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Abstract. In Salient Object Detection(SOD), most methods rely on
manually annotated labels, which are costly. As a result, unsupervised
methods have gained significant attention. Existing methods often gen-
erate noisy pseudo-labels using traditional techniques, which can af-
fect model performance. To address this, we propose an unsupervised
method for RGB image salient object detection that generates high-
quality pseudo-labels without manual annotation and uses them to train
the detection model.The method generates initial pseudo-labels and im-
proves their quality by introducing contrastive learning pre-trained weights
and a pseudo-label self-updating strategy. Additionally, we design a de-
tection network with a Multi-Feature Aggregation (MFA) module and a
Context Feature Interaction (CFI) module to enhance the model’s ability
to detect salient objects in complex scenarios. The model we proposed,
trained with our pseudo-labels, shows significant improvement on USOD
and achieves excellent scores on public benchmarks.

Keywords: Unsupervised · Salient Object Detection · Contrastive Learn-
ing · Pseudo-Labels.

1 Introduction

The development of deep learning has significantly advanced salient object detec-
tion, with fully-supervised methods achieving notable breakthroughs. However,
these methods are highly dependent on large-scale, accurately labeled data. To
reduce the annotation burden, weakly-supervised methods have emerged, such
as class labels [1] text descriptions [2],bounding boxes [3], scribbles [4] and point
annotations [5]. Despite progress, human annotation is still required. Unsuper-
vised methods aim to eliminate the need for human annotations altogether, of-
fering better applicability in real-world scenarios where labeled data is scarce. A
key challenge for unsupervised methods is generating high-quality pseudo-labels
through image modeling, which is essential for training effective models.
⋆ *Corresponding author
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Fig. 1. (a) Visualisation of class-agnostic activation maps for different pre-trained
weights. (b) Incorrect pseudo-labeling results.

Before the rise of deep learning, unsupervised methods mainly relied on hand-
crafted features like color contrast to identify salient regions, but these methods
struggled in complex scenes. Today, most unsupervised methods generate initial
pseudo-labels using traditional techniques and refine them with various strate-
gies. However, traditional methods often produce low-quality pseudo-labels, lim-
iting detection performance. Researchers are exploring advanced algorithms to
improve pseudo-label accuracy and overall detection. Few methods use deep
learning for pseudo-label generation, but Zhou et al. [6] showed that pre-trained
weights from convtrastive learning can provide supervision for salient object de-
tection models, yielding impressive results. One such method, CCAM [7], uses
unsupervised contrastive learning to identify foreground regions by contrasting
foreground and background in different images. As shown in Figure 1, CCAM
trained with MOCOv2 [8] weights achieves good foreground localization but
incomplete coverage, while CCAM trained with DINO weights [9] provides full
coverage but with redundancy. These issues affect the quality of the final pseudo-
labels.

In generating category-agnostic activation maps and refining them with a
dense conditional random field (DCRF) to produce pseudo-labels, several chal-
lenges arise, as shown in Figure 1. While activation maps highlight target regions,
they often lack precise edges, and complex scenes present further refinement dif-
ficulties. Additionally, some activation regions may not be suitable for salient
object detection, leading to inaccurate pseudo-labels. To address these issues,
this paper proposes a two-stage model for salient object detection. The first
stage generates pseudo-labels in two steps: enhancing the original CCAM using
offline distillation for the initial pseudo-label network, and refining the labels
with a self-updating strategy. The second stage focuses on salient object detec-
tion, where the model is primarily supervised by the generated pseudo-labels.
Key components of this model include: 1) a multi-feature aggregation module
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to enhance high-level features, and 2) a context feature interaction module for
improved feature fusion, boosting detection performance.

Our main contributions can be summarized as follows:
(1) This work introduces an updated pseudo-label generation method, lever-

aging different pre-trained weights for complementary learning and a self-updating
strategy to improve label quality.

(2) A salient object detection network is designed to boost detection perfor-
mance, incorporating a multi-feature aggregation module and a context feature
interaction module.

(3) Experiments on four common RGB image saliency detection datasets
demonstrate that the proposed method performs comparably to current weakly-
supervised and unsupervised approaches.

2 Related work

2.1 Fully-Supervised Method Salient Object Detection

The majority of Salient Object Detection (SOD) methods are rely on extensive
pixel-level manual annotations as the foundation for training and optimization.
Qin et al. [10] proposed the BASNet method, which incorporates boundary-aware
mechanisms to enhance the accuracy of salient object detection by focusing on
the boundaries of objects. Liu et al. [11] proposed a feature aggregation module
structure based on the U-net structure, combining coarse-level and high-level
information. Pang et al. [24] proposed a multi-scale interactive network that
uses multi-scale features and interactive mechanisms to improve the accuracy of
salient object detection. Xu et al. [13] proposed PA-KRN, a progressive architec-
ture for salient object detection that first locates objects globally using a coarse
module, then segments them locally with a fine module, and uses an attention-
based sampler to highlight salient regions. Liang et al. [14] proposed ExPert,
a parameter-efficient fine-tuning method for salient object detection that uses
adapters and injectors in a frozen transformer encoder to incorporate external
prompt features, achieving superior performance with fewer parameters.

2.2 Weakly-Supervised Method Salient Object Detection

The prevailing state-of-the-art techniques for salient object detection are heav-
ily dependent on extensive datasets that require precise pixel-level manual an-
notations. The creation of such annotations is both time-consuming and labor-
intensive. Consequently, weakly-supervised approaches are emerging as a promi-
nent and increasingly favored research trajectory. Piao et al. [15] employed an
iterative calibration strategy to mitigate the pseudo-labeling error within the
network. Zhang et al. [16] conducted supervised training by annotating simple
pairs of images with foreground and background labels. Piao et al. [17] introduced
a multiple pseudo-label fusion framework that leverages richer information from
multiple labels to diminish the impact of the algorithmic process. Gao et al. [18]
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presented a point-supervised approach that initially acquires pseudo-labels via
an adaptive masking algorithm and subsequently generates the final prediction
saliency maps through a Transformer-based network.

2.3 Unsupervised Method Salient Object Detection

In the field of salient object detection, weakly-supervised methods have played
a significant role, but unsupervised methods have also garnered considerable
attention. Unsupervised methods aim to detect salient objects without any ex-
plicit annotations. Nguyen et al. [19] proposed the DeepUSPS method, which
uses self-supervision to leverage the input image itself as a natural supervisory
signal for robust unsupervised saliency prediction. Yan et al. [20] introduced
an uncertainty-aware pseudo-label learning approach for unsupervised domain
adaptation in salient object detection, enabling the model to adapt to the target
domain without labeled data in that domain. Wang et al. [21] proposed a method
for deep unsupervised saliency detection that mines multi-source uncertainty to
select reliable labels from multiple noisy labels, thereby improving the perfor-
mance of unsupervised saliency detection. Zhou et al. [6] introduced a method
called “Activation to Saliency”, which forms high-quality labels for unsupervised
salient object detection by leveraging activation information, leading to better
detection results. Zhou et al. [22] proposed a texture-guided saliency distilling
method by matching textures around the predicted boundaries for unsupervised
salient object detection.

3 Method

The unsupervised saliency object detection process discussed in this paper mainly
consists of two key stages: the first is the pseudo-label generation stage, where
pseudo-labels are generated based on RGB images; the second is the saliency
object detection stage, which differs from fully-supervised methods in that it
uses the pseudo-labels generated in the first stage for learning and supervision.
In this section, we will first describe the method for generating pseudo-labels,
and then introduce the two core modules that constitute the saliency object de-
tection network, namely the Multi-Feature Aggregation module (MFA) and the
Contextual Feature Interaction Module (CFI).

3.1 Pseudo-label generation model

This study proposes a novel method for generating pseudo-labels using class-
agnostic activation maps, which automatically identify and locate salient objects.
Instead of directly using the CCAM method, the network is enhanced with
different pre-trained weights. A CCAM model trained with DINO pre-trained
weights serves as an auxiliary supervision signal, providing additional guidance
to improve training and combine the strengths of both weight sets.
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Fig. 2. Pseudo-label generation method structure

As shown in the upper part of Figure 2, in the specific implementation,
Resnet-50 is used as the encoder of the backbone network. An RGB image is in-
put, and after being processed by the encoder of the backbone network, four sets
of feature maps F1, F2, F3, and F4 are obtained. This process can be represented
as:

F1, F2, F3, F4 = Encoder(Im) (1)

Here, Im represents the input RGB image, and Encoder represents the encoder.
Then, the feature maps F3 and F4 are concatenated along the channel dimension
and then processed through the CBS operation to generate the class-agnostic
activation map Mmoco, This process can be represented as:

Mmoco = CBS(Contact(F3, F4)) (2)

Here, Concat() denotes the concatenation operation along the channel dimen-
sion, and CBS represents a sequence of operations including a 3×3 convolution,
BatchNorm, and a Sigmoid activation function. Additionally, based on the afore-
mentioned process, the encoder is pre-trained using DINO pre-trained weights
to generate a class-agnostic activation map represented as Mdino.

L = LPOS + LNEG + αLSSIM + βLIoU (3)

Here, LPOS and LNEG are the original CCAM losses, LSSIM is the structural
similarity loss, and LIOU is the intersection over union loss. The values of α and
β are set to 0.2.

After generating the final class-agnostic activation maps using the aforemen-
tioned strategy, Dense Conditional Random Fields (DCRF) are further employed
to process these activation maps to generate the initial pseudo-labels YPL. This
process aims to refine the saliency maps from the original activation maps, pro-
viding more accurate labels for subsequent training. However, although DCRF
can improve the quality of the labels to some extent, the pseudo-labels still have
imperfections in detail, as shown in the first and second columns of the third
row in Figure 1. Due to the characteristics of the class-agnostic activation maps,
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some activated regions may not be entirely suitable for the task of salient object
detection, as shown in the third and fourth columns of the third row in Figure
1. These incomplete or incorrect refinements, if used as the basis for long-term
network training, may lead the model to learn these inaccurate pieces of informa-
tion, ultimately affecting the detection performance of the network. Despite the
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Fig. 3. The structure of the salient object detection network

potential inaccuracies in the pseudo-labels, network training remains an iterative
learning and optimization process. Even with imperfect labels, they still guide
the salient object detection network towards the correct targets, providing a
generally valid learning direction. This demonstrates that the network can learn
effective saliency information by capturing statistical patterns in large datasets,
even with imprecise labels. In the early stages of training, the network is highly
sensitive to the saliency information in the pseudo-labels, highlighting the im-
portance of effective pseudo-label updating strategies. A well-designed updating
strategy enhances the network’s ability to capture saliency features, improving
detection performance. Based on this, we propose a pseudo-label self-updating
algorithm, as shown in the lower part of Figure 2. Specifically, the generated
pseudo-labels YPL are used to train a simple U-shaped network, and the saliency
map Y

′

PL produced by the network is used to update the pseudo-labels. In the
early stages, the model can more accurately identify and correct errors in the
pseudo-labels, and iteratively updating them improves both their accuracy and
detail, ultimately enhancing the detection performance.

In this algorithm, the pseudo-labels are self-updated using different evalu-
ation criteria at different training stages to improve the model’s performance.
Specifically, in the 2nd to 5th rounds of training, the algorithm uses the inter-
section over union (IoU) to measure the similarity between the model’s current
predictions and the previous pseudo-labels.If the result is below the threshold,
the pseudo-labels are updated using the current model predictions. In the later
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stages of training, the pseudo-labels are updated using the Structure Similarity
Index Measure (SSIM) [34] as the update criterion.

Here, the threshold is initially set to 0.9 for each evaluation criterion, and
starting from the second epoch it is continuously updated during training, in-
creasing by 0.1 each epoch over a total of 10 epochs. By dynamically adjusting
the update strategy during training, the pseudo-labels are continuously refined,
thereby enhancing the model’s understanding of the data and the accuracy of
its predictions.

3.2 Unsupervised Salient Object Detection with Pseudo-labels

To better enhance the performance of salient object detection, this paper designs
a salient object detection model that uses Resnet-50 as the backbone network
for feature extraction. An input RGB image is processed through the backbone
network to obtain four features, namely F1, F2, F3, and F4, which are used as
inputs for the multi-feature aggregation module and the context feature inter-
action module. The overall architecture is shown in Figure 3.
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Fig. 4. Contextual Feature Interaction Module (CFI)

Multi-Feature Aggregation Module In deep learning tasks, the shallow
layers of a network extract low-level features, while higher convolutional layers
extract more advanced features. Among these, high-level semantic features are
crucial as they provide a deep and abstract understanding of the image content.
The abstract nature of these features enables them to effectively capture complex
concepts and entities within the image, ensuring robustness against variations.
By enhancing high-level semantic features, the model can more accurately under-
stand and represent complex structures and abstract concepts within the image.
Chen et al. [27] used dilated convolutions to expand the receptive field of convo-
lutional layers, significantly improving the model’s ability to recognize objects
of different sizes without increasing the number of parameters or computational
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burden. To this end, this paper designs a multi-feature aggregation module that
primarily enhances the high-level feature F4 from the encoder. By employing
convolutional kernels of various sizes and shapes, the module enhances the fea-
ture representation and adapts to the processing needs of objects of different
shapes. Specifically, as shown in the MFA (Multi-feature Aggregation) module
in Figure 3, the input is F4. First, a 1×1 convolution is applied to reduce the
dimensionality of the feature, resulting in F

′

4. F
′

4 is then processed through 3×3
convolution operations with different dilation rates to obtain the features F̃4

andF̄4. The process can be represented as:

F̃4 = Convd=1(F
′
4)

F̄4 = Convd=2(F
′
4)

(4)

Here, Conv denotes a convolution with a 3×3 kernel, and d represents the dila-
tion rate. By combining vertical and horizontal convolution kernels, the model
can more comprehensively capture spatial information in the image. Compared
to using traditional 3×3 and 7×7 convolution kernels, this method not only re-
duces the number of parameters and the risk of overfitting but also increases
the model’s processing speed and efficiency. For this reason, F

′

4 is also processed
through convolution kernels in different directions to obtain spatial information
in the image and then passed through a ReLU layer to obtain FHW . The process
can be represented as:

FHW = ReLU(ConvH(F ′
4)⊕ ConvW (F ′

4)) (5)

Here, ConvH denotes a vertical convolution with a 7×1 kernel, and ConvW
denotes a horizontal convolution with a 1×7 kernel. The symbol ⊗ represents
element-wise addition. To better integrate the features from dilated convolutions
and the spatially enhanced features, the feature map FHW is element-wise multi-
plied with the dilated features F̃4 and F̄4 of different dilation rates. Additionally,
skip connections are applied to each set of features to fuse the original features.
This approach not only enhances the spatial representation but also maintains
the integrity of the original features, thereby providing the network with a richer
and more effective feature representation.

F̃4 = F̃4©(FHW ⊗ F̃4)

F̄4 = F̄4©(FHW ⊗ F̄4)
(6)

Here, ⊕ denotes element-wise multiplication. Finally,F̃4 and F̄4 are concate-
nated and then passed through a CBR to obtain the feature FMFA. The process
can be represented as: Through the aforementioned operations, convolutional
kernels of different shapes and sizes are effectively integrated, thereby signifi-
cantly enhancing the feature representation capabilities. By expanding the re-
ceptive field, this method enables the network to learn richer spatial attributes,
thereby deeply exploring and utilizing the complexity and diversity of image
content. This enhances the high-level feature F4 and provides richer and more
effective input features for subsequent modules.
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Context Feature Interaction Module In salient object detection, the U-
shaped structure is commonly used for its strong performance. However, as
high-level features pass upwards in this structure, their information density de-
creases, impacting detection capability [11]. To address this, we propose a Con-
text Feature Interaction Module that enhances feature interaction across levels,
mitigating the dilution of high-level features during transmission.

As shown in Figure 4, the inputs to this module are FMFA, FOut
i , and Fi,

which originate from different stages of the model and each contain unique infor-
mation and data representations. First, FFMA is concatenated with FOut

i and
Fi respectively. Then, these concatenated features are processed through two
separate CBRs to obtain two new features FMI

i and FMO
i . These features are

then fed into the Adaptive Difference Enhancement Module (ADE).
The primary function of the ADE module is to calculate the differences be-

tween the two input features and process these difference features using the
SiLU function to highlight important information and suppress less important
information. Subsequently, the ADE module further processes these difference
features through adaptive average pooling and adaptive max pooling operations.
These two types of pooling operations extract features from different perspec-
tives, and combining the pooled features helps to integrate their respective ad-
vantages. By applying these combined features to the original input features
through element-wise multiplication, the expressive power of the input features
is further enhanced. Additionally, skip connections are introduced to prevent
information loss during the weighting process, resulting in F̂MI

i and F̂MO
i . The

process is as follows:

FMI′

i , FMO′

i = ADE(FMI
i , FMO

i )

F̂MI
i = FMI′

i + FMI
i

F̂MO
i = FMO′

i + FMO
i

FCC
i = Cat(F̂MI

i , F̂MO
i )

(7)

In the feature interaction operation, F̂MI
i and F̂MO

i are element-wise mul-
tiplied to generate FEM

i , which helps to capture and enhance the interactions
and dependencies between the two features.

FEM
i = F̂MI

i ⊗ F̂MO
i (8)

To enhance the representation capability of the feature F̂CC
i , a multi-scale convo-

lutional kernel strategy is employed to capture different scale information from
the input features. Specifically, convolutional kernels of different sizes are ap-
plied to F̂CC

i to extract features at different scales, and these features are then
element-wise added to obtain FCC

i . The process can be represented as:

F̂CC
i = CBR(FCC

i ) + CBRk=5(F
CC
i ) (9)

By integrating features from different scales, the expressiveness and adaptability
of the features are further enhanced. Finally, to combine multiple feature repre-
sentations, F̂CC

i andFEM
i are element-wise added and then processed through a
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CBR operation to obtain the final output feature FOut
i+1 of the Context Feature

Interaction Module. The process can be represented as:

FOut
i+1 = CBR(F̂CC

i + FEM
i ) (10)

This paper replaces the traditional U-shaped structure’s decoder with the
Context Feature Interaction Module, which more effectively integrates feature
information across different levels, particularly during upsampling and resolu-
tion restoration. This module combines deep semantic information with shallow
detail, enhancing the model’s ability to capture target details and improving
overall feature representation. As a result, the model better incorporates both
contextual and local information during decoding, boosting performance.

3.3 Loss Function

In this paper, a combined loss function is used for training, which includes the in-
tersection over union loss (LIoU ) and the local saliency coherence loss (Llsc) [25].
Additionally, this paper employs a deep supervision strategy, which introduces
supervision signals at different network layers to further improve the model’s
performance. The formula for the total loss in this paper is as follows:

L =

4∑
i=1

(
LIoU

(
Y out
i , Ypl

)
+ Llsc

)
(11)

4 Experiments and results

4.1 Datasets

In the experiments of this paper, DUTS-TR [30], is used as the training dataset.
The pixel-level pseudo-labels generated by the proposed method serve as su-
pervision signals for network training. For testing, the method is evaluated on
ECSSD [31], DUTS-TE [30], DUT-OMRON [32], and HKU-IS [33] datasets.

4.2 Experimental Details

Experiments were conducted on a NVIDIA GTX 3090 GPU using the PyTorch
framework. The first stage’s hyperparameters match those of CCAM, while the
second stage uses a DINO pre-trained ResNet-50 as the backbone. Training
images are resized to 256 × 256, with the Adam optimizer and a batch size of
32. The model trains for 15 epochs, starting with a learning rate of 1e-4, which
decays by 10% every 5 epochs.

4.3 Evaluation Metrics

This paper employs three commonly used evaluation metrics in salient object
detection, to assess the performance of different models. These include the F-
measure (Fβ) [28], Mean Absolute Error (MAE) [29], E-measure [26].
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Table 1. Quantitative comparisons on four datasets

Method Sup DUTS-TE HKU-IS ECSSD DUT-OMRON
MAE ↓ Em ↑ Fβ ↑ MAE ↓ Em ↑ Fβ ↑ MAE ↓ Em ↑ Fβ ↑ MAE ↓ Em ↑ Fβ ↑

RBD [10] T 0.162 0.664 0.428 0.176 0.716 0.54 0.206 0.705 0.577 0.165 0.654 0.416
BASNet [23] F 0.048 0.884 0.791 0.032 0.946 0.895 0.037 0.921 0.88 0.056 0.869 0.756
MINet [24] F 0.037 0.917 0.828 0.029 0.96 0.909 0.033 0.953 0.924 0.056 0.873 0.755
KRN [13] F 0.034 0.926 0.851 0.028 0.959 0.916 0.036 0.92 0.922 0.049 0.889 0.783
WSSA [4] W 0.062 0.869 0.742 0.047 0.932 0.86 0.059 0.917 0.870 0.068 0.845 0.703

MFNet [17] W 0.079 0.832 0.692 0.058 0.919 0.839 0.084 0.880 0.844 0.098 0.784 0.621
SCWS [25] W 0.049 0.907 0.823 0.038 0.943 0.896 0.049 0.931 0.900 0.060 0.870 0.758
USPS [19] U 0.068 0.85 0.747 0.045 0.923 0.88 0.067 0.893 0.873 0.062 0.848 0.738

UDASOD [20] U 0.05 0.897 0.795 0.035 0.947 0.883 0.043 0.94 0.895 0.059 0.849 0.733
UMNet [21] U 0.067 0.863 0.752 0.041 0.939 0.889 0.064 0.904 0.879 0.063 0.860 0.743

A2S [6] U 0.069 0.847 0.729 0.041 0.936 0.868 0.056 0.921 0.882 0.079 0.818 0.688
A2SV2 [22] U 0.047 0.903 0.81 0.037 0.948 0.903 0.044 0.940 0.917 0.061 0.864 0.746

OURS U 0.048 0.905 0.822 0.033 0.953 0.915 0.048 0.936 0.916 0.064 0.862 0.752

4.4 Comparison Experiments

This section compares the method proposed in this paper with fully-supervised,
weakly-supervised, and unsupervised methods for salient object detection, in-
cluding: RBD [10], BASNet [23], MINet [24], KRN [13], USPS [19], UDASOD
[20], A2S [6], A2SV2 [22], MFNet [17], SCWS [35], UMNet [21], USPS [19]
and WSSA [4]. The effectiveness of each method is evaluated by comparing the
saliency maps they generate, either using the original code or directly provided
by the authors. The comparisons aim to highlight the performance gap between
unsupervised methods, which do not require manual annotations, and other su-
pervised approaches. Additionally, the section emphasizes the performance of the
proposed method, which operates without any manual annotations. All methods
are evaluated using the same evaluation code to ensure fairness.

Quantitative Analysis The assessments are shown in Table 1. “Method” in-
dicates the model name. “Sup” denotes the supervision method of the model,
where “T” represents traditional methods, “F” indicates fully-supervised meth-
ods, “W” stands for weakly-supervised methods, and “U” signifies unsupervised
methods. Results in bold font represent the best performance among unsuper-
vised methods.

Qualitative Analysis As shown in Figure 5, compared with the current main-
stream weakly-supervised and unsupervised methods, the method proposed in
this paper demonstrates significant advantages on various types of images. Par-
ticularly in the first to second rows of images, the method in this paper performs
excellently in detecting the salient object “door”, almost accurately completing
the segmentation of the region while maintaining the complete edges and detailed
features of the “door”. Compared with previous methods, they have deficiencies
in detecting the details and edges of the “door”. Furthermore, the method in this
paper can accurately segment salient objects in complex scenes, as shown in the
third to fourth rows. Additionally, it can precisely segment salient objects when
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Fig. 5. Qualitative comparison of the methodology in this paper with other methods

they are small or when the input images have insufficient lighting. The above
experimental results demonstrate the excellent performance of the method in
this paper for salient object detection in complex tasks.

4.5 Ablation Studies

To evaluate the contributions of the various modules in the proposed method,
this paper first established a baseline model. This model only uses CCAM and
DCRF to generate pseudo-labels for supervision and excludes the Multi-feature
Aggregation Module (MFA) and the Context Feature Interaction Module (CFI),
serving as the baseline model. Subsequently, this paper incrementally added the
proposed modules to the baseline model and analyzed the contributions of each
module in detail. As shown in the results in Table 2, each module introduced
into the model plays a decisive role in achieving the final excellent performance.
It can be concluded that the method proposed in this paper makes significant
contributions to salient object detection.

Table 2. Ablation experiments on DUT-OMRON dataset

MOCO DINO PSU MFA CFI Fβ ↑ Em ↑
✓ × × × × 0.716 0.835
× ✓ × × × 0.663 0.793
✓ ✓ × × × 0.726 0.835
✓ × ✓ × × 0.727 0.838
✓ ✓ ✓ × × 0.731 0.840
✓ ✓ ✓ ✓ × 0.743 0.848
✓ ✓ ✓ ✓ ✓ 0.752 0.862
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Fig. 6. Comparison of pseudo-labels before and after the update.

As shown in Figure 6, the visual differences between the pseudo-labels before
and after updating are displayed. It is evident that the pseudo-labels updated
using the self-updating method are closer to the ground-truth labels and better
suited for the salient object detection task.

5 Conclusion

The comprehensive evaluation across multiple datasets demonstrates the robust-
ness and effectiveness of the proposed method. Our approach consistently de-
livers competitive performance compared to both unsupervised and mainstream
methods. Specifically, it matches the performance of fully-supervised and weakly-
supervised methods on some datasets, while maintaining comparable results
with mainstream methods on others. These findings highlight the potential of
our method to bridge the gap between unsupervised and supervised learning
in salient object detection. Future work will focus on optimizing the model ar-
chitecture further and exploring its application in more diverse and complex
scenarios.
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