intensified the search f or ne w treat- 
ments, including bacteriophage therapy. Despite increasing documentation of Klebsiella- targeting phages, clinical applications remain limited, 
with k e y phage–bacteria interactions still poorly understood. A major obstacle is fragmented access to well-characterised phage–bacteria pairings, 
restricting the collectiv e adv ancement of therapeutic and mechanistic insights. To address this gap, we created the Klebsiella Phage Collection 
(KlebPhaCol), an open resource comprising 52 phages and 74 Klebsiella isolates, characterised at phenotypic and genomic le v els. T hese phages 
span six families—including a novel family, Felixviridae , associated with the human gut—and target 20 sequence types (including S T258, S T11, 
and ST14) and 19 capsular-locus types (including KL1 and KL2), across 6 Klebsiella species. Freely accessible at www.klebphacol.org , KlebPha- 
Col invites the scientific community to both use and contribute to this resource, fostering collaborative research and a deeper understanding of 
Klebsiella- phage interactions be y ond therapeutic use. 
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Introduction 

The global rise of antimicrobial resistance (AMR) has
prompted urgent action to develop new, effective therapies [ 1–
6 ], with bacteriophage (phage) therapy emerging as a promis-
ing option [ 7 , 8 ]. Phages, as natural predators of bacteria,
can precisely target bacterial pathogens, but a reliable pipeline
from phage isolation to clinical application remains elusive
[ 9 ]. Key challenges include limited regulatory frameworks and
gaps in understanding phage-bacteria and phage–host inter-
actions, which are essential for developing safe and reliable
therapies [ 10 ]. 

Klebsiella pneumoniae , a multidrug-resistant pathogen and
one of the six “ESKAPE” organisms ( Enterococcus faecium ,
Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter
baumannii , Pseudomonas aeruginosa , and Enterobacter spp.),
exemplifies these challenges. Known for causing severe infec-
tions, K. pneumoniae has developed resistance to last-resort
antimicrobials [ 11 ], including carbapenems [ 12 ], making it a
high priority target for new antimicrobials [ 13 ]. K. pneumo-
niae infections, including pneumonia, sepsis, and liver abscess,
are often acquired in hospital settings but are also found in
community-acquired cases, especially involving hypervirulent
strains [ 14–20 ]. The role of this pathogen in chronic gut colo-
nization has further implicated it in gut conditions like inflam-
matory bowel disease (IBD) [ 21 , 22 ] and primary sclerosing
cholangitis [ 23 ], establishing K. pneumoniae as a significant
gut-associated pathobiont. 

A major challenge in phage therapy against K. pneumoniae
is its highly variable capsule polysaccharide (K-types), with
over 180 distinct types now genomically identified [ 24–27 ]
and associated with different species [ 28 ] and virulence traits
[ 29 ]. The diversity complicates treatment because capsule-
specific phages, which depend on capsule polysaccharides to
bind and infect cells, often have limited host ranges [ 30–32 ].
While some phages can bind alternative receptors like the O-
antigen [ 33 ], capsule diversity remains a critical barrier. Be-
yond receptor diversity, bacterial defence systems and mobile
genetic elements can further restrict phage efficacy [ 34–37 ].
These multifaceted interactions highlight the need for well-
characterised phage collections, which can enable researchers
to systematically study and address obstacles to successful
therapy. Several collections of Klebsiella phages have been re-
ported in the literature [ 33 , 34 , 38–42 ]. While these mark
milestones in the field, there remains a fundamental need
for centralising and standardising resources to make them
easily accessible for the academic and clinical communities.
Standardised, referenced collections, such as the BASEL col-
lection for Esc heric hia coli [ 43 , 44 ] phages or the CEPEST
collection for Pseudomonas putida phages [ 45 ], demonstrate
how accessible resources can foster shared advancements. Ad-
dressing this need, we present the Kleb siella Pha ge Col lection
(KlebPhaCol), an open-source collection that contains 52
phages and 74 Klebsiella strains, each extensively charac-
terised. The open-source nature of KlebPhaCol (available at
klebphacol.org) invites the scientific and medical community
to contribute additional isolates and data, fostering and evolv-
ing this community-driven platform. In addition to informing
phage therapy, this collection can be utilised to study funda-
mental aspects of phage–bacteria interactions. By centralising
and sharing these resources, KlebPhaCol aims to bridge cur-
rent gaps, empowering the scientific community to collectively
advance research on Klebsiella and its phages for both thera-
peutic and broader biological insights. 
Materials and methods 

Phage isolation and purification 

Numbered phages (e.g. Roth01) were sourced from hospital 
wastewater effluent collected at the University Medical Cen- 
tre Utrecht in the Netherlands in 2020 as previously described 

[ 46 ], while lettered phages (e.g. RothD) were sourced from ef- 
fluent collected at Portswood in Southampton, United King- 
dom in 2021. Thirty-two isolates with clinically relevant se- 
quence types (ST) were used as isolation hosts ( Supplementary 
Table S1 ). Based on ST grouping, seven enrichment cultures 
were produced: (i) ST11 ( n = 5), (ii) ST101 ( n = 5), (iii) ST15 

( n = 4), (iv) ST258 ( n = 5), (v) ST14 ( n = 6), (vi) ST323 ( n =
2), and (vii) the remaining ST-types [ST489 ( n = 1), ST86 ( n = 

1), ST38 ( n = 1), and ST23 ( n = 2)]. Fifty microlitres of each 

overnight culture grown in Lysogeny Broth (LB; Formedium 

LB-Broth Lennox) were added to each respective enrichment 
containing 50 ml of LB and 50 μl of the phage source filtrate.
Enrichments were incubated overnight at 37 

◦C and shaking 
at 180 rpm, and then centrifuged (8000 × g , 20 min, 4 

◦C) 
and filter-sterilized (0.45/0.22 μm PES). Five microlitres of the 
resulting supernatants were spot-tested for the detection of 
phage against all 32 isolates using a double-layer agar tech- 
nique (top agar 0.6%) [ 47 ]. Susceptible isolates were subse- 
quently plated with serially diluted phages to identify distinct 
plaque morphologies, which were then single picked with ster- 
ile toothpicks, dotted, and spread with sterile paper onto fresh 

bacterial lawns to purify the phages. This latter step was re- 
peated twice to obtain a consistent plaque morphology. Indi- 
vidually purified phages were then propagated in LB with their 
respective host, centrifuged, filter-sterilized, and stored at 4 

◦C.

Phage host-range 

Five microlitres of undiluted phage lysates were first spotted 

onto double-layer agar plates for each of the 74 Klebsiella spp .
strains tested. Phages that showed some form of lysis were 
then re-tested using 10-fold serial dilutions of stocks normal- 
ized at 10 

8 PFU/ml. These were then spotted onto double-layer 
agar plates with respective bacterial lawns. The plates were in- 
cubated overnight at 37 

◦C, and phage plaques were observed 

to distinguish between productive infection (lysis with indi- 
vidual plaques), no infection (lack of plaques), and undeter- 
mined lysis (opaque lysis without individual plaques). Assays 
were conducted in both LB and Tryptic Soy Broth (TSB; Hach 

Bacto 

™ Tryptic Soy Broth) media. Unless otherwise stated, all 
other phage assays were done in LB. 

Plate reader liquid assays 

Overnight bacterial cultures of strains susceptible to phages 
infecting strains of the ST323 sequence type (on solid agar) 
were diluted 1:100 in LB and incubated at 37 

◦C at 180 rpm up 

to an OD 600 of ∼0.3. Cultures were normalized to an OD 600 

of 0.1 and dispensed into a 96-well plate. Experimental wells 
had phage added at the desired high ( ≥1) or low ( ≤1) mul- 
tiplicity of infection (MOI). Growth was monitored every 10 

min for 900 min in a Spectrostar Nano (BMG Labtech, UK) 
plate reader at 37 

◦C, non-shaking, in either aerobic or anaero- 
bic conditions. To ensure the latter, all holes in the plate reader 
were plugged as specified by the manufacturer, and N 2 gas was 
consistently pumped at a low rate to eliminate any oxygen for 
the entirety of the experiment. Growth curves were converted 

to area under the curve (AUC) using GraphPad Prism. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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acteriophage insensitive mutants 

acteriophage insensitive mutants (BIMs) of capsule-deficient
train 51 851 were obtained after spot tests with different
hages. A random selection of 17 BIMs from 51851 strain
ere cultured for sequencing and for phage re-testing. Strain
NA was extracted and sequenced as described below, and

eads were mapped against the wild-type (WT) 51851 strain
o confirm mutations. Phage susceptibility re-testing was per-
ormed in a 96-well plate by growth of the BIMs in LB broth
t 37 

◦C with the addition of phage. Growth of the bacterial
solate in the absence of phage was used as a positive con-
rol. OD 600 readings were taken every hour up to 20 h using a
LARIOstar Plus plate reader (BMG Labtech, UK). Growth

urves were analysed and, where there was no observable dif-
erence in the presence and absence of phage, the BIM was
lassified as resistant. 

hage sequencing, assembly, and annotation 

hage DNA was extracted using phenol–chloroform as pre-
iously described [ 48 ]. DNA from 32 phages were sequenced
y BMKGene (Germany). For this, sequencing libraries were
repared using the Reseq-M DNA kit and paired-end reads
2 × 150 bp) were generated in the Illumina Novaseq 6000
latform (Illumina, USA). Approximately 3–4 Gb of clean se-
uencing data were produced for each sample, with sequenc-
ng depth > 5000 ×. The remaining DNA was sequenced by
he UKHSA-GSDU (UK health security agency Genomic Ser-
ices and Development Unit) (see Supplementary Table S2 ).
ibraries were prepared using the Nextera DNA flex library
rep kit (Illumina, USA) according to manufacturer’s instruc-
ions and reads (2 × 150 bp) were generated in the Il-
umina HiSeq 2500 platform (Illumina, USA). A minimum
f 150 Mb of Q30 quality data were obtained for each
ample. 

Unless otherwise stated, CLC Genomics Workbench
23.0.1 (Qiagen, Germany) was used for quality checks, se-
uence trimming (quality limit = 0.05) and genome assembly.
eads were subsampled then assembled with the de novo as-

embler tool (default parameters) on CLC. Sequencing reads
or 13 phages (see Supplementary Table S2 ) were checked for
uality using FastP [ 49 ] v.0.12.4 and Soapnuke [ 50 ] v2.1.7
ith default parameters. For these specified phages, reads
ere sampled and trimmed using Seqtk v1.3.0 and then as-

embled using SPAdes [ 51 ] v3.13.0. All produced assemblies
ere manually inspected on Bandage v0.8.1 and Geneious
rime v11.0.18 + 10 ( https:// www.geneious.com/ ). 
The phages’ closest relative was determined as the top

it according to the maximum score provided by BLASTn
March–June 2023 and February 2024, https://blast.ncbi.nlm.
ih.gov/Blast.cgi [ 52 ]). Assemblies were mapped to fastq reads
o check for irregularities using Qualimap2 v2.3 [ 53 ]. 

The start of the phage genome was adjusted to allow phage
omparisons with canonical phages, by choosing a conserved
eature to serve as gp1 or “start-site” for each of the fam-
lies represented in the collection. These genome start-sites
ere chosen based on historical precedent and/or biology
f infection and/or DNA packaging. For the Straboviridae ,
hich includes the well-known Esc heric hia phage T4 (genus
equatrovirus ), and the genera Jiadodavirus and Slopekvirus ,
he rIIA gene was chosen, in accordance with NCBI record
C_000866.4 [ 54 ]. In cases where a landmark feature over-

apped another gene, the nearest non-CDS region 5 

′ or 3 

′ 
to rIIA was chosen to avoid software artefacts. The De-
mercviridae contains a landmark member, Esc heric hia phage
T5 (genus Tequintavirus , NC_005859.1) where the first-step-
transfer region encoding dmp , a 5 

′ -deoxyribonucleotidase, is
first to enter the cell upon infection [ 55 , 56 ]. The Drexlerviri-
dae includes phage T1 (genus Tunavirus , NC_005833.1),
which is known to have terminal repeats at the genome ends
[ 57 ]. For Roth32, infection by coliphage T7 (NC_001604.1),
a member of the genus Teseptimavirus of this family, an ∼850
bp segment of the virion DNA enters the cell first [ 58 ]. For
phages from the Drulisvirus genus, the small terminase sub-
unit was defined as the start of the genome, a convention built
into some automated annotation pipelines [ 59 ]. For the novel
Felixviridae family, the core region [genes gp1 (hypothetical
protein) to gp24 (structural protein)] was defined as the start.
Manual assignment of nucleotide start-site was accomplished
using Geneious Prime v11.0.18 + 10 ( https://www.geneious.
com ). 

Final phage genome length and GC content were deter-
mined by EMBOSS v6.6.0.0 [ 60 ]. Phage sequences were then
inputted to PhageTerm [ 61 ] via the Center for Phage Tech-
nology galaxy portal ( https:// phage.usegalaxy.eu/ ) to identify
phage termini and packaging. 

Phage coding sequences (CDS) were predicted with PHAN-
OT A TE v2019.08.09 [ 62 ] using translation table 11, then
annotated using multiPHATE v2.0.2 [ 63 ] against the NCBI
database selecting annotations with an Evalue thresh-
old of 0.001. Transfer RNA (tRNA) genes were iden-
tified using tRNAscan-SE v2.0.12 [ 64 ] via multiPHATE
and confirmed using ARAGORN v1.2.41 [ 65 ], although
tRNAscan-SE findings were kept. Phages were also anno-
tated with the Pharokka [ 59 ], Phold [ 66 ], and Domaina-
tor v0.7 [ 67 ] to highlight additional domain and gene func-
tions (Domainator annotations are available on Figshare
DOI 10.6084/m9.figshare.27794211). Default Pharokka an-
notations were manually curated using Geneious Prime
v11.0.18 + 10 ( https://www.geneious.com ). In cases where
Pharokka and Phold produced conflicting results, annotations
were curated conservatively, either retaining the most likely
hit or replacing the entry with “hypothetical protein.” Man-
ual curation focused primarily on the conserved region of
RothD (gp1-gp24) and on correctly clearly erroneous anno-
tations, as previously recommended [ 68 ]. Anti-defence pro-
teins were predicted using AntiDefenseFinder [ 69 ]. Poten-
tial AMR and virulence genes in the phages were predicted
using the Comprehensive Antibiotic Resistance Database
(CARD) [ 70 ] and the Virulence Factor Database (VFDB) [ 71 ],
respectively. 

The lifestyle of the phages was predicted using Bacphlip
[ 72 ]. Phage receptor-binding proteins (RBPs) and depoly-
merases were identified using RBPdetect v3.0.0 [ 73 ] and De-
poScope v1.0.0 [ 74 ], respectively. Structures of the proteins
from RothD’s core genome were predicted using Seq2symm
[ 75 ] and ColabFold [ 76 ], and subsequently compared to ex-
isting structures using Foldseek search [ 77 ]. 

Phage receptor-binding proteins 

The symmetry of all RBPs identified by RBPdetect ( n = 207)
was predicted using Seq2Symm and then used to setup struc-
ture prediction with ColabFold. All resulting structures were
clustered with Foldseek easy-cluster using default parame-
ters. For each cluster, a representative was compared to the

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://www.geneious.com/
https://blast.ncbi.nlm.nih.gov/Blast.cgi;
https://www.geneious.com
https://phage.usegalaxy.eu/
https://www.geneious.com
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PDB [ 78 ] and AlphaFold2 [ 79 ] databases using Foldseek
search. Only clusters with multiple members were retained for
further analysis, except cluster 8 (a singleton with Roth44
gp50), which was included due to its high structural similarity
to Roth47 gp52 from cluster 9, aside from its distinct “tip” -
a feature that may account for their differing host ranges. Ad-
ditionally, RBPs assigned with predicted depolymerase func-
tion by DepoScope were manually curated for depolymerase
activity based on conserved structural elements according to
the method described previously [ 80 ] (Supplementary Text).
We used several structural prediction tools including (Phyre2
[ 81 ], HHpred [ 82 ], and AlphaFold) to increase confidence in
RBP structures and interactions. When a RBP is not identified
as a depolymerase, the RBP is presumed to be a tail fibre that
binds to the bacterial receptor. 

Phage comparative genomics 

To assign phage taxonomy, genomes were run on PhageGCN
[ 83 ] web server and confirmed by clustering on vContact2
v0.11.3 [ 84 ], using the default database and visualised us-
ing Cytoscape v3.10.2 [ 85 ]. Intergenomic similarity was cal-
culated using VIRIDIC [ 86 ] on the web server and similarity
matrices were re-plotted using Pheatmap v1.0.12 [ 87 ]. Phy-
logenetic analyses were produced by the VICTOR web server
with default settings, which employs the Genome-BLAST Dis-
tance Phylogeny method adapted to bacteriophages [ 88 ]. Tree
images were rendered and rooted at the midpoint using iTOL
v6.1.1. ( https:// itol.embl.de/ ) [ 89 ] Synteny plots were pro-
duced by Clinker [ 90 ] on their web server. 

Bacterial DNA extraction and genome assembly 

Seventy-four clinical isolates of Klebsiella spp. were used in
this study. Sixty-five are K. pneumoniae , two K. oxytoca, two
K. variicola, one K. aerogenes , one K. pneumoniae subsp. oza-
enae , and three K. quasipneumoniae , see Supplementary Table
S1 for isolate characteristics. Thirty-two strains were used for
phage isolation enrichment cultures, but only seventeen con-
tinued as isolation hosts ( Supplementary Table S1 ). Genomic
DNA for the Klebsiella strains were extracted using the Gene-
Jet Genomic DNA Kit (Thermo Scientific, UK) or the Wizard
DNA Extraction Kit (Promega, UK) according to the manu-
facturer’s instructions. DNA was quantified by a Qubit fluo-
rometer using the high sensitivity dsDNA Kit (Invitrogen, UK)
and Nanodrop (Thermo Scientific, UK). DNA was prepped
and sequenced by UKHSA-GSDU as described above. Fastq
reads were quality trimmed using Trimmomatic v0.39 [ 91 ]
and draft chromosome contigs were assembled using SPAdes
v3.15.3 filtering out contigs < 1 kb. 

Bacterial genome analyses 

Genomes were annotated using Prokka v1.14.6 [ 92 ]. Strains
were classified by their sequence (ST) and capsular locus
(KL) types using the multilocus sequence typing (MLST)
database (Center for Genomic Epidemiology, https://cge.food.
dtu.dk/ services/ MLST/ ) and Kaptive v3.1.0 [ 26 , 93 , 94 ] us-
ing the K locus primary reference database, respectively.
Strains from the K. pneumoniae species complex (KpSC) [ 19 ]
were also classified by the cgMLST-based Life Identification
Numbers (cgLIN codes) available via Pathogenwatch ( https:
// pathogen.watch/ ) [ 95 ] to provide a better phylogenetic res-
olution and precision at a nomenclature-based level [ 96 ]
( Supplementary Table S1 ). Strains were run through the Kleb-
orate [ 25 ] pipeline to obtain virulence and resistance scores,
and outputs were visualized using the Kleborate-Viz plat- 
form online ( https:// usegalaxy.eu/ root?tool _ id=kleborate ) (no 

markers were found for strain 163575R). The phylogeny of 
the strains was calculated via PopPUNK v2.5.0 [ 97 ] using the 
default fitted model for K. pneumoniae . The tree was rendered 

in iTOL v6.1.1 ( https:// itol.embl.de/ ) [ 89 ]. 
The bacterial virulence factors, antibiotic resistance, and 

stress resistance genes were identified using Abricate v1.0.1 

against the CARD [ 70 ], NCBI AMRFinderPlus [ 98 ] and 

VFDB [ 71 ] databases. Prophage regions were identified us- 
ing Phigaro v2.2.6 [ 99 ] on default mode. The defence systems 
in the genomes were identified using PADLOC v1.1.0 [ 100 ] 
and DefenseFinder v1.0.9. [ 101 ]. Incomplete defence systems,
VSPR and PDC, were removed from quantification analyses 
but are included in Supplementary Table S1 . Correlation anal- 
yses between encoding defence systems and host range out- 
comes were conducted with Spearman’s correlation and plot- 
ted in RStudio v2024.04.2 using the ggplot2 [ 102 ] package. 

Bacterial capsule loci (defined as the genetic region from 

galF to uge ) [ 103 ] were manually assembled for isolation hosts 
(17 strains). Assembly was conducted by first looking for the 
more conserved regions of galF and uge genes and then indi- 
vidually checking and annotating other genes in Seq Builder 
v14.0.0 (DNAstar Lasergene). In some cases, due to transpo- 
son insertions within the CPS locus, it was not possible to gen- 
erate one contig containing the complete locus; for such cases 
a string of n’s was artificially added to represent a break in the 
contigs. 

Antibiotic susceptibility 

For clinical isolates obtained at the University Medical Cen- 
tre Utrecht (see Supplementary Table S1 ), antibiotic suscep- 
tibility was determined as previously described [ 46 ]. For the 
remaining clinical isolates, the minimal inhibitory concentra- 
tions (MIC) for antibiotics and biocides were determined by 
UKHSA using a standard broth microdilution method at a 
starting inoculum of 5 × 10 

5 CFU/ml, Phoenix M50 sys- 
tem (BD Biosciences, USA) and EUCAST breakpoints, with 

the exception that 96-well polypropylene plates (Griener Bio- 
One, Ltd., Austria) were used instead of polystyrene plates to 

test colistin. Plates were scored by eye, looking for no visual 
growth and confirmed by OD 600 measurement after 16–20 h 

with a 0.1 OD 600 threshold using a CLARIOstar Plus plate 
reader (BMG Labtech, UK). 

Bacterial capsule characterisation 

Isolation host strains ( n = 17) were inoculated in LB or TSB 

broth and incubated overnight at 37 

◦C, 180 rpm. Cultures 
were then spun at 3200 × g for 10 min and their pellets 
resuspended in 2 ml of 1 × phosphate-buffered saline (PBS).
The wash step was repeated once. Density gradients were pre- 
pared using Percoll ® (P4937, Sigma–Aldrich) at 30%, 60%,
and 80% v/v (diluted in 1 × PBS) [ 104 ]. One millilitre of each 

gradient was gently dispensed into fresh 15 ml falcon tubes 
using a 1 ml syringe and 1.5-inch needle. The 30% layer was 
pipetted first, followed by the 60% layer beneath it, and finally 
the 80% layer at the bottom. Six hundred microlitres of the 
prepped cells were then gently layered at the top of the gradi- 
ent and samples were spun at 3000 × g for 30 min. The tubes 
were then imaged against a black background to visualise the 
capsule deposition. 

https://itol.embl.de/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://cge.food.dtu.dk/services/MLST/
https://pathogen.watch/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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enomic comparisons of Felixviridae phages 

othD was taken as the representative phage of the Felixviri-
ae family. To determine the prevalence of Felixviridae phages
ithin bacterial genomes given their temperate lifestyle, the
V -BRC ( https://www .bv-brc.org/) bacterial strain database
 n = 64 364; 25 384 complete high-quality Klebsiella spp .
nd 38 980 complete high-quality non- Klebsiella bacterial
enomes), and associated metadata were retrieved (accessed
uly 2024). The core region and the full genome of RothD
ere independently searched against the downloaded bacte-

ial genomes using command line BLASTn v2.15.0 with an E -
alue threshold of 0.005 with a -max_target_seqs parameter
f 100 000. All hits were extracted and searched for prophage
egions using Phigaro v2.4.0 [ 99 ] with default settings. The
en upstream and ten downstream genes from the hit region
ere extracted for analysis. 
To investigate the predominance of Felixviridae in the av-

rage human gut, we first looked at the GPD hits used in
he taxonomic characterisation of RothD (see above) and
atched them with the GPD’s available metadata. The pro-
uced dataset was then analysed. Taxonomic characterisation
f RothD revealed several relatives assembled from a singular
tudy by Tisza et al . [ 105 ]. Thus, we gathered all returned hits
rom the online BLASTn server and matched accession queries
o those coming from the mentioned study. This resulted in
 total of 229/406 total hits matching their chronic disease
ataset, of which 205/229 (90%) were high-confidence hits
ith an E -value ≤1e-08. We then matched these to the study’s
etadata and analysed the resulting dataset. 
The relative abundance of Felixviridae phages was calcu-

ated as follows. The quality filtered reads from a subset of 117
healthy”human stool metagenomes from the Human Micro-
iome Project [ 106 , 107 ] were retrieved and aligned to a set of
1 Felixviridae phage genomes using the end-to-end alignment
ode of Bowtie2 v2.5.4 [ 108 ]. Bacterial reads were identified
sing Kraken2 v2.1.3 [ 109 ]. A count table of reads aligned to
ontigs and total number of reads per metagenome was gen-
rated with Samtools v1.20 [ 110 ] and imported into Rstudio
2024.04.2 + 764 for analysis. Packages ggplot2 [ 102 ] and
gbreak [ 111 ] were used for plots. 

To further assess the prevalence and genomic signatures
f Felixviridae phages, the metagenomic and metavirome
atasets from four previous studies [ 112–115 ] were retrieved
 n = 826 gut metagenome samples). A set of 54 Felixviridae
enomes were curated, quality-checked with CheckV v1.0.3
 116 ], and dereplicated using dRep v3.4.2 [ 117 ]. Metage-
omic reads were quality-filtered using fastp v1.0.1 [ 49 ], and
ost contamination was removed using BBMap v35.85 [ 118 ]
gainst the hg38 reference genome. Reads were mapped to
he dereplicated Felixviridae genomes using minimap2 v2.30
 119 ], and coverage/breadth was assessed using samtools
1.22.1 [ 110 ]. Genome-level ANI and coverage were calcu-
ated using fastANI v1.34 [ 120 ] to avoid overinterpretation
rom short gene-level hits. Strain-level diversity and popula-
ion variation were profiled using inStrain v1.3.1 [ 121 ]. To
istinguish lytic versus lysogenic presence, we used paired
etagenome–metavirome datasets and confirmed lysogeny
arkers with PHASTER v4.0.0 [ 122 ]. Abundance was anal-

sed as specified above. 

CR detection 

rimers were designed to target gp7, a hypothetical pro-
ein (or putative virion structural protein by Phold) that
maintains a high conservation across the Felixviridae : For-
ward 5 

′ -ATGTTCCGTCA GGGGAA GTTC-3 

′ , Reverse 5 

′ -
AA GCCTGGTTGTTAAAA CTGG-3 

′ . Primers were synthe-
sized by IDT. Reactions were done with OneTaq quick load
(NEB M0486) according to the manufacturer’s instructions
on a T100 Thermal Cycler (Bio-Rad, UK) and visualised on
a 0.7% agarose gel. Positive control was RothD. Negative
control was prepared using DNase-free water instead of tem-
plate DNA. Specificity to Felixviridae phages was confirmed
by also testing phages T4 (as a non- Klebsiella phage control)
and Roth32 (as a Klebsiella phage control). The presence of
Felixviridae phages in the environment was also tested by
using filtered raw effluent from sewage plants in Southamp-
ton and Petersfield as well as ocean water from the Isle of
Wight, UK (collected in the summer of 2024), filtered through
a Vivaflow 

® 200 cassette recirculation system (Sartorius, UK)
and then through a 0.45 μm PES membrane. All controls (ex-
cept for the negative control) were first heated at 95 

◦C for 5
min to break virion capsules before adding as template DNA
to the reactions. Polymerase Chain Reaction (PCR) products
were cleaned and concentrated with the GeneJET PCR pu-
rification kit (Thermo Scientific, UK) and sent for sequencing
at Plasmidsaurus (UK). Reads were trimmed and quality fil-
tered using fastp v0.12.4 on the fastplong parameter and then
mapped to RothD_gp7 using minimap2 v2.28-r1209. Cov-
erage depth was obtained with Samtools v1.20 and Bedtools
v2.30 [ 123 ] and results were imported in table format to RStu-
dio v2024.04.2 + 764 and plotted using the ggplot2 [ 102 ]
package. 

Lysogeny assays 

Isolation strain 80 528 was grown in LB at 37 

◦C, 180 rpm
to an OD 600 of 0.2. RothD was then added to an MOI of
1 and left to incubate overnight at 37 

◦C. The following day,
the cultures (80 528 + RothD, and 80 528 control) were spun
down at 4000 × g for 10 min and washed with LB twice.
The washed pellets were resuspended in 1 ml of LB and 10-
fold dilutions were spotted onto LB agar plates and the plates
incubated at 37 

◦C. The remaining pellets were re-inoculated
and re-infected with the same phage (except for the 80 528
control) and incubated overnight at 37 

◦C, 180 rpm. This was
repeated daily for a total of 5 days. 

Five colonies of each sample per day were inoculated in
100 μl of sterile diH 2 O for PCR detection of TerL (For-
ward primer: 5 

′ -GGCCGACA TTT ACCT ACCCAC-3 

′ , Re-
verse primer: 5 

′ -TA GA GTGCGTCGCCGCTA C-3 

′ ) as de-
scribed above. Colonies c2, c3, and c4 of each sample from
day 1 were then inoculated overnight in LB, and bacterial
DNA was extracted with the GeneJet Genomic DNA kit. DNA
was sent for Illumina microbial sequencing at BMKGene (Ger-
many). The produced raw reads were pre-processed with fastp
v0.23.4 with default parameters to remove adapters and low-
quality bases. Reads were aligned with bwa-mem2 v. 0.7.17-
r1188 [ 124 ] to the combined K. pneumoniae 80 528 genome
and RothD genome. To find the integration site in the bacterial
genome and phage attachment site, discordant reads were ex-
tracted using samtools. Integration sites were identified where
genomic regions presented high coverage of discordant reads
(when mapped to the original 80 528 genome) in experimen-
tal samples (80 528 + RothD) compared to control samples
(80 528). Similarly, the phage attachment site was determined
as a peak of discordant reads coverage (when mapped to the
RothD genome). The proportion of integrated phages was de-

https://www.bv-brc.org/
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termined by dividing the number of discordant reads over the
total coverage at the attachment site. Coverage plots were
made using either the sorted bam files (samtools), or by ob-
taining coverage depth (bedtools); files were imported into
Rstudio and plotted using Gviz [ 125 ] or ggplot2 [ 102 ], re-
spectively. 

To further confirm lysogeny, all five colonies per sample of
day 1 and at least 2 colonies per sample of all other days,
were grown in LB. RothD was 10-fold serially diluted, and
spot tested on lawns made from each of the cultures following
the double-layer agar assay described above. No plaques were
expected in samples where the phage has integrated into the
host genome. 

Results 

Overview of KlebPhaCol 

KlebPhaCol is an open-source Klebsiella phage and strain
collection comprising both biological materials (phages and
strains) and associated data. The collection was designed
to provide easy, cost-effective access to Klebsiella phages
and strains to support collaborative research on phage–
bacteria–host interactions and to facilitate the development
of phage therapy. All data and access requests are man-
aged through a dedicated platform, www.klebphacol.org ,
which allows users to explore the collection, download meta-
data tables (e.g. host range, capsule type, taxonomy, and
isolation source), and request material via a simple online
form. 

The physical collection is hosted at the University of
Southampton, where a curatorial team oversees sample stor-
age, data curation and updates, and compliance with mate-
rial sharing regulations. New phages and strains can be con-
tributed by external researchers via the website; all submis-
sions are manually reviewed to ensure metadata consistency
and quality. The platform also includes a “board of discus-
sions” feature (currently run via a mailing list), which facili-
tates community input on metadata standards, future features,
and the integration of new tools or datasets. 

KlebPhaCol includes 52 phages isolated using 32 clinically
relevant Klebsiella spp. strains (Fig. 1 A, and Supplementary
Tables S1 and S2 ). These phages were characterised at ge-
nomic (phylogeny , synteny , and gene content), phenotypic
(plaque morphology and TEM imaging), and behavioural
(one-step growth curves and host range) level. Detailed de-
scriptions of the characteristics of these phages, organised by
genera, can be found in the Supplementary Text. The KlebPha-
Col phages span 7 genera across five of the 13 reported
Klebsiella phage families, and the newly proposed Nakavirus
genus and Felixviridae family [ 126 ] (Fig. 1 B and C). To facili-
tate reproducibility and shareability, we selected seven strains
as production hosts for the entire collection (Fig. 1 D and
Supplementary Table S1 ). 

Currently, the collection includes 74 Klebsiella strains,
of which 69 are clinical isolates from different coun-
tries ( Supplementary Table S1 ), while the remaining five
are ATCC/NCTC-type strains. These 74 strains represent
six Klebsiella species, 41 known sequence types (STs), 32 cap-
sule locus (KL) types, and 11 O-antigen (O) types (Fig. 1 E
and Supplementary Table S1 ). The most prevalent ST-types in
KlebPhaCol include clinically relevant types associated with
AMR, ST258 ( n = 8 strains), ST14 ( n = 8), ST11 ( n = 6),
ST101 ( n = 5), and ST15 ( n = 4) (Fig. 1 E). Regarding KL-
type, KL2 is the most prevalent in the collection ( n = 10 

strains) and is highly clinically relevant due to its strong asso- 
ciation with virulence traits [ 127 , 128 ]. The other notoriously 
pathogenic KL-type, KL1, is covered by two of our strains 
[ 128–130 ]. Other common KL-types include KL24 ( n = 6),
KL106 ( n = 5), and KL17 ( n = 5) (Fig. 1 E). Lastly, KlebPhaCol 
strains represent 10 of the 13 known O-antigens for Klebsiella 
[ 131 ] ( Supplementary Table S1 ). One strain also has OL103,
a currently unclassified O-antigen. The most represented O- 
antigen is O1ab ( n = 23), followed by O2afg, O2a, and O3b 

( n = 10 for each). OL101 recently classified as a 13th class of 
O-antigen (O13) is found in four strains [ 131 ]. The strains 
were also characterized in terms of prophage, virulent fac- 
tors, stress resistance, AMR, anti-phage defence systems, and 

capsular locus integrity. Regarding virulence, we identified 44 

virulence genes, with an average of 14 ± 6 per strain (Fig.
2 A). The most common virulence genes were entB , ompA,
fepC, ykgk, and genes from the yag cluster ( Supplementary 
Table S1 ), which contribute to enterobactin siderophore pro- 
duction [ 132 ], host immune evasion [ 133 ], and biofilm for- 
mation [ 134 ]. Stress resistance genes were prevalent in the 
KlebPhaCol collection, with strains encoding an average of 
17 ± 6 genes (Fig. 2 A). The most frequently found gene was 
fieF, present in 70 out of 74 strains, responsible for iron and 

zinc efflux [ 135 ]. Genomic analysis revealed the presence of 
genes potentially mediating resistance to 22 antibiotics, in- 
cluding 6 aminoglycosides, 2 amphenicols, and various others 
(Fig. 2 A). On average, strains had resistance genes for 8 ± 4 

antibiotics. High carriage of genes associated with resistance 
was observed for phenicols, quinolones, β-lactams (in gen- 
eral, including cephalosporins), and trimethoprim (Fig. 2 A).
These analyses do not necessarily predict phenotypic resis- 
tance, with the possibility of resistance being mediated by 
genes operating in a multifactorial manner and intrinsic re- 
sistance associated with poor cell penetration and/or efflux.
Therefore, experimental validation of these predictions was 
carried out for a defined selection of clinically important an- 
tibiotics using MIC. Carbapenem resistance predictions were 
100% accurate, but resistance to gentamicin and tobramycin 

was higher in laboratory conditions than predicted (28 ver- 
sus 23 strains and 31 versus 22 strains, respectively), and 

amikacin resistance was slightly lower than anticipated (23 

versus 25 strains, Fig. 2 A and Supplementary Table S1 ). This 
demonstrates the difference between genotypic resistance pre- 
dictions and phenotypic susceptibility determination. Finally,
the strains in this collection encode a total of 93 distinct de- 
fence systems, with an average of 11 ± 4 systems per strain 

( Supplementary Fig. S1 ). Most systems were rare, with 54 out 
of 93 systems present in fewer than five strains. Only RM 

type IV and AbiE systems were found in ∼85% of the strains.
Other notable defence systems included Mok Hok Sok, RM 

types I and II, and SoFic, present in ≥50% of the strains 
( Supplementary Fig. S1 ). 

To facilitate access to the strains and their metadata and en- 
courage comparisons to other Klebsiella strains, we have de- 
posited the K. pneumoniae strains into a Pathogenwatch [ 95 ] 
collection (see Data availability). 

Roth phages infect up to 19 KL-types 

The Roth phages demonstrated a broad ability to infect a wide 
range of Klebsiella strains, with notable success across multi- 

http://www.klebphacol.org
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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Figure 1. Ov ervie w of the Klebsiella Phage Collection (KlebPhaCol). ( A ) Ph ylogen y of the 52 phages of the collection and associated data. T he 
ph ylogenetic tree w as calculated using a Genome BLAS T Distance Ph ylogen y method and midpoint rooted. ( B ) Quantification of the phage taxa co v ered 
by the phages in KlebPhaCol. ( C ) Distribution of Klebsiella phages families in the ICTV taxonomy (as of March 2025). Bars show the number of exemplar 
Klebsiella phages reported for each family in ICTV. Red circles indicate the families represented in KlebPhaCol. ( D ) Phylogeny of the 74 strains of the 
collection and associated data. Phylogenetic tree was produced by PopPUNK and midpoint rooted. ( E ) Quantification of the species of Klebsiella, their 
sequence type (ST), and capsule locus type (KL), included in KlebPhaCol. All trees were rendered in iTOL. 
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Figure 2. Characteristics of the 74 strains in KlebPhaCol. ( A ) Ph ylogen y of the 74 strains matched with the number of stress resistance genes (out of a 
total of 51), virulence genes (out of a total of 44), prophage predictions, and presence/absence of AMR genes. The MIC of 13 antibiotics was also tested 
for each strain and resistance patterns are illustrated in the coloured heatmap. Virulence and resistance scores were calculated with Kleborate. ( B ) 
Kleborate predictions of strains with multidrug resistance (MDR) genes and genes conferring hypervirulence are organized by ST-type. ∗ST528 strain 
KLEB3 typed as ST716 by MLST CGE typer. 
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ple ST, KL, and O-antigen types (Fig. 3 A and Supplementary
Fig. S2 ). Among the 74 strains tested, 36 (49%) were suscepti-
ble to the Roth phages, including 20/42 (48%) ST-types, 19/32
(59%) KL-types, and 7/11 (64%) O-antigen types. Among the
representative phages shown in Fig. 3 A, Roth16 from the Jiao-
davirus genus was the most effective, infecting 18/74 strains
(24%), including 12 ST-types, 12 KL-types, and 6 O-types
(Fig. 3 A and Supplementary Fig. S2 ). Slopekvirus Roth88
was the second most effective phage, infecting 16/74 (22%)
strains (Fig. 3 A), including 11 ST-types, 11 KL-types, and 7
O-types ( Supplementary Fig. S2 ). Slopekvirus exhibited no-
table success against KL2 strains, infecting up to half of the
strains tested (5/10). Interestingly, ST258 strains are resistant
to Slopekvirus , but efficiently targeted by all Jiaodavirus , Sug- 
arlandvirus , and Webervirus . 

Roth phages were able to infect strains associated with 

seven of the ten known O-antigen types in the KlebPha- 
Col collection, except for O2ac, O12, O13, and OL13 

( Supplementary Fig. S2 ). Slopekvirus were most successful 
against strains with O-antigen O1ab, while Jiaodaviruses ex- 
celled at targeting O2afg. 

Whereas K. pneumoniae is the most pathogenic species 
among Klebsiella spp ., other species are emerging with se- 
rious pathogenic concerns [ 136 , 137 ]. KlebPhaCol phages 
demonstrated lytic activity beyond K. pneumoniae , includ- 
ing K. oxytoca (164413U/2, KLEB11), K. quasipneumoniae 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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Figure 3. Klebsiella Phage Collection host range in LB broth. ( A ) The host range of representative phages (17/52 KlebPhaCol phages) against 74 strains in 
LB broth is shown as efficiency of plating (EOP) relative to the isolation strain (red boxes). An asterisk indicates undetermined lysis. ( B ) Quantification of 
each strain susceptibility to the complete collection of 52 KlebPhaCol phages. 
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NCTC_13 368), and K. variicola (921530F) (Fig. 3 ). To-
ether, these findings indicate that the KlebPhaCol collection
ould be expanded to study interactions across a broader
ange of Klebsiella species . 

apsule-independent phages dominate the 

lebPhaCol collection 

or most reported Klebsiella phages, the capsule is the pri-
ary surface receptor to which they attach [ 32 , 34 , 40 ,
6 ], although other surface receptors like O-antigen and
ipopolysaccharide (LPS) have also been shown to serve as
rimary receptors for some Klebsiella phages [ 33 , 34 , 138 ].
herefore, phage host range in Klebsiella is largely dictated
y the presence or absence of the capsular polysaccharide
 33 , 34 ]. We examined the capsule composition of the 17
trains used for phage isolation, using a combination of ge-
omic and experimental approaches. Specifically, we anal-
sed the capsule locus architecture ( Supplementary Fig. S3 ),
erformed capsule typing with Kaptive [ 93 ] ( Supplementary
ig. S3 and Supplementary Table S1 ), and assessed capsule-
ssociated density phenotypes using Percoll gradient cen-
rifugation [ 104 ] (Fig. 4 A). Based on these analyses, five of
he isolation strains are likely capsule-null (CFI_134_NDMI,
CTC_7427, CFI_001_VIM1, NCTC_13 438, and 51851),
ith an additional strain (MDRT1) showing a low-capsule
henotype (Fig. 4 A). The remaining strains either had in-
act capsule loci, lacked evidence of disrupted mutations or
howed high buoyancy in the Percoll assay consistent with
apsule production. 
The strains with disrupted capsule production were used
for the isolation of 23 of the 53 KlebPhaCol phages
( Supplementary Table S2 ). Interestingly, these phages are not
capable of infecting a significantly broader range of cap-
sular types compared to phages isolated from capsulated
strains (Fig. 4 B). This observation suggests that using capsule-
deficient strains did not inherently select for phages with
broader capsular tropism, and therefore the broader host
range of the KlebPhaCol phages is not simply due to the use
of capsule-deficient hosts for phage isolation. 

Since most phages display a broad host range, we hypothe-
sised that they do not rely on the capsule as their primary re-
ceptor. Exceptions are phages Roth32 ( Gajwadongvirus ), and
RothG, RothI, and RothJ ( Drulisvirus ), which exhibited nar-
row host ranges (1–2 KL-types) and were isolated on strains
with intact capsule loci (80528, M6, and RSUH15; Figs 3
and 4 A). Together with evidence that these phages encode cap-
sule depolymerases (Supplementary Text), this suggests they
likely target the capsule as their primary receptor. 

For the remaining phage families, we further analysed BIMs
that emerged after phage exposure on the capsule-deficient
strain 51851. Culturing and sequencing these BIMs, fol-
lowed by re-testing phage infectivity, revealed that KlebPha-
Col phages from the Sugarlanvirus , Webervirus , Slopekvirus ,
and Jiaodavirus families use either the LPS O-antigen, the
outer membrane protein FhuA, or both as receptors (Fig. 4 C
and D), confirming they are capsule-independent. Interest-
ingly, these phages can still infect capsulated strains, suggest-
ing that the capsule does not substantially interfere with their
access to surface receptors. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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KlebPhaCol phages encompass 14 different RBP 

structural clusters 

To further investigate receptor–phage interactions, we anal-
ysed the 207 predicted RBPs of the phages ( Supplementary
Table S3 ). Structural modelling using AlphaFold2 [ 139 ] fol-
lowed by clustering with Foldseek [ 77 ] revealed that the pre-
dicted RBPs are highly diverse, forming 14 distinct clusters
ranging from singletons to groups with up to 23 members (Fig.
5 A). The myo- and siphophages each had six different clusters
of RBPs, whereas podophages represented two of the clus-
ters. The predicted structures included long (Roth23 gp275,
Roth01 gp268, Roth08 gp50, Roth10 gp54, Roth04 gp177,
and Roth23 gp11) and short tail fibres (RothD gp33), tail
spikes (RothI gp8), central tail fibres (Roth44 gp50, Roth47
gp52, and Roth37 gp176), and other unclassified RBP struc-
tures (Roth37 gp195 and RothG gp62) (Fig. 5 A). Interestingly,
three clusters (2, 7, and 8) included members with domains at 
the tip of tail fibres that are structurally similar to intramolec- 
ular chaperones [ 140 ] that undergo auto-proteolytic cleavage 
after aiding in protein folding. Cluster 6 consists of a single 
tail fibre protein (RothD gp33) that has a rare polyglycine 
rich domain consisting of a conserved sandwich fold with 

hypervariable loops known to target both protein and LPS 
targets [ 141 ]. The proteins in cluster 12 showed high struc- 
tural similarity to the central tail fibre protein pb5 of phage 
T5, which is known to bind to FhuA [ 142 ]. Therefore, we 
sought to predict the interaction complex of Roth37 gp195 

with FhuA (PDB: A0A483VTA4; Fig. 5 B), which had little de- 
viation from the pb5–FhuA complex (RMSD = 0.8 ̊A ; PDB: 
8B14). As Roth37 was isolated against non-capsulated strain 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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CTC_7427, we also predicted its RBP (gp195) interaction
o both NCTC_7427-encoded FhuAs with similar interaction
cores (Fig. 5 C and D). 

As our BIM data showed that several weberviruses (ex-
ept Roth44) were sensitive to FhuA-associated mutations
 Supplementary Fig. S3 ), we also searched for Webervirus pro-
ein(s) interacting with FhuA, in addition to those predicted
y RBPdetect [ 73 ]. Comparisons of different Webervirus rep-
esentatives revealed two proteins with interacting potential,
p53 and gp54 in Roth93, which are not present in the
nsensitive phage, Roth44. Structural prediction with FhuA
rom Roth93’s isolation strain showed that only gp54 was
ble to form a reliably predicted complex with this protein
(Fig. 5 E) (FhuA-Roth93_gp53 pTM = 0.83, iPTM = 0.45;
FhuA-Roth93_gp54 pTM = 0.84, iPTM = 0.75). 

Phage infectivity is influenced by bacterial growth 

media 

The availability of surface receptors on the bacterial surface is
strongly influenced by media composition [ 143 ], and as a re-
sult can affect phage infectivity. To assess possible influences
of media in phage host range, we performed additional host
range assays in TSB, a medium that is commonly used in Kleb-
siella research and with different nutritional composition to
LB [ 33 , 144 ]. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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The impact of media composition on phage infectivity was
evident in the differential success rates observed between TSB
and LB (Fig. 6 A, Supplementary Fig. S4 , Supplementary Table
S4 , and Supplementary Text). In TSB, 638 total phage in-
fections were recorded, compared to 486 in LB, indicating
higher infectivity overall in TSB. The media-specific differ-
ences were particularly pronounced for certain phages. For
instance, Slopekvirus phages Roth88, Roth26, and Roth27
infected up to 25 strains in TSB; but in LB, Roth88 and
Roth26 infected only 16 strains while Roth27 infected only
12. Moreover, some strains were only infected in one of the
two media. For example, CFI_127_NDM1, 2619, and KLEB7
were only infected in LB by 1–4 phages, while strains K5962,
ATCC_11 296, 46 704, KLEB2, 163895Q, 922221W, KLEB4,
163862E, and L1392 were exclusively infected in TSB (Figs 3 B
and 6 A, and Supplementary Fig. S4 ). 

Interestingly, phage infectivity varied by genus in response
to media composition (Fig. 6 B). Jiaodavirus and Slopekvirus
showed higher success rates in TSB, with ∼1.2 × and 1.6 ×
more infections recorded in this medium, respectively. For ex- 
ample, Slopekvirus Roth26 and Roth27 can infect up to 19 

different KL-types in TSB, whereas in LB they infect 9 and 10 

different KL-types, respectively (Fig. 6 B and Supplementary 
Fig. S2 ). Furthermore, analysis revealed that capsule produc- 
tion in the three strains (K6500, MDRT11, and KLEB12) with 

the greatest medium-dependent differences in phage suscepti- 
bility was similar (Fig. 6 C), suggesting that changes in phage 
host range between media are not attributable to capsule vari- 
ation alone, but may also involve differences in the expression 

of other surface receptors and/or anti-phage defence systems. 

Abundance of defence systems does not correlate 

with phage susceptibility 

Anti-phage defence systems pose a barrier to phages once 
inside the cell [ 145–147 ]. We observed that some of the 
least susceptible strains like L1522 and L0738 harboured 

a disproportionately high number of defence systems com- 
pared to the rest of the strains (22 and 31, respectively,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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upplementary Fig. S1A ). To investigate whether phage sus-
eptibility was associated with the number of defence systems
n each strain, we calculated and visualised Spearman rank
orrelations between the number of defence systems and var-
ous infection outcomes, including productive infections, no
nfections, and undetermined infections (i.e. “lysis from with-
ut”) ( Supplementary Fig. S1B ). This analysis revealed that
n the panel of phage and clinical isolates tested, there was no
ignificant correlation between the number of encoded defence
ystems and phage susceptibility, regardless of the media type.
he recently reported PhageHostLearn model for K. pneumo-
iae phages suggests that RBP variability accounts for most
f the host spectrum diversity [ 148 ], hinting at a lesser role of
hage defence systems in shaping host range. However, con-
icting findings have been reported for non-capsulated species
 149 ], and further investigation is needed. Specifically, future
nalysis of phage adsorption to strains without productive in-
ection may provide new insights and uncover correlations not
vident with the current dataset. 

Additionally, we predicted the putative anti-defence pro-
eins harboured by the Roth phages to explore whether these
ight influence phage infectivity. We identified three putative

nti-defence genes in the Jiaodavirus and Slopekvirus phages
 Supplementary Table S2 ). In Jiaodavirus , these included two
nti-CBASS and one anti-TA, whereas the Slopekvirus en-
oded two anti-CBASS and one anti-RM proteins. We also
dentified an anti-RM gene in a subset of Webervirus phages ,
pecifically those branching from the second clade within the
ebervirus group (Fig. 1 A). 

hage activity against gut-associated K. 
neumoniae under aerobic and anaerobic 

onditions 

ertain K. pneumoniae sequence types are commonly asso-
iated with specific host or disease contexts. For example,
T323 has been linked to enrichment in the gut microbiota
f patients with IBD and shown to exacerbate inflammation
n a mouse model [ 21 ]. Although the ST323 strains used in
ur study were not isolated from IBD patients, we aimed to
ssess whether KlebPhaCol includes phages capable to target-
ng this gut-associated lineage. Four phages—RothD, RothG,
othJ, and RothI—were found to infect two ST323 strains

RSUH15 and 80528, both KL21) as well as three non-ST323
trains (ST91, ST635, and ST1875) (Fig. 7 A). 

Given the relevance of oxygen availability in the gut en-
ironment, we evaluated the ability of these phages to in-
ibit bacterial growth under aerobic and anaerobic condi-
ions. Liquid infection assays were performed in both con-
itions, at two MOIs, and phage efficacy was quantified by
omparing the area under the growth curve (AUC) relative to
he no-phage control (Fig. 7 B, and Supplementary Fig. S5 and
upplementary Table S5 ). As expected, bacterial growth was
imited under anaerobic conditions. Nonetheless, several Roth
hages remained active: RothG, RothJ, and RothI retained
ctivity against RSUH15, albeit at reduced levels, while all
our phages inhibited strain 80528 at high MOI, with RothG
howing activity even at lower MOI (Fig. 7 B and C). Among
he non-ST323 strains (L0240, 921530F, and ATCC_11 296),
othD showed the highest efficacy in anaerobic conditions,
articularly against L0240 and 921530F, although none of
he phages were active against strain ATCC_11 296 in anaer-
bic conditions (Fig. 7 D–F). Overall, these findings suggest
that some KlebPhaCol phages retain functional activity in gut-
relevant, low-oxygen conditions, an important consideration
for future therapeutic applications. 

Felixviridae are found in human gut metagenomes 

Proposed new taxonomy for phage RothD 

While most Roth phages could be classified into existing vi-
ral taxa, RothD could not be assigned to any existing viral
family using standard classification tools like PhageGCN and
vContact2. Therefore, we propose the establishment of a new
family, Felixviridae (40–60 kb), and genus, Nakavirus , to ac-
commodate these phages (see Supplementary Text). 

Although RothD shares little overall similarity with its rel-
atives, it encompasses a highly conserved region from gp1
to gp24 (1–20, 241 bp). Genomic synteny analysis of the
proposed Felixviridae family revealed that the conserved re-
gion spanning the first 20,241 bp is shared across all mem-
bers. Additional annotation by Phold, and comparison of the
predicted structures with the PDB database, demonstrated
that this core region is mostly composed of structural pro-
teins ( Supplementary Fig. S6 ). Most core proteins were asso-
ciated with the phage capsule, neck, tube, or baseplate. The
structural similarities to another myophage assembly [ 150 ] al-
lowed for confident functional assignments of these proteins
(i.e. major head protein, head-to-tail connector, neck collar
protein, tail-sheath initiator, tail tube protein, and baseplate
components). Interestingly, the two gene products gp9 and
gp15 were annotated as hypothetical proteins by Phold and no
similarities to functionally annotated proteins could be found
with Foldseek, but homologs (80% and 67.3% sequence iden-
tity) were present in bacterial species associated with the hu-
man gut (i.e. Citrobacter spp . and Serratia marcescens , respec-
tively). Outside this core region, gene conservation was mini-
mal, further emphasising the uniqueness of these phages. 

Nakavirus phages of the Felixviridae family are associated
with Enterobacteriaceae 
Most Felixviridae phages have a predicted temperate lifestyle,
and thus we wanted to assess the prevalence of the cor-
responding prophages in bacterial genomes. We analysed
64,364 complete bacterial genomes from the Bacterial and
Viral Bioinformatics Resource Center (BV-BRC) database for
homologues of RothD and found that all matches ( n = 7605,
Supplementary Table S6 ) were exclusive to the Enterobacteri-
aceae family. 

Klebsiella species were the most common hosts (566/708;
80%), spanning eight species and 111 ST-types, with ST231
appearing most frequently (127 hits). The second most rep-
resented species was Salmonella enterica (66 hits, 9%). These
phage–host associations were found across 67 countries, indi-
cating a widespread global presence of these prophages. Host
metadata revealed that most isolates (521) are derived from
humans, although samples from other hosts including chick-
ens (10), sea lions (10), pigs (7), birds (4), sheep (3), cattle (2),
hedgehogs (2), and even termites (4), suggest a broader super-
host range ( Supplementary Table S6 ). However, the location
of the isolate within these other organisms is unknown. 

We also examined predicted prophages within these
genomes to determine whether our identified hits were lo-
cated within the respective genomic regions. Of these hits, only
two were entirely within prophage regions. The majority were
either outside predicted prophages ( n = 431/708, 61%) or

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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Figure 7. Infectivity of ST323-targeting Roth phages in aerobic and anaerobic conditions. ( A ) Heatmap of the infectivity patterns of the ST323-targeting 
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partially within one ( n = 266/708, 36%). To further inves-
tigate the gene neighbourhood of hits outside prophage re-
gions, we extracted the ten upstream and downstream genes
from each hit. In 259/431 (60%) of the cases, a lysozyme gene
was found within 10 CDS upstream of the hit region. Addi-
tionally, in seven of these 259 cases, an integrase gene was also
identified within 10 CDS downstream of the hit region. These
observations suggests that some hits may indeed reside within
prophage regions that are not detected by the prophage iden-
tifier tool, possibly, because many of the felixvirus prophages
could be deteriorating, highlighting the importance of exam-
ining gene neighbourhoods for more comprehensive analysis.

Felixviridae phages are found in the gut 
The taxonomic characterisation of the Felixviridae RothD,
suggests that Felixviridae phages are present in the mam-
malian gut. Several groups of gut-related phages have been
established, including the orders Cr assvir ales [ 151 ], as well
as the familis Flandersviridae and Quimbyviridae [ 152 ], and
the still unclassified Gubaphages [ 153 ] . The order Crassvi-
rales includes the most abundant phages identified in the 
mammalian gut to date [ 151 , 154 ]. Crassviruses have been 

shown to persist overtime, potentially via several specific 
adaptations to the gut environment [ 155 , 156 ]. To deter- 
mine the abundance of Felixviridae phages in the human gut,
we examined their prevalence in the Gut Phage Database 
(GPD). We found 355 high-quality unique hits across 38 iso- 
lates and 317 metagenome-assembled genomes, correspond- 
ing to 0.86% of the high-quality phage genomes in the 
GPD ( Supplementary Table S7 ). These phages appear glob- 
ally widespread, with metagenomic samples collected from 15 

different countries ( Supplementary Table S7 ). Consistent with 

the analysis of the BV-BRC database above, analysis of GPD 

metadata confirmed that these phages are restricted to hosts 
of the Enterobacteriaceae family, with Klebsiella spp. being 
the most common (172/186 hits with available host-predicted 

data). 
Felixviridae -related sequences were predominant in in- 

fant and adult cohorts, representing 82% of hits where 
data was available ( Supplementary Table S8 ) and spanned 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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oth healthy and disease-associated microbiomes, highlight-
ng their prevalence across ages and health statuses. In sev-
ral (554/1345) metagenomes, multiple Felixviridae -related
hages were present, suggesting that individuals could har-
our diverse populations of these phages. 
When examining disease associations, Felixviridae ap-

eared in cohorts with chronic conditions like obesity, IBD,
nd rheumatoid arthritis ( Supplementary Table S9 ) [ 105 ].
owever, no significant associations were found, suggesting

hese phages persist in various gut environments without clear
inks to disease states. 

elixviridae reside in the gut in both free phage and prophage
orm 

o assess the abundance of Felixviridae phages in the human
ut, we analysed 117 healthy stool samples from the Human
icrobiome Project [ 157 ]. This analysis detected Felixviridae

equences in 89% of the samples (average ± SD abundance:
.00014% ± 0.005%). These phages constituted a minor but
onsistent fraction of the gut microbiome (Fig. 8 A). After
emoving bacterial reads, Felixviridae phages remained de-
ectable in only 14% of samples, suggesting that they mainly
eside as prophages in the gut. 

To extend this analysis, we examined 826 additional hu-
an gut metagenomes from previous studies [ 112–115 ]. Af-

er quality control, host read removal and read mapping
gainst a curated and dereplicated genome dataset, only 7
amples ( ∼1%) exhibited ≥ 50% phage genome coverage
 Supplementary Table S10 ), representing an average ± SD
bundance per metagenome of 0.015% ± 0.006%. All 54 Fe-
ixviridae phages were represented in this dataset except for
antoea phage PdC23 (NC_071008.1) and the most abun-
ant phage genome was GPD phage uvig_371 030 at 20.9%
verage relative abundance. Although lower identity or par-
ial matches were found in additional samples, genome-wide
NI analysis showed these did not meet thresholds for true
resence ( ≥90% ANI, ≥50% coverage). Nevertheless, retain-
ng these partial matches maintained a similar average abun-
ance per metagenome to that of the ‘true’ matches (aver-
ge ± SD: 0.016% ± 0.231%). Additionally, all of the de-
ected phages encode lysogeny-associated genes (i.e. integrases
r repressors), indicative of a temperate lifestyle and no high-
onfidence lytic Felixviridae- like signatures were observed.
hese phages were only detected in the metagenomic portion
f paired metagenome-metavirome datasets, further support-
ng their temperate lifestyle ( Supplementary Table S10 ). These
ndings suggest that Felixviridae are present in the human
ut microbiome at low prevalence and exist primarily as inte-
rated prophages. 

Given the strong evidence of lysogeny for these phages,
e sought to investigate if RothD could actively lysogenise

he host. After five consecutive days of exposing the isolat-
ng host, 80528, to RothD at an MOI of 1, we analysed bac-
erial colonies recovered from each day for the presence of
he terL gene via PCR. We were able to detect terL in all
olonies from day 1 (Fig. 8 B), suggesting RothD was able
o integrate into 80528. To further confirm integration, we
potted RothD against these colonies, showing no infection
y RothD, suggesting superinfection exclusion due to the
ntegrated prophage (Fig. 8 C). Additionally, we sent three
olonies of each sample from day 1 for sequencing. Map-
ing of the sequencing reads to the host strain 80528, re-
ealed that RothD always integrates at the same site within
a 33 bp region in 80528. This site was located within the
genomic positions 4,000,393–4,000,415 bp inside the cod-
ing open reading frame of a hypothetical protein (Fig. 8 D;
full reads coverage in Supplementary Fig. 7A ). Additionally,
mapping of reads to RothD revealed that the corresponding
attachment site in the phage genome is located upstream of
the integrase gene (gp34) at positions 26,519–26,542 bp (Fig.
8 E; full reads coverage in Supplementary Fig. 7B ). This in-
tegration structure is conserved in the two most closely re-
lated prophages (IMGVR_UViG_2571042619_000002 and
IMGVR_UViG_2588254063_000001; Supplementary Text
Fig. 7 E), whereby the same integrase gene is inserted as the first
gene of their lysogen versions in a Klebsiella host, and the last
gene is a homolog of RothD_gp33 ( Supplementary Fig. 7C ).
Additionally, read coverage analysis demonstrated that there
is an integration rate of ∼40%, indicating that in these experi-
ments ∼60% of virions remain as ‘free’, non-integrated phage
(see methods). 

Felixviridae are detectable in the environment 
To assess the feasibility of PCR detection of Felixviridae in
environmental samples, we designed primers against the con-
served predicted virion structural protein gp7 of the Felixviri-
dae family . We screened for these phages in environmental
samples collected from a wastewater facility in Portswood
and Petersfield, and from the sea of the Isle of Wight (all UK-
based). Felixviridae were present in the two sampled wastew-
ater facilities but not in the sea water sample (Fig. 8 F), which
we confirmed by long-read sequencing of the PCR prod-
ucts (Fig. 8 G). These preliminary results are consistent with
a link between Felixviridae and human-associated environ-
ments, and demonstrate that PCR-based detection of these
phages in environmental samples is feasible. 

Together, these data suggest Felixviridae , particularly
Nakavirus , are widely distributed across diverse human and
animal hosts, persisting throughout life stages and health con-
ditions. This broad host range, coupled with environmental
presence, positions Felixviridae as integral, even if relatively
minor, yet understudied components of the gut virome, merit-
ing further exploration for their ecological and potential clin-
ical impacts. 

Discussion 

Here we introduce KlebPhaCol, an open-source collection
containing 52 phages targeting Klebsiella spp ., covering seven
genera, and 74 Klebsiella strains spanning 41 known ST-types
and 32 K-types. By offering a centralised, no-cost, and well-
documented collection, KlebPhaCol democratises access to es-
sential resources for researchers worldwide. 

KlebPhaCol includes strains from six different species of
the Klebsiella genus including members of the K. pneumoniae
species complex (KpSC), K. variicola and K. quasipneumo-
niae, that are emerging as public health concerns [ 136 , 137 ].
Because K. pneumoniae is the most pathogenic and preva-
lent species of this genus [ 158 ], the collection includes 65 dif-
ferent isolates of this species. Although most isolates in the
collection originate from Europe, they represent some of the
most antimicrobial resistant clones circulating globally, in-
cluding ST258, ST11, ST14 and ST15 [ 12 , 19 , 159 ]. Asymp-
tomatic gut colonization of K. pneumoniae has been demon-
strated to increase the susceptibility to subsequent infections
in other tissues [ 160–162 ], and high abundance of K. pneu-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1122#supplementary-data
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oniae has been linked with IBD exacerbation [ 21 ]. A par-
icularly relevant ST type in this context is ST323, which is
lso present in the collection [ 21 , 163 ]. With this in mind,
lebPhaCol phages were isolated using enrichment cultures of
ntimicrobial-resistant relevant clones and gut-relevant clone
T323. The resulting host range revealed high specificity of
uch clinically-relevant clones, positioning the collection –
oth phages and bacterial strains – for studying these interac-
ions in classical tissue infections as well as in gut colonisation
ontexts that at present remain largely unexplored [ 164 ]. 

Although KlebPhaCol spans six of the 13 currently recog-
ised Klebsiella phage families, several known families remain
nderrepresented or absent. This likely reflects methodologi-
al biases during phage isolation, including the use of stan-
ard laboratory media (e.g. LB), selective targeting of clinical
T-types, and the reliance on sewage as the main environmen-
al source. Similar limitations have been noted in other phage
tudies [ 165 , 166 ]. To improve phage diversity in future iter-
tions of KlebPhaCol, we plan to broaden the range of host
trains and vary isolation conditions, as well as continue to
ncorporate phages from external contributors. This amend-
ent will help capture a more complete representation of the
lebsiella phageome and facilitate broader applications across

cological and clinical contexts. 
Genomic analyses of the phages in KlebPhaCol revealed

igh intergenomic similarities among several phages. It has
een shown that even small polymorphisms within phages
an result in differences worth investigating, including dif-
erences in host-range. For instance, despite phages T2, T4
nd T6 being highly similar, these phages have different DNA
ypermodifications and different extents of genomic DNA
odification [ 167 ], and can bind to different receptors [ 168 ].
oreover, characterisation of other Klebsiella phages shar-

ng high similarity ( > 97%) demonstrated small differences in
ehaviour that could be attributed to differences in their L-
haped tail fibres [ 169 ]. KlebPhaCol includes 17 representa-
ive phages, for most of which closely related phages are avail-
ble to investigate nuances. The importance of studying a rep-
esentative collection of phages is exemplified by the advances
hat followed the establishment of the T phages [ 170–173 ].
lthough the remarkable diversity of phages is increasingly
eing explored, focusing on a representative set of phage-
acteria interactions could, in a therapeutic context, offer a
ore tractable path toward a deeper understanding of phage
iology and practical application. 
To support such efforts, we expanded our analysis of

BPs and identified 14 distinct structural clusters among the
lebPhaCol phages. These clusters include both predicted
apsule depolymerases and alternative adhesin-like proteins,
hich could reflect differences in receptor usage. We also

ested spontaneous Klebsiella mutants across all 17 represen-
ative phages, revealing patterns of receptor dependence con-
istent with RBP diversity. Together, these findings underscore
he utility of the collection for dissecting structure-function
elationships in phage infection. 

Traditionally within the Klebsiella field, phage therapy has
ainly been considered as an alternative treatment for tissue

nfections. However, given the relevance of Klebsiella as a gut
olonising pathobiont and a driver of subsequent infections
nd disease, considering phage therapy applications for gut
icrobiome modulation is becoming more relevant [ 21 , 174 ].

n this study we show how phage efficiency can differ when
nvironmental conditions of testing are changed (e.g. media
type, oxygen supply). Our results suggest that tailoring phage
therapy to specific infection environments by taking into ac-
count nutrient availability and other site-relevant physiolog-
ical conditions, could improve phage efficacy . Additionally ,
consistent with previous studies, we show that non-capsule
targeting phages can have a broader host range [ 33 , 34 , 175 ].
This observation suggests that non-capsule targeting phages
could offer versatile treatment options, especially when cap-
sule types vary widely among infections. Indeed, Klebsiella
phages encoding multiple depolymerases may also achieve a
similar outcome [ 32 ], by being able to target multiple cap-
sule types, albeit limited by the presence of these receptors in
the bacterial strain. Multiple studies have shown that capsule
expression and production, or lack thereof, result in fitness
trade-offs for the bacterium [ 143 , 164 , 176 ]. Acapsular strains
are substantially attenuated, due to the increased susceptibil-
ity to immune mechanisms [ 29 , 177 ]. However, lack of capsule
can facilitate biofilm formation [ 178 , 179 ] and cell adhesion
[ 180 ]. Different factors have been shown to drive capsule loss
or maintenance including nutrient availability [ 143 ], oxygen
availability [ 181 ] and insertion sequence repertoires [ 164 ]. In-
deed, capsule loss in Klebsiella strains has been demonstrated
upon gut colonisation [ 164 ] and in urinary tract infections
[ 182 ]. Thus, both capsule and non-capsule targeting phages
are relevant for therapeutic applications, and the preference
for the former or the latter might depend on the targeted in-
fection site, emphasising the need to better understand Kleb-
siella behaviour in different infection sites to improve phage
selection for therapeutic purposes. 

In this work, we identified a novel gut-associated phage
family, Felixviridae , represented by KlebPhaCol phage RothD
of the Nakavirus genus. Felixviridae -like phages are largely
temperate phages with notable association to Enterobacteri-
aceae members, which include key human pathogens. With
most of these being uncultured phages, we were only able
to confirm the ability to lysogenise for RothD. Felixviridae -
like phages are geographically widespread and present across
human age groups, from pre-term infants to adults, and the
presence of these phages in healthy gut microbiomes points
to potential roles in the human gut virome. Felixviridae pres-
ence in the gut could simply reflect their host ecology par-
ticularly given their lysogenic nature. However, detection of
homologs of RothD core proteins gp9 and gp15 (shared
within Felixviridae phages) only in gut-associated bacterial
genomes, suggests potential evolutionary gene acquisitions
of this phage family to survive in this niche, requiring fur-
ther investigation. Other Klebsiella -targeting phage groups,
such as weberviruses, have been recently identified in the gut
[ 183 ]. These findings underscore the importance of exploring
the roles of various Klebsiella phage groups within the gut
microbiome, now facilitated by the inclusion of Nakavirus
RothD and several Webervirus in KlebPhaCol. PCR detec-
tion of gut-associated phages has been shown to be a cost-
effective method with extensive applications, including eval-
uation of the prevalence of the most abundant human gut
phage group, crAssphage, as proxy for human faecal contam-
ination [ 184–186 ]. By establishing PCR detection protocols
for Felixviridae , our findings lay the groundwork for future
research on these phages, both in clinical and environmental
contexts. 

Altogether, KlebPhaCol provides an openly accessible re-
source for studying Klebsiella phage interactions. It offers a
uniquely broad scope, spanning critical pathogenic strains,
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non-capsule-targeting phages with versatile applications, and
a newly described gut phage family with potential implica-
tions for human health. In addition to these broader features,
the collection offers granular experimental and bioinformatic
insights, including defined RBP structural clusters, receptor
usage patterns, and phenotypic differences among closely re-
lated phages, that can drive new mechanistic studies. Recog-
nising the lack of standardised open biosharing regulations
and pipelines, we actively participate in discussions to address
this crucial need for research progress [ 187 ]. We expect that
KlebPhaCol will not only facilitate new discoveries in microbi-
ology and therapeutic research but also inspire contributions
from the broader scientific community to further expand and
improve this evolving resource. 
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