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ABSTRACT

We model an epidemic spread process involving nodes that (a) experience non-trivial asymptomatic infectious periods and (b)
adapt by avoiding contacts with symptomatic infectious nodes. These modeling choices reflect ample evidence that infectious
individuals are often mistakenly perceived as safe contacts due to lack of symptoms and that individuals adapt to an epidemic
by avoiding contacts deemed to be of risk. We capture these choices in the SIaIsS (Susceptible-Asymptomatic Infected-
Symptomatic Infected-Susceptible) model, where we explicitly distinguish between asymptomatic and symptomatic infectious
individuals. We adopt an individual-based mean-field epidemic modeling approach and formulate the system of differential
equations via continuous-time Markov chain analysis. We first consider non-adaptive homogeneous and heterogeneous
mixing scenarios over arbitrary static contact networks. We derive the expression for the basic reproduction number, R0, and
establish that under otherwise similar conditions the individual infection probabilities at the metastable state of SIaIsS dominate
those in the conventional SIS model. Then, we focus on a contact-adaptive setting, where nodes avoid interactions with
known infectious neighbors or reconnect with neighbors who have recovered, to study how the time-varying contact network,
asymptomatic infections and their combinations affect the epidemic spread dynamics. Overall, asymptomatic infections restrict
nodes’ capacity to adapt (link breaking), resulting in higher link density and consequently higher epidemic prevalence. Besides,
in their presence, the retarding effect of the link-breaking mechanism on epidemic prevalence is considerably mitigated. We
numerically analyze how the effective link-breaking rate and the size of the asymptomatically infected population affect the
link density and, ultimately, the epidemic prevalence. Furthermore, the epidemic threshold appears to scale inversely with
the population of asymptomatic nodes, namely the epidemic starts to spread at lower infection rates when the number of
asymptomatic infections is higher.

Introduction
After the recent COVID-19 pandemic outbreak, research effort is globally invested anew in understanding disease spreading
phenomena. One particular aspect of these phenomena that has drawn much attention in literature relates to the role of silent
spreaders1; namely, individuals who are infectious yet “unobservable” because they do not exhibit disease symptoms. When
individuals exhibit infection symptoms, people in their social surroundings may intentionally avoid contacts with them. This
way the corresponding links in their social contact network are broken and the disease spread is decelerated. On the contrary,
infected individuals without symptoms are perceived as healthy and neither can they self-isolate voluntarily nor can others avoid
contacts with them. Without proper contact adaptation amongst the population, these individuals may inadvertently trigger
new infection chains. Silent spreaders are relevant not only for biological diseases but also for other spreading processes such
as botnets, malware and ransomware attacks, where infected nodes lay dormant prior to attack and infected victims are often
unaware of their infection2–4. The interplay between (1) the effect of silent spreaders and (2) the contact adaptation process that
occurs as a result of individual responses to the epidemic spread is complex: the spreading process changes the contact network
structure, which in turn changes the spreading process, realizing a non-trivial feedback loop and highlighting a continuous
interaction between the two. The literature has promptly identified the importance of these two factors, yet their impact has
been routinely studied in isolation.

With respect to silent spreaders, 5 extended the classic SIR epidemic model and proposed the SAIR model by introducing a
new "Asymptomatic" state to study the emergence of drug resistance. This model has been more recently further investigated in
6 in the context of population migration across geographic regions. On the other hand, 7 proposed to split the "Infected" state
in the SIR model into two sub-states (symptomatic and asymptomatic), introducing separate infection and recovery rates for
each one. Recent work has also highlighted the importance of correctly recognizing and reacting to the infection risk. It is
reported in 8 that (a) the spread of the epidemic is larger as the fraction of population not responding to the infection threat
increases; and (b) the structure of the social contact network affects the peak of hospitalization: the higher its modularity
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and heterogeneity, the lower the hospitalization peaks. In 9, the authors applied a modified SIR model accounting for a
large population of asymptomatic nodes to the early COVID-19 infection data in northern Italy and highlighted that models
disregarding asymptomatic population seriously underestimate important epidemic parameters such as its prevalence. This is
corroborated in 10 working with COVID-19 data from two US cities. However, while coarse-grained aggregate data such as the
number of infections and hospitalizations are more widely available, detailed node-level contact adaptation data is not easily
obtained. In the absence of suitable behavioral data, 11 numerically explore the effect of risk misperception and find that even
in the presence of behavioral change in human contacts, the asymptomatic population increases the epidemic prevalence.

Meanwhile, there is a body of work on epidemic spreading over time-varying network structures. At a first level, we
can distinguish between two types of temporal networks: (1) non-adaptive time-varying networks that change independently
of the epidemic process and (2) adaptive time-varying networks, whereby the existence of links depends on the state of
the nodes. Reference 12 studied a variation of the SIS model13 on a non-adaptive time-varying network, whose links are
randomly activated/deleted, and questioned the value of basic reproduction number, R0, as predictor of long-term outcomes in
dynamic networks. In 14, the authors compared time-varying contact networks, modeled after the fixed history of real human
contacts, against static networks that aggregate contacts over time and fully connected networks. They found that removing
temporal information leads to severe under- or over-estimation of outbreak characteristics and that long-term temporal structures
are the most influential factors controlling the time to extinction and outbreak size. In 15, the researchers combine Monte
Carlo simulations with mean-field theory to analyze the epidemic threshold. Their analysis incorporates network correlations
(reflecting the persistence of social contacts) but ignores dynamic correlations (where being near infected nodes increases
infection likelihood). They demonstrate that when the time scales of network dynamics and epidemic propagation are similar,
the epidemic threshold depends explicitly on the recovery rate, as opposed to only the ratio of spreading rate over recovery rate.
The latter is the case for annealed contact networks (network changes are much faster than the spread dynamics) and static
contact networks (network changes are much slower than the spread dynamics).

At a second level, the adaptive time-varying networks can be further categorized into two main groups depending on how
the network structure dynamics are modeled.

1. Under the link rewiring approach, a node may randomly switch a link to an existing neighbor with a link to another node
with certain probability conditioned upon the states of the neighbor node16–18. Based on this approach, 16 found that
the network structure exhibits assortative degree correlation and results in a highly connected susceptible cluster. The
spreading process exhibits bistability and oscillations that are not evidenced in static contact networks.

2. Under the link breaking/creating approach, a node either breaks or creates a link with its neighbor node with certain
probability depending on the state of the neighbor node19, 20. In contrast with the link rewiring approach, a node does not
necessarily connect to another node after breaking a link. For instance, 20 investigated different node response behaviors
to epidemic and found that the relation between the epidemic threshold and the effective link-breaking rate could be
linear or constant and in some cases, even unknown (i.e., the metastable state is not found). This is the approach we
adopt in our work.

The combined effect of asymptomatic individuals and the time-varying contact network on the epidemic spread has only
recently gained research attention. Using agent-based simulations, 21 studied the phase transitions of epidemic spread caused
by infectious individuals with pre-symptomatic, asymptomatic and symptomatic stages in small world networks that change
under three schemes: (1) global social distancing with tunable probability of adherence, (2) probabilistic self-initiated social
isolation and (3) reduction in viral shedding rate. The authors found that viral shedding rate is the most important driver in
determining infection spreading. In 22, the authors employed activity-driven networks, whereby nodes and links are randomly
activated, to study epidemic spreading with both asymptomatic and symptomatic populations. Finally, 23 investigated control
measures for epidemic with asymptomatic carriers using a two-layer temporal network model. Whereas all these studies
explicitly considered asymptomatic population and contact networks that change over time, the latter changes are routinely
driven by tunable random processes rather than the state of linked nodes.

Contributions
Our work contributes to the long research thread on epidemic processes in three ways. First, we develop a novel epidemic
model, SIaIsS, that jointly captures the role of asymptomatic infected individuals in the epidemic spread and the counter
effect of changes in the individual contact networks in response to this spread. In our model, which inherits from the simple
yet widely used SIS model, we explicitly distinguish the infected individuals into symptomatic (Is) and asymptomatic (Ia)
compartments and, thus, can more naturally relate link creation and breaking to the status of the epidemic. This marks a clear
line of separation from the body of current literature, which rarely looks into the combined effect of the two factors and, when
it does, the contact network changes are driven by random processes rather than being dependent on the nodes’ state. We
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Table 1. Key Mathematical Notations

Symbols Descriptions

A, A(t) Adjacency matrix representing the topology, time-dependent adjacency matrix
V , N The set and number of nodes (or vertices) in the network respectively
E , L The set and number of links (or edges) in the network respectively
β , γ Infection and recovery rate respectively
σ Symptom development rate (transition from Asymptomatic to Symptomatic)
ε Proportion of infections that are asymptomatic
δ Proportion of asymptomatic nodes that recover without developing symptoms

sn(t), ian(t), isn(t) Probability that node n lies in the healthy, asymptomatic infected and symptomatic infected state, respectively
ζ , ξ Link breaking and link creation rate respectively
ρ(t) Fraction of infected nodes in the network at time t
Qn Infinitesimal generator of node n’s continuous Markov chain
K Next generation matrix
R0 Basic reproduction number
τc Epidemic threshold

λ1(A) Largest eigenvalue of matrix A

adopt the individual-based mean-field approach24, whereby input is the network topology and a continuous-time Markov chain
models the coupling between the spreading process and the network evolution. The mean-field approximations reduce the
overall analysis complexity from exponential to polynomial. Second, our model considers both static and adaptive contact
networks. In the non-adaptive context, we derive key properties of the model. Under homogeneous mixing of the population,
whereby all individuals are assumed to have direct contacts with each other, we obtain the expression for the basic reproduction
number of our SIaIsS model. In the heterogeneous mixing case, where the contact network is arbitrary and directly modulates
the spreading process, we establish that the individual infection probabilities in our SIaIsS model dominate those in the SIS
model under similar conditions and derive an upper bound for the SIaIsS epidemic threshold. From these, we further derive
the infection probability of each individual at the meta-stable state as a function of the effective recovery rate. Finally, for
adaptive contact networks, the dynamics of the system are more complex and harder to analyze theoretically. To gain insights,
we numerically explore the exclusive and combined effects of link adaptations, network topology, and asymptomatic infections
on the epidemic prevalence and link density letting the model parameters span wide value ranges.

Formulating the SIaIsS Model
We focus on the simplest non-trivial model that tracks whether a node is infected or not (rather than all different states it might
go through (e.g., exposed, quarantined, isolated, hospitalized, dead)25, 26 while letting us model the co-evolution of the disease
spreading and the network topology as the population adapts its behavior. Table 1 summarizes the key Mathematical notations
used in this paper. We detail both aspects of the model next.

The SIaIsS model for static contact networks
In this section, we present the SIaIsS model. We abstract the population using a graph whose nodes represent individuals and
links denote contacts between them. Specifically, we consider an underlying undirected network, G (V ,E ) with V = v1, ...,vN
the set of nodes (individuals) and E = e1, ...,eL the set of links (contacts) where N = |V | and L = |E |. G is represented by A,
the N ×N symmetric adjacency matrix, with an,m = 1 if there exists a link between nodes n and m and an,m = 0 otherwise. We
also assume that G is connected, i.e., there is a path between any pair of nodes in the network, so that A is irreducible.

We consider a disease that, at any point in time, partitions the population into three distinct groups:

• Susceptible individuals who are disease-free but prone to infection. Susceptible individuals have a chance of getting
infected when contacting infected individuals, regardless of whether those are symptomatic or asymptomatic.

• Asymptomatic Infected individuals who are infected (and infectious) but do not exhibit any symptoms. These individuals
appear to be healthy and do not trigger response from their contacts.

• Symptomatic Infected individuals who have been infected, are infectious and exhibit symptoms. These individuals may
trigger reaction from their contacts.
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(a) Illustration of contact adaptation. (b) State transition diagram for the SIaIsS model.

Figure 1. The SIaIsS model. (a) Illustration of contact adaptation: Node 1 is asymptomatic infectious. Node 2 continues to
interact with node 1 due to unawareness and gets infected with symptoms. Node 3 avoids contact with node 2 once it detects
the symptoms and thus avoids infection and remains susceptible. (b) the state transition diagram of the model.

Since each node must be in one of the three states at any given point in time, it holds that

sn(t)+ ian(t)+ isn(t) = 1 (1)

and

dsn(t)
dt

+
dian(t)

dt
+

disn(t)
dt

= 0. (2)

Figure 1(a) illustrates how an asymptomatic individual (node 1) may cause a new infection (node 2) as well as how contact
adaptation (i.e., the break of the link between nodes 2 and 3) can prohibit further spread of the infection from node 2. Figure
1(b) then captures the state transition diagram of the proposed model. Both asymptomatic and symptomatic infected individuals
infect a susceptible individual that contacts them at rate β . We use parameter ε to control the proportion of infections that
are asymptomatic. In fact, some asymptomatic cases eventually exhibit infection symptoms; we control their proportion with
parameter δ . In our model, an infected individual may exhibit symptoms with rate σ prior to recovering (that occurs at rate γ).
Similarly, symptomatic individuals recover at rate γ . Following the literature, we assume that this transition from the infected to
susceptible state is a Poisson process (e.g., 27, 28). Furthermore, without loss of generality and unless otherwise specified, we
use γ = 1.0 for the rest of the paper.

The network state at any time t can be defined by the combination of the states each of the N nodes resides in. As a result,
the infection process can be identified as a continuous-time Markov Chain (CTMC) with 3N states and be fully specified by a
3N ×3N infinitesimal generator, Q(t). The complexity of this CTMC becomes prohibitive even for small values of N, hence,
we follow an important amount of literature in considering the individual node separately. When applying Markov theory at the
node level, we obtain N instances of the infinitesimal generator, Qn(t), for the three-state CTMCs describing the transitions of
each node:

Qn(t) =

−(q1,2;n +q1,3;n) q1,2;n q1,3;n
q2,1;n −(q2,1;n +q2,3;n) q2,3;n
q3,1;n 0 −q3,1;n

 . (3)

The recovery of infected node (i.e., q2,1;n and q3,1;n) and the emergence of symptoms upon infection (i.e., q2,3;n) are modeled
as Poisson processes. The state transitions from susceptibility to asymptomatic infection (probabilities q1,2;n), and symptomatic
infection (probabilities q1,3;n) are dependent on the states of other nodes in the network. To account for this dependency, both
q1,2;n and q1,3;n must be conditioned on all possible combinations of states of all other network nodes. Unfortunately, this points
back to the exact Markov chain solution of exponential complexity, as discussed earlier.

Following 28 and 29, we solve this problem by applying a mean-field approximation to the random variables, q1,2;n and
q1,3;n. Working with their expected rates, we reduce the complexity of the solution from exponential to polynomial.

With the mean-field approximation for q1,2;n and q1,3;n, the effective infinitesimal generator can be written as:

Qn(t) =

−(E[q1,2;n]+E[q1,3;n]) E[q1,2;n] E[q1,3;n]
γδ −(γδ +σ(1−δ )) σ(1−δ )
γ 0 −γ

 . (4)
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In (4), E[q1,2;n] and E[q1,3;n] are the expected or effective infection rates of node, vn, in the presence or absence of symptoms,
respectively. They are functions of the infection rate, β and the states of vn’s neighbors. The information about the nodes’
neighborhoods is encoded in the adjacency matrix, A. Node vn is not immediately susceptible to infection until at least one of
its neighbors is infected (with or without symptoms). The effective infection rates can then be written as:

E[q1,2;n] = βε

N

∑
m=1

[
an,m(t)

(
iam(t)+ ism(t)

)]
(5)

and

E[q1,3;n] = β (1− ε)
N

∑
m=1

[
an,m(t)

(
iam(t)+ ism(t)

)]
. (6)

Applying the Markov differential equation (see 30, page 208), we obtain the following system of non-linear differential
equations for n ∈ {1, ...,N}

dsn(t)
dt

=−β

N

∑
m=1

[
an,m(t)

(
iam(t)+ ism(t)

)]
sn(t)+δγian(t)+ γisn(t), (7)

dian(t)
dt

= βε

N

∑
m=1

[
an,m(t)

(
iam(t)+ ism(t)

)]
sn(t)−δγian(t)−σ(1−δ )ian(t), (8)

disn(t)
dt

= β (1− ε)
N

∑
m=1

[
an,m(t)

(
iam(t)+ ism(t)

)]
sn(t)+σ(1−δ )ian(t)− γisn(t). (9)

The spreading process is governed by this set of 3×N differential, which can be reduced to 2×N, using Eq. 1. Solving
them yields the instantaneous partition of the population into the three states.

Adaptive Contact Networks: Link Adaptation and the Network Evolution Process
In adaptive contact networks, the adjacency matrix, A, changes over time. We represent the temporally evolving network with
A(t), whose element an,m(t) equals 1 if a link between nodes vn and vm exists at time t, and it equals 0, otherwise. We assume
that no new contacts are established in the course of the epidemics (i.e., an,m(t) = 0,∀t, if an,m(0) = 0). The network topology
evolves based on two independent processes as follows:

• Link-breaking process – a node without symptoms, i.e., a node in either the susceptible or asymptomatic infected state,
avoids contacts with a node exhibiting infection symptoms. Specifically, a non-symptomatic node vn will break the
existing link with a neighboring node vm with Poisson rate ζ if vm gets infected and develops symptoms.

• Link-creation process – conversely, if both end nodes of a link that broke earlier, because at least one of the two nodes
got infected and developed symptoms, do not (any more) exhibit symptoms, the link between them is re-established with
Poisson rate ξ .

We follow the methodology described in 20 to model the link adaptation processes. Specifically, we define two functions,
fbr and fcr, describing the link-breaking and link-creation mechanisms, respectively. The two link adaptation processes are
solely dependent on the states of the two link end-point nodes. Since in our SIaIsS model each node can be in one of three states
at any point in time, there are six distinct combinations of states for each pair of nodes. Table 2 lists those six combinations and
the associated actions. From the table, we note that susceptible and asymptomatic infected nodes induce the same actions and
thus can be grouped together. Then, the link adaptation action is simply determined by whether the end nodes of a link are
symptomatic infected. Let Xn(t) be the Bernoulli random variable indicating whether node n is symptomatic infected at time t
(Xn(t) = 1) or not (Xn(t) = 0). Following 20, we obtain the following expressions:

fbr(Xn(t),Xm(t)) = Xn(t)+Xm(t)−2Xn(t)Xm(t), (10)

fcr(Xn(t),Xm(t)) = 1−Xn(t)−Xm(t)+Xn(t)Xm(t). (11)

Hence, a link between two nodes m,n breaks (with rate ζ ) when either one of the two is symptomatic infected and is created
(with rate ξ ) when both of them lie in a state other than the Symptomatic Infected one.
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Table 2. Link break/creation rules by time t for two nodes vn, vm with an,m(0) = 1, depending on current an,m(t)

State vn State vm an,m(t) Action

S S
0 Create link
1 No action

S Ia 0 Create link
1 No action

S Is 1 Break link
0 No action

Ia Ia 0 Create link
1 No action

Ia Is 1 Break link
0 No action

Is Is 0, 1 No action

We apply a mean-field approximation by taking the expectation on both sides, with E[Xn(t)] = Pr[Xn(t) = 1] = isn(t).
Following 31, we assume that the random variables Xn(t) and Xm(t) are uncorrelated (i.e., E[Xn(t)Xm(t)] = E[Xn(t)]E[Xm(t)])
for all n ̸= m. As a result, the equations that govern the evolution of link an,m are obtained as Eq. 12,

dan,m(t)
dt

= an,m(0)
[
−ζ an,m(t) fbr(isn(t), i

s
m(t))+ξ

(
1−an,m(t)

)
fcr(isn(t), i

s
m(t))

]
, (12)

where sn(t), ian(t) and isn(t) denote the probabilities that node n resides in the susceptible (S), asymptomatic infected (Ia) and
symptomatic infected (Is) states at time t, respectively. Note that the interaction between the two end nodes of a link is assumed
to be symmetric, thus preserving the symmetry of the adjacency matrix A(t).

Epidemic Threshold and Prevalence
One important quantity of interest when studying epidemic spreading is its prevalence (i.e., the fraction of infected population).
We can compute the prevalence of the epidemic at time t in the network as follows:

ρ(t) =
1
N

N

∑
n=1

(
ian(t)+ isn(t)

)
. (13)

With our individualized modelling approach, we can also compute individual infection probabilities (i.e., ian(t)+ isn(t) and
ian∞ + isn∞). Thus, we do not only obtain the prevalence as an aggregate value for the entire network, but also gain insights into
the susceptibility of individual nodes.

We are also interested in understanding the epidemic threshold, i.e., the point above which the epidemic will almost surely
spread. For this purpose, in the following, we derive the basic reproduction number R0 of our SIaIsS model, which indicates
the expected number of secondary infections produced by a single infected individual in a completely susceptible population32.
When R0 < 1.0, one infected node infects less than one node on average and the epidemic dies out. Conversely, when R0 > 1.0,
an infected node is capable of infecting more than one susceptible node on average and the epidemic escalates.

Numerical Results and Discussion
We first provide some insights into the SIaIsS model in a non-adaptive setup, where the nodes do not adapt their connections
with their neighbors (i.e., ζ = ξ = 0). By switching off the link adaptation mechanism, both symptomatic and asymptomatic
nodes infect their neighbors in a similar manner since healthy neighbors are immediately susceptible to infection without the
ability to avoid contacts. In this analysis, we draw parallels with the classical SIS model, to which our SIaIsS model can be
reduced to by setting δ = 1.0.

We first investigate the case of homogeneous mixing, as this results from the law of mass action. The contact graph is
complete, i.e., an,m = 1,∀n,m ∈ V ,n ̸= m and an,n = 0,∀n ∈ V so that each node is in direct and constant contact with all
other nodes and the network topology does not affect the spreading process. We adopt the next generation matrix approach33

to compute R0 under homogeneous mixing. In the absence of adjacency matrix elements and for ξ = ζ = 0, the system of
differential equations (7)-(9) and (12) is simplified as follows:

dS
dt

=−β (Ia + Is)S+δγIa + γIs, (14)
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dIa

dt
= βε(Ia + Is)S−δγIa −σ(1−δ )Ia, (15)

dIs

dt
= β (1− ε)(Ia + Is)S+σ(1−δ )Ia − γIs, (16)

dA
dt

= 0. (17)

In the SIaIsS model, the transitions S → Ia and S → Is mark new infections and both states Ia and Is are states-at-infection,
i.e., states that individuals occupy immediately upon their infection33. On the contrary, the transition Ia → Is does not generate
new infections but rather marks the progression of already infected nodes to a different infection state. The computation of the
next generation matrix K and, eventually, R0 involve only the two states-at-infection. Linearizing equations (15) and (16)
around the infection-free steady-state (S = N, Ia = Is = 0), we can derive the linearized infection subsystem in matrix form dIa

dt

dIs

dt

=

βε −δγ −σ(1−δ ) βε

σ(1−δ )+β (1− ε) β (1− ε)− γ

Ia

Is

 , (18)

where the 2×2 matrix on the right hand side of (18) is the Jacobian matrix of the original system of nonlinear equations (15)
and (16). We can then write the Jacobian matrix as the sum of matrix F corresponding to transmission events (generation of
new infections) and the matrix V corresponding to transitions between infected states and recovery to state S, where:

F =

(
βε βε

β (1− ε) β (1− ε)

)
and V =

(
δγ +σ(1−δ ) 0
−σ(1−δ ) γ

)
,

where F is non-negative and V is a non-singular matrix. We can then compute the next generation matrix, K , in line with 33

K = FV−1 =


βε(γ+σ(1−δ ))
γ(γδ+σ(1−δ ))

βε

γ

β (1−ε)(γ+σ(1−δ ))
γ(γδ+σ(1−δ ))

β (1−ε)
γ

 , (19)

where V−1 denotes the inverse of matrix V . Then, R0 equals the largest eigenvalue of K , which can be computed out of the
trace and the determinant of K :

R0 = λ1(K ) =
1
2
(tr(K )+

√
tr2(K )−4 det(K ) )

and since det(K ) = 0, we get

R0 =
β

γ

(
σ(1−δ )+δγ + εγ −δεγ

δγ +σ(1−δ )

)
=

β

γ

(
1+

εγ(1−δ )

δγ +σ(1−δ )

)
≥ β

γ
∀γ,δ ,ε. (20)

Note we can revert back to the original SIS model by setting δ = 1, i.e., eliminating the discrimination between the Ia and Is

states. For δ = 1, R0 reduces to the basic reproduction number β/γ of the SIS model. Moreover, simple algebraic calculations
yield that ∂R0

∂δ
< 0, i.e., other things held constant, the higher the percentage of asymptomatic nodes that recover before

developing symptoms, the smaller the reproduction number.

Heterogeneous Mixing in Non-adaptive networks
We, then, relax the homogeneous mixing assumption so that the underlying network graph is no longer complete. The nodes’
contacts are still fixed (ζ = ξ = 0.0) but they can now be encoded in an arbitrary adjacency matrix A.

Similar to the classical N-intertwined SIS model28, the SIaIsS model possesses the trivial solution in∞ = ian∞ + isn∞ = 0 (no
infected nodes in the network) in the asymptotic regime t → ∞ since the Markov chain is finite and possesses an absorbing
state that is reachable by all other states. In practice, for any network of realistic size, it has been found that the asymptotic
solution may only be reached after a very long period during which the system converges exponentially fast to another stable
state, often referred to as the “meta-stable state”, and remains there for most of the time28, 34. The condition that determines
whether the spreading process will indeed converge to this meta-stable state is related to the spectral radius of the adjacency
matrix representing the network. Specifically for the N-intertwined SIS model, the spreading process evolves to epidemic and
converges to the meta-stable state if
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Figure 2. SIS vs SIaIsS model in non-adaptive setting (ζ = ξ = 0).

τ = β/γ > 1/λ1(A), (21)

where λ1(A) is the largest eigenvalue of A and 1/λ1(A)
.
= τSIS

c the epidemic threshold of the model28, 35, 36. At the meta-stable
state, the individual infection steady-state probabilities pss

n satisfy the system of equations

β

γ

N

∑
m=1

an,m pss
m =

pss
n

1− pss
n
. (22)

We can make two remarks regarding the way the SIaIsS model compares to the N-intertwined SIS model, codified below as
propositions for easier reference. Let

in(t) = ian(t)+ isn(t) (23)

be the overall infection probabilities of individuals, where the infected population is the sum of symptomatic and asymptomatic
individuals. We can show that:

Proposition 1. For two spreading processes, pn(t), in(t), evolving under the SIS and SIaIsS models, respectively, sharing the
same underlying graph and starting from the same initial conditions, i.e., in(t0) = pn(t0),n ∈ V , the infection probabilities of
individuals in the two models satisfy pn(t)≤ in(t),n ∈ V ∀t ∈ [t0,∞].

Refer to Supplementary Appendix A for the corresponding proof.
Following this, we can also state that:

Corollary 1. The SIS epidemic threshold serves as an upper bound for the SIaIsS epidemic threshold, i.e.,

τ
SIaIsS
c ≤ τ

SIS
c = 1/λ1(A). (24)

Refer to Supplementary Appendix A for the corresponding proof.
In Fig. 2(a), we compare the epidemic prevalence of the SIaIsS to the SIS model, for ε = {1.0,0.5} and σ = δ = 0.5. We

see that higher proportion of asymptomatic nodes (i.e., higher ε) leads to higher epidemic prevalence. We also see that the
epidemic begins to spread at lower values of the τ = β/γ ratio (see inset of Fig. 2(a)), in line with (20). This is a result of
the increased overall time a node spends in infection states thanks to the additional state transition from Ia to Is. This also
corroborates our statement above regarding the domination of SIaIsS over SIS model.

Proposition 2. The steady-state probabilities of individuals at the meta-stable state of the SIaIsS model satisfy the equations:

β

γe f f

N

∑
m=1

an,miss
m =

iss
n

1− iss
n
, (25)

where

γe f f =
γ

1+ εγ(1−δ )
δγ+σ(1−δ )

< γ. (26)
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(a) Prevalence and link density (inset) of the SIaIsS model.
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(b) Focused around threshold region for ω = {0,1,2,3}.

Figure 3. Impact of different link adaptation scenarios based on the SIaIsS model.

Refer to Supplementary Appendix A for the corresponding proof.
Comparing (25) with its SIS counterpart in (22), the SIaIsS model could be viewed as an SIS model, i.e., with a single

infection state, the same infection rate β and recovery rate γe f f , smaller than the original SIS recovery rate γ .
Figure 2(b) compares the epidemic prevalence under the SIS and SIaIsS models as δ varies from 0 to 1. For δ = 1, the

prevalence curves for the two models overlap since the SIaIsS model reduces to the SIS one. As δ varies from 1 down to 0, the
spreading process takes off at lower τ values (see inset) and the prevalence scores distinctly higher than under the SIS model.

Heterogeneous Mixing in Adaptive Networks
We numerically explore the implications of different link adaptations, network topology features and the asymptomatic infected
population on the epidemic dynamics. As our baseline scenario, we set β = 0.5, γ = 1.0, ε = 0.5 (i.e., we assume that 50% of
new infections are asymptomatic), δ = 0.5 (i.e., 50% of those asymptomatic cases developing symptoms), σ = 0.1, ξ = ζ = 1.0.
We vary the effective spreading rate by fixing γ and changing β . Unless otherwise stated, we experiment with random graphs
of N = 100 nodes and link probability p = 2× ln(N)/N, which drives the probability that the graph is connected to 1 as N
tends to infinity.

Impact of Link Adaptations
From our analysis for the case of heterogeneous mixing in non-adaptive networks, we established that, in non-adaptive setting,
1/λ1(A) sets an upper bound on the epidemic threshold for our SIaIsS model. However, as soon as we consider link adaptiveness,
i.e., nodes avoiding contacts with symptomatic infected nodes, the adjacency matrix changes over time, and consequently, its
eigenvalues and corresponding eigenvectors are also time-dependent functions. Since there are no new link establishments, we
have an,m(0)≥ an,m(t) ∀n,m, t. As A(t) is always a non-negative square matrix, it follows from the Perron-Frobenius theorem
that λ1(A(0))≥ λ1(A(t)) ∀t > 0. From this, we can also conjecture that the upper bound of the SIaIsS epidemic threshold is
higher in the adaptive setting than it is in the non-adaptive setting.

In Fig. 3(a), we plot the epidemic prevalence and link density (inset) under four different link adaptation settings in the
baseline scenario: (1) nodes do not adapt at all their contacts (♢), (2) nodes break links with infected contacts but do not
reconnect after recovering (⃝) (3) link breaking and creation rates are equal (□) and (4) the link breaking rate is twice the link
creation rate (▽). Clearly, a population without contact adaptation (i.e., ζ = 0) allows wider spread of the epidemic. Population
that actively avoids contacts with symptomatic nodes inhibits the epidemic spreading and results in lower prevalence. However,
this also isolates the population as it can be seen in the decrease of the link density.

To explore the epidemic threshold region, we define the effective link-breaking rate ω = ζ

ξ
(ω = 0.0 implies that link

adaptation is disabled). In Fig. 3(b) we show the co-evolution of the epidemic prevalence and link density around the threshold
region. Interestingly, our SIaIsS model portrays a fixed epidemic threshold, or bifurcation parameter, which is independent of
the effective link-breaking rate, ω . A similar observation is made in 31 for the adaptive SIS (ASIS) model, first introduced in 37
with complete original contact graph A(0): the transcritical bifurcation parameter they compute via the first-order mean-field
approximation is fixed for different effective link-breaking rates, ω . However, 31 further reports that the epidemic threshold
appears to scale linearly with ω when the second-order mean-field approximation is considered, so that our experimental
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Figure 4. Impact of link density.
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Figure 5. Impact of degree distribution on prevalence and link density; experiments with ER and Scale-Free networks.

evidence here about the threshold invariance is definitely not conclusive. In general, we find that higher effective link-breaking
rate, ω , results in lower link density (i.e., more susceptible nodes break links with observable infected nodes) and prevalence
(i.e., more link breaking inhibits the epidemic spreading).

Impact of Network Topology
In this section, we show how network topology affects the actual spreading dynamics. We first examine the influence of the
initial density of the contact network. We generate ER graphs with three different link densities (i.e., 2× pc, 5× pc and 10× pc).
Figure 4(a) clearly suggests that higher link densities facilitate faster spreading and higher epidemic prevalence. The lower the
parameter p value the slower the epidemic prevalence growth and the lower its value reached at steady-state. Likewise, for
higher link probability p, the link density drops more drastically from its initial value towards its steady-state value, as shown
in Fig. 4(b). This more dramatic change in the network topology as the original link density increases is also reflected in the
comparison of the average node degrees between t = 0 and after the epidemic prevalence value stabilizes. As shown in Fig.
4(c), higher density networks experience higher decrease in average degree.

Nevertheless, networks with identical link density at t = 0, may also experience different epidemic dynamics. To illustrate
this, we use two networks with the same number of links but different degree distributions. The first network follows the ER
model38 with the binomial degree distribution whereas the second network follows the scale-free model39 featuring power-law
degree distributions. (cf. Fig. 5(c) where the top row depicts the probability and cumulative density functions (pdf and cdf) of
node degrees for a sample ER network and the bottom row depicts the same for a sample scale-free network). The hub nodes in
the scale-free network, i.e., those nodes featuring many more direct neighbors than others and giving rise to the right heavy
tail in the degree distribution, help the epidemic spread faster (see Fig. 5(a)). However, interestingly, the stable prevalence
level is lower than that of the ER graph, and, as Fig. 5(b) suggests, so is the link density over time. As hub nodes enter the
symptomatic infected state and their neighbors start avoiding contacts with them, the link breaking events are more frequent.

Impact of Asymptomatic Infections
The next set of results focus on the effect of asymptomatic nodes in an adaptive network. We return to our baseline scenario and
control the asymptomatic infected population via parameter ε . We consider four cases: (a) ε = 0: with symptomatic infected
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Figure 6. (a) Time evolution of SIaIsS for the baseline scenario with asymptomatic infection rates, ε = {0.0,0.1,0.5,1.0}; (b)
Prevalence for the corresponding ε values; (c) Prevalence and link density around the threshold region for the same ε values.

seed node, resulting in no asymptomatic nodes and reduces to the SIS model, (b) ε = 0.1: low generation rate of asymptomatic
nodes upon infection, (c) ε = 0.5: equal probabilities to develop or not symptoms upon infection, and (d) ε = 1.0: all infections
start without symptoms. Figure 6(a) plots the characteristic curves of SIaIsS for the four cases and Fig. 6(b) compares the
corresponding prevalence and link density (inset) trajectories over time. We see that higher numbers of asymptomatic infections
restrict harder the nodes’ capacity to adapt to the ongoing epidemic (i.e., breaking links with infected nodes), resulting in
higher link density even at the same effective link breaking rate, ω = 1, for all cases. Consequently, the epidemic prevalence
grows hand-in-hand with the number of asymptomatic infected nodes, which catalyze the epidemic process in two ways: by
lengthening the duration of infection (when δ < 1) and by reducing the effective link breaking rate.

In contrast to the the first order approximation results discussed in the Section on the Impact of Link Adaptations, which
indicate that the epidemic threshold is insensitive to the effective link-breaking rate ω (cf. Fig. 3(b)), the epidemic threshold
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Figure 7. Contour maps of epidemic prevalence (top row) and corresponding link density (bottom row) for three settings:
(first column) ω vs. ε , (second column) ω vs. τ and (third column) ε vs. τ .

appears to scale inversely with ε . We show this in Fig. 6(c) zooming in on the τ threshold region, where the epidemic threshold
decreases for higher ε values. Fig. 6(c)(inset) shows the link density for the four cases.

Modulated Effects
We know that higher τ = β/γ values result in higher epidemic prevalence. From above, we also understand that the epidemic
prevalence drops as the effective link-breaking rate, ω , increases or asymptomatic infections get sparser (i.e., low ε). Here, we
investigate the modulated effect of these three parameters (τ , ω , ε) producing three sets of contour maps, as shown in Fig. 7.
In the first set of results, Fig. 7(a) and (d), we show the contour maps of prevalence and link density, respectively, under a
range of (ω , ε) combinations (the remaining parameters follow the baseline scenario). As we increase the two parameters, the
prevalence and link density follow different paths: high effective link-breaking rate inhibits spreading (top-left corner of Fig.
7(a)), whereas high percentage of asymptomatic nodes favors it (bottom-right corner). Both the prevalence and link density
increase diagonally from top-left towards the bottom-right corner in the contour maps under the opposite effect of ω and ε .

Fig. 7(b) and (e) plot the prevalence and link density contour maps for (ω,τ) value pairs. The two parameters have opposite
impact on the prevalence but similar impact on the link density (i.e., prevalence (link density) increases (resp. decreases) as τ

increases and ω decreases (resp. increases)). Comparing the link densities in Fig. 7(d) and (e), the contour map is ’flipped’
along the vertical axis. The highest link density is achieved at opposite bottom corners. As opposed to the ω vs. ε case, where
prevalence and link density are strongly positively correlated as we vary ω and ε , in the ω vs. τ case, increasing either ω or τ

strengthens the link breaking process. In this case, we witness (very) low prevalence scores coupled with high link density
values (left side of contour maps) or high prevalence coupled with (very) low link density (top-right corner of contour maps).

In the last set of contour maps, in Fig. 7(c) and (f), we look into the ε vs. τ relation. Both parameters are positively
correlated with prevalence, whereas they differ with respect to link density: τ is negatively correlated while ε is positively
correlated with it. As a result, the highest prevalence is obtained at the top-right corner of the contour map in Fig. 7(c), whereas
the lowest link density appears at the bottom-right corner of the contour map, when the τ is highest and ε is lowest. Analyzing
across the three sets of results, we observe that τ is the dominant determinant for low prevalence with ε and ω having little
effect at this region. However, ε emerges to be the main contributing factor at high epidemic prevalence. The neutralizing effect
from tuning ω fails at high prevalence region with high number of asymptomatic silent spreaders.
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Conclusions
We study the spreading process involving (a) nodes who may not exhibit symptoms themselves when they get infected; and, (b)
may break contacts with other nodes in their social network when those exhibit infection symptoms. Our goal is to study the
dynamics of the diffusion processes that emerge when undetectable infectious nodes hamper the network’s ability to defend
against the epidemic spread by breaking contacts. Our compartmental SIaIsS model breaks down the network population into
three distinct compartments (i.e., Susceptible, Asymptomatic infected and Symptomatic infected). We employ CTMC analysis
to model the spreading process by taking into account the state transitions of individual nodes rather than the aggregate behavior
of all nodes. We apply a mean-field approximation to reduce the complexity of the solution from exponential (exact solution) to
polynomial.

We pursue our goal by working in three stages of progressively higher analysis complexity. In the first stage, we consider a
homogeneous mixing network whereby all nodes have direct contacts with each other that do not change in the course of the
spreading process. For this network, we draw on the next generation matrix approach to derive its basic reproduction number,
R0 (i.e., Eq. 20). Then, we consider a non-adaptive heterogeneous mixing setup with the contact network represented by an
adjacency matrix. Here, we contrast our SIaIsS model against the classical N-intertwined SIS model28. We find that our model
dominates the N-intertwined SIS model in terms of individual infection probabilities and obtain an upper bound for its epidemic
threshold. We derive the effective recovery rate from the two infectious states in our model, which is shown to be smaller than
the one of the SIS model and formulate a system of equations for the individual infection probabilities at the metastable state
that is reminiscent of the one for the original SIS model.

Finally, we explore our model in the contact-adaptive setting, investigating how individual parameters and their combinations
affect the trajectories of epidemic prevalence and link density of the network over time. We find that the retarding effect of the
link-breaking mechanism upon the spreading process is far less effective in the presence of asymptomatic infected nodes who
cannot be detected and avoided by healthy nodes. Our analysis and results further corroborate recent empirical observations
that epidemics with an asymptomatic infectious period feature higher epidemic prevalence even when counter-measures such as
isolation and quarantine are in effect. This serves as a strong indication of how even such a general model can offer insights
not captured by classical epidemic models and could inform the formulation of policies and/or counter-measure design based
specific application context. Such implications for policy design would apparently be more detailed and precise if the model
is extended to account for other states such as exposed (analogous to SEIR model32), quarantined, hospitalized, but in all
cases, the additional detail would need to be traded with extra complexity and weaker approximations of exact solutions. On a
more technical front, our work here has drawn heavily on first order mean-field approximations of the CTMC. While this has
offered various insights into the spreading dynamics under different mix of asymptomatic population and link-breaking rates,
we conjecture that better estimates of the epidemic threshold could be obtained with higher-order approximations. For instance,
31 and 19 reported good qualitative approximation for the basic SIS model in contact adaptive setting using second-order
mean-field approximations.
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