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Abstract—This paper introduces a Vision-Centered Semantic
Communication (VCSC) system tailored for efficient image trans-
mission in smart city environments, where bandwidth is limited
and channels are subject to severe noise. Unlike conventional text-
centered or classical compression approaches, VCSC leverages
a pretrained latent encoder–decoder network to extract com-
pact, semantically rich representations directly from images. An
innovative attention-based quantization strategy is employed to
selectively allocate higher precision to critical regions, thereby
reducing the overall bit rate while preserving essential semantic
details. The quantized latent codes are robustly transmitted over
wireless channels modeled with additive white Gaussian noise and
Rayleigh fading. An end-to-end training framework minimizes
both reconstruction and perceptual losses, ensuring high-fidelity
image recovery even under adverse conditions. Extensive simula-
tions demonstrate that VCSC outperforms traditional methods in
preserving fine-grained details and semantic integrity, offering a
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promising solution for real-time surveillance, transportation, and
infrastructure monitoring in smart cities.

Index Terms—Semantic communication, smart city, image
transmission, latent code, and quantization.

I. INTRODUCTION

The widespread deployment of high-resolution cameras in

smart city applications has led to an exponential increase in

visual data transmission demands [1]. Real-time video surveil-

lance, intelligent transportation systems, and automated in-

frastructure monitoring require efficient image communication

over bandwidth-limited and noise-prone wireless networks.

These camera networks act as a critical component of urban

sensing, continuously capturing visual information to sup-

port city-scale perception and decision-making. Conventional

image compression methods, such as JPEG [2], struggle to

maintain acceptable visual quality under extreme noise condi-

tions or stringent bandwidth constraints [3]. Meanwhile, text-

centered semantic communication (TCSC) approaches, which

convert images into textual descriptions before reconstruction,

often discard critical low-level details, making them unsuitable

for tasks requiring precise spatial and texture information [4].

Fig. 1: Comparison of text-centered and vision-centered semantic communi-
cation. Vision-centered semantic communication transmits image features to
preserve spatial details, while text-centered semantic communication transmits
text descriptions, which may discard fine-grained visual details.

To address these challenges, this paper proposes a vision-

centered semantic communication (VCSC) system in smart
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city environments, as illustrated in Fig. 1. This approach rep-

resents a promising paradigm, prioritizing the transmission of

essential visual semantics while preserving spatial fidelity. Fig.

1 illustrates the fundamental difference between TCSC and

VCSC schemes. Specifically, in the TCSC scheme, an image

is first transformed into a textual description, which is then

transmitted and used to reconstruct an image. However, this

process leads to significant information loss, often resulting

in structurally inaccurate and visually distorted outputs. In

contrast, the VCSC system directly encodes images into com-

pact latent code, allowing for faithful reconstructions while

ensuring robustness against channel impairments. Instead of

relying on text-centered descriptions, VCSC leverages a pre-

trained latent encoder–decoder model to transform images into

compact, semantically meaningful representations. These rep-

resentations are then quantized and transmitted over wireless

channels modeled with additive white Gaussian noise (AWGN)

and Rayleigh fading. At the receiver, a decoder reconstructs the

image by minimizing perceptual loss, thereby ensuring high-

quality reconstructions even under challenging transmission

conditions.

From an application perspective, VCSC is particularly at-

tractive for bandwidth-limited edge-camera deployments in

real-world domains. Typical use cases include city-wide traffic

monitoring (e.g., roadside cameras at intersections) and public-

safety surveillance, where uplink capacity is constrained but

timely and faithful visual reconstruction is required for sit-

uational awareness. VCSC can also support smart-city in-

frastructure monitoring (e.g., bridges, tunnels, and railways)

using UAVs or mobile robots over intermittent wireless links,

enabling more robust image recovery than conventional codecs

under harsh channel conditions.

The main contribution of this paper is summarized as

follows:

• VCSC Framework: A novel vision-centered semantic

transmission framework is proposed, which encodes im-

ages into a semantically rich latent space, preserving

both structural details and semantic integrity under noisy

conditions.

• Attention-Based Adaptive Quantization: Unlike uni-

form quantization, an adaptive quantization strategy dy-

namically allocates bit precision to semantically signif-

icant regions, enhancing compression efficiency without

compromising key image details.

• Comprehensive Evaluation and Benchmarking: Exten-

sive experiments are conducted to compare VCSC with

traditional image compression techniques (JPEG, Huff-

man coding) and text-centered semantic communication

methods. The results demonstrate that VCSC consistently

achieves superior performance in structural similarity,

perceptual quality, and robustness against wireless chan-

nel impairments.

The remainder of this paper is organized as follows. Sec-

tion II reviews advancements in semantic communication

and learned image compression. Section III describes the

proposed VCSC. Section IV presents the proposed VCSC

framework with quantization. Section V presents experimental

evaluations, while Section V-D analyses the impact of design

choices. Finally, Section VI concludes the paper and discusses

future directions.

II. RELATED WORK

In recent years, semantic communication has revolution-

ized wireless transmission by prioritizing the preservation

of essential meaning over bit-precision accuracy [5], [6].

This paradigm shift involves encoding and decoding semantic

content directly, rather than treating an image merely as a

collection of symbols devoid of inherent semantics [7]. In

[8], the authors introduced a semantic communication model

that integrates a dynamic decision generation network and a

generative adversarial network, effectively reducing required

bandwidth while maintaining critical task-related information.

In addition, Han et al. [9] explored the integration of genera-

tive models in semantic communication systems to enhance

transmission efficiency and robustness. The aforementioned

studies underscored that encoding the latent semantic content

of an image offers greater resilience to noise and relaxes the

bandwidth requirement in comparison to traditional pipeline-

based codecs.

A. Semantic Communication and Image Transmission

Early studies on semantic communication emphasized trans-

mitting meaning beyond symbol-level accuracy and were

mainly discussed in the context of text or symbolic mes-

sages [10]. Building on this concept, an important line of

research has developed vision-centered pipelines that follow

an image–feature–image paradigm, where compact latent em-

beddings are transmitted to preserve both high-level semantics

and local structures [11]. Representative works include end-

to-end deep joint source–channel coding for semantic image

transmission [12] and its attention-enhanced variants that

prioritize informative latent regions to improve robustness

under wireless impairments [13]. However, these methods are

typically trained end-to-end for specific datasets and channel

settings, and may require re-training when the data domain

changes, which can limit generalization and increase the risk

of overfitting, and this is a key concern for heterogeneous

smart-city environments. More recently, the emergence of

large pretrained models has enabled text-centered semantic

communication, where images are converted into captions

and the receiver re-synthesizes images from the transmitted

text [14], [15]. While such pretrained priors can improve

generalization, the image–text–image pipeline often loses fine-

grained spatial details, making it less suitable for smart-

city image transmission that demands faithful reconstruction.

Therefore, we propose VCSC, which revisits the image–

feature–image paradigm while leveraging a pretrained latent

image representation to better balance generalization and spa-

tial fidelity in smart-city deployments.

B. Learned Image Compression and Latent Space Models

The advent of deep learning has opened new avenues in

learned image compression [16]. Pioneering works introduced
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autoencoders that map images into compact latent code, sur-

passing classical codecs like JPEG in certain rate–distortion

trade-offs [17]. Latent diffusion models have advanced the

field by jointly learning semantic and structural features

across multiple levels of granularity [18]. These latent mod-

els excel at capturing semantically relevant details even at

significantly reduced spatial dimensions. For example, Jia et

al. [19] explored the characteristics of latent space modeling

in generative image compression, establishing a framework

that effectively captures semantic content. Furthermore, Liu et

al. [8] proposed a semantic communication model that inte-

grates a dynamic decision generation network and a generative

adversarial network, enhancing image reconstruction quality

through adversarial and perceptual losses. These approaches

are particularly valuable for real-time surveillance in crowded

or bandwidth-limited scenarios.

C. Quantization Techniques for Semantic Image Transmission

Semantic image compression and transmission pipelines

rely on quantization as a critical step to turn continuous

deep features into compact discrete codes [20]. Early efforts

often employed scalar quantizers that independently quantized

individual coefficients [21]. With advancement of deep learn-

ing, researchers began integrating end-to-end differentiable

quantization modules into convolutional or recurrent networks,

ensuring that quantization errors are optimized for semantic

relevance rather than mere pixel-level distortion [22]. Recent

works extend this concept to scenarios with fluctuating channel

conditions by dynamically adjusting quantization parameters

based on channel feedback or error statistics [23]. Genera-

tive and adversarial models also employ sophisticated vector

quantization strategies, enabling decoders to reconstruct high-

quality images even when parts of the quantized code are lost

or corrupted [24].

D. Semantic Robustness Under Noisy Channels

Smart city deployments frequently encounter dynamic in-

terference and severe multipath fading, posing significant

challenges for reliable image transmission [25], [26]. Tra-

ditional source and channel coding strategies often struggle

to maintain image fidelity without increasing bit rates [27].

Recent studies have shown that coupling semantic encoding

with adaptive channel modeling can mitigate these effects in

resource-limited IoT devices [28], [29]. For example, Wang

et al. [30] introduced a perceptual learned source-channel

coding approach for high-fidelity image semantic transmission,

combining encoder, wireless channel, decoder, and discrim-

inator, which are jointly learned under both perceptual and

adversarial losses, resulting in improved robustness against

channel impairments. Similarly, Han et al. [9] proposed a

generative model-based semantic communication approach

that leverages GAN inversion methods to extract interpretable

latent code, enhancing transmission efficiency and robustness.

However, these methods are typically trained for specific

channel settings, which limits their adaptability to the diverse

and dynamic wireless conditions in smart-city environments.

E. Semantic Communication for Smart City Imaging

As smart cities continue to evolve, integrating semantic

communication into urban imaging systems presents promis-

ing avenues for innovation [31]. One such advancement is

federated learning, which enhances data trustworthiness and

user participation in large-scale smart city sensing by en-

abling collaborative model training without centralized data

collection, thereby addressing privacy and security concerns

[32], [33]. Another advancement is the application of deep

learning to efficient image transmission and analysis in traffic

monitoring and infrastructure inspection, as it effectively cap-

tures complex data patterns [34]. Furthermore, the integration

of edge computing with semantic communication frameworks

allows for real-time data processing closer to the end users,

which reduces latency and bandwidth usage, which is crucial

for time-sensitive smart city applications [35], [36]. However,

the capabilities of pretrained networks have not been fully

explored in smart city applications.

III. VCSC SYSTEM DESCRIPTION

As shown in Fig. 2, a VCSC system is a pretrained latent

encoder-decoder network and is designed to exploit the latent

space for efficient image transmission over wireless channels,

aiming to preserve essential semantic information compared

to the traditional TCSC counterpart. This VCSC system com-

prises two main parts: a transmitter and a receiver, connected

by a wireless channel (i.e., AWGN or Rayleigh fading).

Particularly, the transmitter is responsible for processing the

input image from the camera and preparing it for transmission,

which is composed of a semantic encoder and a quantization

module. After processing at the transmitter, the image can be

converted and represented by the quantized latent codes, which

are fed into the wireless channel, where the quantized latent

codes are transmitted. Without loss of generality and for sim-

plicity, the wireless semantic transmission is assumed to occur

under the AWGN or Rayleigh fading channel. After the wire-

less channel, the receiver aims to recover the transmitted image

from these received quantized latent codes. Accordingly, the

receiver comprises a dequantization module and a semantic

decoder. The following subsections are detailed descriptions

of each module of the system model under investigation.

A. Transmitter

1) Semantic Encoder: The semantic encoder transforms the

input image into a compact latent code using the VAE encoder

under the Stable Diffusion [18]. This pretrained encoder

facilitates the extraction of semantically meaningful features

while significantly reducing spatial redundancy. The encoding

process comprises the following blocks:

i) Convolutional Downsampling Block: A convolutional

layer followed by downsampling operations extracts low-

level features and reduces the spatial resolution of the

input image.

ii) Residual Abstraction Block: A stack of residual blocks

refines the feature maps, capturing mid-level semantic

information and improving representational depth.
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Fig. 2: The proposed VCSC system: the transmitter employs a semantic encoder and quantization modules to compress an image into a compact latent
code, which is then transmitted over a noisy channel (e.g., AWGN or Rayleigh fading). At the receiver, dequantization and semantic decoding are applied to
reconstruct the image.

iii) Latent Reparameterization Block: The encoder predicts

the mean and variance of the latent distribution and

applies the reparameterization trick to sample the latent

code. This process yields a compact and expressive rep-

resentation suitable for robust transmission.

2) Quantization Module: After generating the semantic

representation, the encoder passes it to the quantization mod-

ule, which plays a crucial role in preparing the semantic

representation of the image for efficient transmission over the

wireless channel.

The primary purpose of the quantization module is to

reduce the amount of data that needs to be transmitted while

ensuring that the most important information is preserved

by converting the continuous or high-precision values of the

semantic representation into discrete or lower-precision values.

This process reduces the bit rate required for transmission,

making the system more efficient. In this work, we investigate

two quantization schemes, i.e., uniform 8-bit quantization and

attention-based 4-bit quantization.

Specifically, the former is suitable for scenarios where a

lower but acceptable precision is sufficient, and it divides the

range of the semantic representation into uniform intervals,

each represented by an 8-bit value. The number of intervals

is determined by the quantization step size. The semantic

representation values are then mapped to the nearest interval

center, effectively reducing the precision of those regions.

This ensures that even the less critical regions are quantized

in a standardized and efficient manner, further contributing

to the overall efficiency of the system. The latter leverages

a spatial attention mechanism to identify and preserve the

details of critical regions by allocating higher precision to

them. Simultaneously, 4-bit quantization is applied to less

critical regions, converting their values into discrete 4-bit

representations. This approach ensures efficient utilization of

bandwidth, while maintaining the essential semantic details

of the image, and, in the meantime, enhances the robustness

of the transmitted data against wireless channel impairments.

This attention mechanism identifies critical regions within

the semantic representation that contain significant semantic

information, which is significant for preserving the overall

meaning and quality of the image.

B. Wireless Channel Modeling

The quantized latent codes are transmitted over the wireless

channel modeled as AWGN or Rayleigh fading. The VCSC

system addresses these channel impairments by incorporating

techniques to enhance the robustness of the transmitted signal.

This includes the design of the quantization process and the

integration of error correction mechanisms within the overall

communication pipeline.

C. Receiver

1) Dequantization Module: The main goal of the dequan-

tization module at the receiver is to reverse the quantization

process that was applied at the transmitter. When the quantized

latent codes are received, they undergo dequantization to

transform them back into a form that is compatible with the

semantic decoder. This critical step reconstructs the semantic

representation of the image, which was compressed during

quantization, preparing it for the final image reconstruction

process. The dequantization process reconstructs the original
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continuous values from discrete quantized data, or approxi-

mates them when exact recovery is infeasible. This minimizes

semantic information lost during quantization, allowing for a

more accurate recovery of the image details.

2) Semantic Decoder: The semantic decoder reconstructs

the original image from the dequantized latent code using

the Variational Autoencoder (VAE) decoder under the Stable

Diffusion [18]. This pretrained decoder mirrors the encoder’s

operations, ensuring perceptually consistent image reconstruc-

tion. The decoding process involves the following blocks:

1) Latent Expansion Block: The dequantized latent code is

projected into a higher-dimensional feature space through

a learnable transformation.

2) Residual Upsampling Block: A combination of upsam-

pling layers and residual blocks progressively restores

spatial resolution and enhances semantic consistency.

3) Convolutional Reconstruction Block: A final convolu-

tional layer transforms the refined feature maps into

the RGB image space, yielding the reconstructed output

image.

IV. PRETRAINED NETWORK FOR VISION-CENTERED

SEMANTIC TRANSMISSION FRAMEWORK WITH

QUANTIZATION

This section investigates the pretrained latent encoder-

decoder network with a quantization-dequantization mecha-

nism for the VCSC system. Before delving into the details, we

first summarize the notations in Table I, providing a concise

overview of the mathematical symbols introduced in this work.

TABLE I: Summary of Notations

Symbol Description

x Input image.
x̂ Reconstructed image.
Dsem Semantic distortion.
S Similarity function between x and x̂.
z Latent code of image.
µ(x) Mean vector.
σ(x) Standard deviation vector.
ǫ Gaussian noise vector ∼ N (0, I).
q Quantized latent code.
q̃ Received quantized code after channel noise.
z̃ Dequantized latent code at the receiver.
qhigh, qlow Quantized values by region importance (high vs. low).
qcom Combined quantized latent code with attention.
q̃com Received combined quantized code with attention.
s, shigh, slow Scale factors for quantization.
zmin, zmax Min and max values for uniform quantization.

z
high

min
, z

high
max Min and max values in high-attention regions.

zlow
min

, zlow
max Min and max values in low-attention regions.

C Number of channels in the latent code.
A(i, j) Attention value at spatial location (i, j).
Anorm(i, j) Normalized attention value.
M(i, j) Binary attention mask at location (i, j).
T Mask threshold.
Loss Loss function.
λ Weighting (trade-off) coefficient.

ν2 Noise variance in AWGN channel.
h(t) Time-varying Rayleigh fading coefficient.
fD Doppler frequency.
θn, φn Angle and phase used in Rayleigh channel model.

η Additive Gaussian noise in AWGN, η ∼ N (0, ν2).
SNR Signal-to-noise ratio.

A. Definition of Visual Semantics

In this work, we define visual semantics as the preserva-

tion of structural and semantic integrity in the latent space.

Formally, given an input image x and reconstructed image x̂,

semantic distortion Dsem can be expressed as:

Dsem = 1− S(x, x̂), (1)

where S denotes the similarity between the input image x and

reconstructed image x̂. Hence, our objective is to minimize

both structural and semantic distortion simultaneously. In

practice, S can be instantiated using perceptual or semantic

similarity metrics, including the Structural Similarity Index

(SSIM) [37], Contrastive Language-Image Pretraining (CLIP)

score [38], and Learned Perceptual Image Patch Similarity

(LPIPS) [39]. Additionally, the Frechet Inception Distance

(FID) [40] is employed to evaluate distributional alignment

between the reconstructed and original images, complementing

the semantic distortion measure.

B. Semantic Encoder of Transmitter with Quantization

1) Semantic Encoder: To extract the semantics of an image,

the semantic encoder processes an input image x and produces

a latent code z ∈ R
4×64×64. To enable stochastic sampling of

the latent code while preserving gradient flow during training,

the semantic encoder predicts the mean µ(x) and log-variance

logσ2(x) of the latent distribution, and samples z as:

z = µ(x) + σ(x)⊙ ǫ, ǫ ∼ N (0, I), (2)

where σ(x) = exp
(

1
2 logσ

2(x)
)

, and ⊙ denotes element-

wise multiplication. The random noise vector ǫ is drawn

from a standard Gaussian distribution. This formulation allows

the model to learn a smooth and expressive latent space for

semantic communication.

2) Quantization: To enable efficient transmission of the la-

tent code z, two quantization schemes are proposed to balance

compression efficiency and semantic fidelity, as described in

a) and b) below. Specifically, the uniform 8-bit quantization is

used when bandwidth is less constrained to prioritize recon-

struction fidelity, while the attention-based 4-bit quantization

is designed for strict bandwidth-limited scenarios by allocating

more bits to semantically important regions.

a) Uniform 8-bit Quantization: The latent code is quan-

tized uniformly to an 8-bit representation. First, the global

minimum and maximum values of z are computed as:

zmin = min(z), zmax = max(z), (3)

Based on these extrema, the scale factor s is determined as:

s =
255

zmax − zmin
, (4)

Using zmin and zmax defined in Eq. 3, the latent code is then

quantized by applying rounding and clipping within the valid

range, as follows:

q = clip
(

round
(

(z− zmin) · s
)

, 0, 255
)

, (5)

The uniform 8-bit quantization ensures efficient encoding

while maintaining the essential semantic structure of the latent

code.
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b) Attention-Based 4-bit Quantization: To further en-

hance compression efficiency while preserving semantic con-

tent, an alternative adaptive quantization scheme based on an

attention mechanism is proposed. This approach dynamically

adjusts the quantization precision based on the importance of

different spatial regions in the latent code.

First, an attention map A is computed to measure the

relative importance of each spatial location (i, j) across all

channels of z, as follows:

A(i, j) =
1

C

C
∑

c=1

|zc,i,j | , (6)

where C is the number of channels, and zc,i,j represents the

latent code at channel c and spatial location (i, j). This opera-

tion calculates the mean absolute activation over all channels,

highlighting regions with stronger responses. The choice of

mean absolute activation in Eq. 6 provides a computationally

efficient and stable measure of spatial importance. Regions

with stronger activations typically correspond to semantically

salient objects or structures in the scene.

Next, the attention map A in Eq. 6 is normalized to a range

of [0, 1] to facilitate thresholding, as follows:

Anorm(i, j) =
A(i, j)−min(A)

max(A) −min(A)
, (7)

Based on the normalized attention map Anorm, computed

from A in Eq. 6, a binary mask M is generated using a

predefined threshold T , as follows:

M(i, j) =

{

1, if Anorm(i, j) ≥ T,

0, otherwise,
(8)

where M(i, j) identifies important regions (M(i, j) = 1),

which are assigned a higher quantization precision, while less

significant regions (M(i, j) = 0) are assigned lower precision.

The threshold T is a tunable hyperparameter that determines

which spatial regions are assigned higher quantization preci-

sion. In this study, T was empirically set to 0.2 and 0.4, as

these values yielded a good balance between compression rate

and semantic fidelity during our experiments.

Two separate quantization schemes are then applied as

follows (see Eqs. 9 and 11):

High-precision (8-bit) quantization for important regions:

qhigh = clip
(

round
(

(z − z
high
min) · shigh

)

, 0, 255
)

, (9)

where z
high
min and z

high
max represent the minimum and maximum

values of z in high-importance regions, and the scale factor

shigh is defined as:

shigh =
255

z
high
max − z

high
min

, (10)

Low-precision (4-bit) quantization for less important re-

gions:

qlow = clip
(

round
(

(z− zlow
min) · slow

)

, 0, 15
)

, (11)

where zlow
min and zlow

max are the corresponding extrema for low-

importance regions, and the scale factor slow is:

slow =
15

zlow
max − zlow

min

, (12)

Finally, the two quantized representations are merged based

on the mask M :

qcom(i, j) =M(i, j) qhigh(i, j)+
(

1−M(i, j)
)

qlow(i, j), (13)

The attention-based 4-bit quantization ensures that impor-

tant regions retain high fidelity, while less critical regions are

compressed more aggressively, thereby achieving an effective

trade-off between compression rate and semantic preservation.

The current bit allocation strategy relies on min–max scaling

of activations within high- and low-attention regions, which

provides computational simplicity and efficiency. This design

is motivated by real-time transmission constraints in smart city

scenarios.

C. Receiver

At the receiver, the transmitted bitstream is first recovered

using channel decoding and demodulation, resulting in the

received quantized latent code q̃ (or q̃com for attention-based

4-bit quantization). The variable q̃ is the noisy version of the

transmitted code q after passing through the communication

channel, as described in detail in Section IV-E. The receiver

then reconstructs the latent code and ultimately the image as

follows.

1) Dequantization:

a) Uniform 8-bit Dequantization: For uniform quantiza-

tion, the latent code is recovered by inverting the quantization

process:

z̃ =
q̃

s
+ zmin, (14)

where q̃ is the received quantized latent code after transmission

through the channel, s = 255
zmax−zmin

is the quantization scale

factor, and zmin is the global minimum of the latent values.

b) Attention-Based 4-bit Dequantization: When an

attention-based 4-bit quantization is used, the recovered latent

code is computed according to the binary mask M :

z̃(i, j) =

{

q̃com(i,j)
shigh

+ z
high
min, if M(i, j) = 1,

q̃com(i,j)
slow

+ zlow
min, if M(i, j) = 0,

(15)

where q̃com(i, j) denotes the received attention-guided quan-

tized value at position (i, j), shigh and slow are the scale factors

for high- and low-importance regions, respectively, and z
high
min

and zlow
min are their corresponding minimum values used during

quantization.

2) Semantic Decoder: The semantic decoder reconstructs

the output image x̂ from the dequantized latent code z̃, mir-

roring the architecture of the semantic encoder. The semantic

decoder generates the reconstructed image:

x̂ = D(z̃), (16)

where D(·) denotes the pretrained decoder function.
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D. Pretrained Encoder–Decoder

The semantic encoder and decoder of VCSC are adopted

from the Stable Diffusion [18], which has been jointly pre-

trained on the large-scale LAION dataset, comprising approx-

imately 400 million image-text pairs. This pretrained network

provides a robust mapping between images and a lower-

dimensional latent space, endowing the system with strong

initial semantic representation capabilities. The loss function

used during pretraining is defined as:

Loss = ‖x− x̂‖22 + λ LPIPS(x, x̂), (17)

where ‖x − x̂‖22 is the reconstruction loss computed as the

squared Euclidean distance between x and x̂, LPIPS(x, x̂)
is the perceptual loss that measures semantic similarity via

deep feature comparisons [39], and λ is a hyperparameter

balancing the contribution of the perceptual loss relative to

the reconstruction loss.

E. Channel Model

The quantized data, represented as q (or qcom in the

attention-based scheme), is serialized into a byte stream and

transmitted over a noisy channel. To emulate realistic transmis-

sion conditions, two channel models are considered: AWGN

and Rayleigh fading.

The AWGN channel is modeled as:

q̃ = q + η, η ∼ N (0, ν2), (18)

where q is the transmitted quantized latent code, q̃ is the

received noisy version, and η is additive Gaussian noise with

variance ν2, determined by the target Signal-to-Noise Ratio

(SNR). The received code q̃ is then used for dequantization at

the receiver.

In environments such as smart cities, the channel is subject

to multipath fading, which is represented as a time-varying

Rayleigh fading channel with additive noise:

q̃(t) = h(t) · q(t) + η(t), η(t) ∼ N (0, ν2), (19)

where h(t) represents the time-varying fading coefficient. In

the implementation, h(t) is generated using a Jakes model:

h(t) =
1√
N

N
∑

n=1

exp
{

j
(

2πfD t cos θn + φn

)}

. (20)

with:

• N being the number of scatterers (e.g., 16),

• fD the Doppler frequency (e.g., 10 Hz),

• θn uniformly distributed over [0, 2π), and

• φn random phases uniformly distributed in [0, 2π).

This formulation yields a Rayleigh fading coefficient with

the appropriate time-variation, and the received quantized

code q̃(t) is used for dequantization and subsequent semantic

decoding. It is worth noting that channel noise is injected only

during the simulation stage to emulate realistic transmission

conditions, rather than in the training phase of the encoder–

decoder. This is consistent with the design of VAE, where the

encoder already introduces stochasticity via the reparameteri-

zation trick.

V. NUMERICAL RESULTS

In this section, the performance of the proposed VCSC is

compared with several baseline methods, including Huffman

coding, JPEG compression, and text-centered semantic com-

munication, under both AWGN and Rayleigh fading channels.

The experiments were conducted on a system equipped with

an Intel Core i7-9700 CPU and an NVIDIA GeForce RTX

4090 GPU.

A. Simulation Settings

1) Proposed VCSC: The encoder and decoder of the pro-

posed VCSC adopt the pretrained model of “stable-diffusion-

v1-5” [18]. The input image is first converted into a latent

code (of size 1 × 4 × 64 × 64) using the encoder. For

quantization, VCSC employs the uniform 8-bit quantization

(8-bit), and an alternative version with the attention-based 4-

bit quantization (4-bit-attn) is also evaluated. The quantized

latent code is then converted into a byte stream, transmitted

over a communication channel, and subsequently dequantized

at the receiver. Finally, the latent code is decoded back into

an image using the decoder.

2) Baseline Methods: For comparison, three alternative

methods were considered:

• Huffman. The original image is converted into a byte

stream and compressed using Huffman coding. The com-

pressed data is then transmitted over the communication

channel and decoded to recover the image.

• JPEG. JPEG compression is applied to the image using

a predetermined quality factor Q, which is set to 80
in the experiments because this value typically offers a

good balance between compression efficiency and image

quality. The resulting JPEG-compressed byte stream is

transmitted and decoded to reconstruct the image.

• Image-Text-Image Semantic Communication (ItISC).

ItISC was implemented to simulate the text-centered

semantic communication paradigm for image transmis-

sion. In ItISC, the original image is first processed by

a pretrained Bootstrapping Language-Image Pretraining

model (BLIP) [41] to generate a textual descriptive cap-

tion capturing the key semantic elements of the scene.

This caption, which encapsulates objects, actions, and

contextual relationships, is then encoded into a UTF-8

byte stream and transmitted. At the receiver, the trans-

mitted bit stream is demodulated and decoded to recover

the text. The recovered text is subsequently fed into

a Stable Diffusion model [18] text-to-image pipeline,

which generates an image that semantically corresponds

to the original input. Note that ItISC re-synthesizes an

image conditioned only on the transmitted caption, so it

is not expected to preserve low-level textures or exact

spatial details of the original image; therefore, weaker

LPIPS/FID scores are anticipated even when semantic

consistency is maintained.

For fairness, all baseline methods (JPEG, Huffman, and ItISC)

are transmitted with Turbo coding enabled, consistent with

the proposed VCSC. We do not include the semantic image

transmission and generative schemes in the literature [11]–[13]
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as quantitative baselines, since they are trained for a specific

dataset/channel setting, whereas our VCSC operates in the

frozen latent space of a pretrained diffusion model and targets

generalization across heterogeneous smart-city data without

fine-tuning.

3) Experimental Settings: All experiments are conducted

under a unified simulation framework. Both AWGN and

Rayleigh fading channels are simulated to assess performance

under varying channel conditions. Transmission is performed

using BPSK modulation/demodulation at a specified SNR (in

dB, where a higher SNR indicates lower noise power), with

additional tests conducted over a range of SNR values. To

enhance error resilience, Turbo coding is applied for channel

encoding and decoding in evaluated methods. Its implemen-

tation follows the approach in [42], utilizing the log-MAP

algorithm with 5 iterations.

B. Dataset Description and Evaluation Metrics

In this study, the proposed method was evaluated using

the Traffic Detection Project Dataset [43] and the SmartCity

Dataset [44]. The Traffic Detection Project Dataset offers a

rich collection of traffic camera images from various coun-

tries, providing diverse geographic coverage for global traffic

monitoring. Captured under diverse weather, lighting, and

traffic conditions, the dataset reflects real-world challenges.

It comprises 5805 training images and 279 test images. The

SmartCity Dataset was collected independently, comprising a

total of 50 images from 10 different urban environments, such

as office entrances, sidewalks, atriums, and shopping malls.

These images are all captured from a high-angle perspective,

mimicking typical video surveillance scenarios. This dataset

is intentionally designed to include both indoor and outdoor

scenes with relatively few pedestrians.

To quantitatively assess VCSC, four evaluation metrics are

employed: SSIM [37], CLIP [38], LPIPS [39], and FID [40].

SSIM score evaluates the structural similarity between the

original image x and the reconstructed image x̂ by considering

luminance, contrast, and structure. It is defined as:

SSIM Score =
(2p̄xp̄x̂ + κ1)(2ςpxx̂

+ κ2)

(p̄2
x
+ p̄2

x̂
+ κ1)(ς2px + ς2p

x̂

+ κ2)
, (21)

where p̄x and p̄
x̂

are the mean pixel values (i.e., average

intensity over all pixels in the image), ςpx and ςp
x̂

are the

corresponding standard deviations, and ςpxx̂
is the cross-

covariance between the two pixel-level images. The constants

κ1 = (K1L)
2 and κ2 = (K2L)

2 stabilize the division, where

L is the dynamic range, and K1,K2 are small constants.

CLIP score measures the semantic similarity between the

original image and the reconstructed image in the CLIP

embedding space by computing:

CLIP Score = cos(xe, x̂e), (22)

where xe and x̂e are the visual embeddings of the original

and reconstructed images, respectively.

LPIPS score evaluates the perceptual similarity between the

original and reconstructed images by comparing deep features

extracted from neural networks:

LPIPS Score =
∑

l

1

WlHl

∑

h,w

‖wl ⊙ (f lhw(x)− f lhw(x̂))‖22,

(23)

where f lhw(·) denotes the activation at location (h,w) in layer

l, and wl is a weighting vector.

FID score measures the similarity between the distributions

of original and reconstructed images by comparing their

feature representations extracted from a pretrained Inception

network. It is defined as:

FID Score = ‖χ̄− ψ̄‖22 +Tr
[

Σχ +Σψ − 2 (ΣχΣψ)
1

2

]

,

(24)

where χ̄ and ψ̄ are the mean feature vectors, and Σχ, Σψ are

the covariance matrices computed from the original image x

and reconstructed image x̂, respectively.

For SSIM and CLIP, higher values indicate better struc-

tural/semantic consistency, whereas for LPIPS and FID, lower

values are better as they measure perceptual distance and

distributional discrepancy, respectively.

C. Evaluation Results of VCSC and Various Methods

1) On the Traffic Detection Project Dataset: Fig. 3 com-

pares the proposed VCSC (8-bit) against three baseline ap-

proaches (Huffman, JPEG, and ItISC) under varying SNR con-

ditions in a communication channel for the Traffic Detection

Project Dataset.

Fig. 3a shows the results under the AWGN channel. Per-

formance trends emerge as the SNR increases from 0 dB to

25 dB:

• SSIM Score. VCSC rapidly increases from above 0.18

at 0 dB to above 0.75 by 5 dB, stabilizing around 0.78

beyond 10 dB. While Huffman and JPEG eventually reach

about 0.98 at 10 dB, their initial performance is weaker.

In contrast, ItISC consistently remains significantly lower

(around 0.15) across all SNR levels.

• CLIP Score. VCSC starts at above 0.5 at 0 dB, quickly

surpasses above 0.9 by 10 dB and remains near perfect at

higher SNRs. Huffman and JPEG reach a peak of nearly

1.0, but only after 10 dB. ItISC stabilizes around 0.6.

• LPIPS Score. VCSC starts at about 0.78 at 0 dB (lower

than Huffman at about 1.35 and JPEG at about 1.1), and

drops sharply to near 0.1 by 10 dB, maintaining stability

thereafter. ItISC stagnates above 0.75, failing to improve

perceptual fidelity.

• FID Score. VCSC begins at about 550, and rapidly

decreases to near 40 by 10 dB, outperforming all other

methods (Huffman, JPEG, and ItISC). ItISC remains

above 200, failing to enhance image quality at higher

SNRs.

Fig. 3b shows the results under the Rayleigh fading channel.

Performance trends emerge as the SNR increases from 0 dB

to 35 dB:

• SSIM Score. VCSC rapidly increases from about 0.1 at

0 dB to above 0.75 by 15 dB, stabilizing around 0.78 at
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(a) AWGN channel.

(b) Rayleigh fading channel.

Fig. 3: Performance comparison of VCSC and baseline methods (Huffman, JPEG, ItISC) on the Traffic Detection Project Dataset under (a) AWGN and (b)
Rayleigh fading channels across varying SNR levels.

(a) AWGN channel.

(b) Rayleigh fading channel.

Fig. 4: Performance comparison of VCSC and baseline methods (Huffman, JPEG, ItISC) on the SmartCity Dataset under (a) AWGN and (b) Rayleigh fading
channels across varying SNR levels.
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25 dB. In contrast, Huffman and JPEG show slower im-

provements, and Huffman only surpasses VCSC beyond

30 dB, while ItISC remains consistently below 0.2.

• CLIP Score. VCSC starts at about 0.45 at 0 dB, surpasses

0.9 by 20 dB, and maintains near-perfect scores at higher

SNR levels. Huffman and JPEG improve gradually, reach-

ing about 0.98 and about 0.78 respectively, while ItISC

remains stagnant around 0.6.

• LPIPS Score. VCSC starts at above 0.8 at 0 dB, lower

than Huffman (about 1.4) and JPEG (about 1.05), and

drops sharply to near 0.1 by 20 dB. ItISC remains above

0.75.

• FID Score. VCSC begins at about 700 at 0 dB and rapidly

decreases to near 40 by 20 dB, outperforming competing

methods (Huffman, JPEG, and ItISC). Meanwhile, ItISC

remains above 200, struggling to enhance image quality.

2) On the SmartCity Dataset: Fig. 4 presents a comparison

of the proposed VCSC (8-bit) against three baseline methods

(Huffman, JPEG, and ItISC) over a range of SNR values for

the SmartCity Dataset.

Fig. 4a presents the results for the AWGN channel. Per-

formance trends emerge as the SNR increases from 0 dB to

25 dB:

• SSIM Score. VCSC rapidly rises above 0.75 at 5 dB and

stabilizes near 0.78 by 10 dB, maintaining its advantage

over ItISC throughout. Although Huffman and JPEG

reach 0.98 at 20 dB, VCSC achieves high perceptual

quality much earlier, highlighting its robustness under

challenging channel conditions.

• CLIP Score. While Huffman and JPEG peak at 1.0 by

10 dB, VCSC closely follows at 0.98, demonstrating

superior consistency across noisy conditions. ItISC, in

contrast, lags behind at 0.6. The results confirm that

VCSC achieves high semantic fidelity while balancing

robustness in varying SNR conditions.

• LPIPS Score. VCSC starts at about 0.75 (lower than

Huffman/JPEG>1.0) at 0 dB, and quickly drops to about

0.1 by 10 dB, maintaining high visual quality across all

SNR levels. In contrast, ItISC remains high (about 0.8),

failing to improve significantly.

• FID Score. VCSC begins at around 560 (lower than

Huffman/JPEG at about 600), and drops sharply to around

30 by 10 dB, matching Huffman while significantly

outperforming ItISC (nearly 300 at high SNR).

Fig. 4b presents the results for the Rayleigh fading channel.

Performance trends emerge as the SNR increases from 0 dB

to 35 dB:

• SSIM Score. VCSC starts at about 0.1 at 0 dB, rapidly

increases beyond 0.75 by 10 dB, and stabilizes around

0.78 by 20 dB. In contrast, Huffman and JPEG improve

gradually, while ItISC remains stagnant below 0.2, high-

lighting VCSC’s superior adaptability.

• CLIP Score. VCSC starts at about 0.45 at 0 dB and

surpasses 0.95 by 20 dB. Huffman and JPEG peak at 0.85

and 0.95 respectively, while ItISC remains lower at 0.6,

confirming VCSC’s robustness in maintaining semantic

content.

• LPIPS Score. VCSC starts lower than Huffman (about

1.35) and JPEG (about 1.05) at 0 dB and drops sharply to

near 0.1 by 20 dB. Huffman and JPEG improve slowly,

while ItISC stagnates at approximately 0.8, demonstrating

its inefficiency.

• FID Score. VCSC begins at around 620, and plummets

to nearly 50 by 20 dB, outperforming all benchmarks

(Huffman, JPEG, and ItISC). In contrast, ItISC remains

above 300, indicating persistent degradation in high-SNR

conditions.

3) Comparison Results of VCSC between 8-bit and 4-bit-

attn: Fig. 5 compares the performance of the proposed VCSC

under different quantization settings: VCSC (8-bit) for 8-bit

uniform quantization, and VCSC (4-bit-attn-0.2) and VCSC

(4-bit-attn-0.4) for 4-bit attention quantization with thresholds

of 0.2 and 0.4, respectively. The results are compared against

JPEG on the SmartCity Dataset. The results are presented for

both the AWGN channel (Fig. 5a) and the Rayleigh fading

channel (Fig. 5b), illustrating how each method performs under

varying levels of channel noise.

Under the AWGN channel, VCSC (8-bit) achieves the high-

est SSIM and CLIP Score, demonstrating superior structural

and semantic fidelity. VCSC (4-bit-attn-0.2) and VCSC (4-

bit-attn-0.4) closely follow, especially at moderate to high

SNRs, while benefiting from reduced bit usage. VCSC (4-bit-

attn-0.2) tends to slightly outperform VCSC (4-bit-attn-0.4)

in preserving image quality, as reflected by higher SSIM and

CLIP scores and lower LPIPS and FID scores. In contrast,

JPEG shows a pronounced drop in performance at lower

SNRs, indicating lower resilience to noise.

Under the Rayleigh fading channel, VCSC (8-bit) achieves

the highest overall reconstruction quality, while VCSC (4-

bit-attn-0.2) and VCSC (4-bit-attn-0.4) exhibit comparable

performance in the mid to high SNR ranges, reinforcing the

effectiveness of attention-based quantization. Despite JPEG’s

competitive performance at higher SNR values, its image

reconstruction quality declines when facing harsh fading con-

ditions.

4) The Comparison Results of the Compression Rates:

Table II presents the compression rates for different methods

evaluated on the SmartCity Dataset, where the compression

rate is computed as the ratio between the compressed data size

(in bits) and the original image size (in bits). The table clearly

illustrates that VCSC methods achieve high compression ef-

ficiency, while Huffman and JPEG exhibit low compression

efficiency. Although ItISC applies aggressive compression, its

capacity to retain sufficient image details is limited. These

results highlight that the proposed VCSC offers a balanced

trade-off between compression efficiency and image quality.

Overall, the findings underscore the effectiveness of VCSC in

achieving robust image transmission with minimal bit usage,

especially under challenging wireless channel conditions.

5) Computational Overhead and Deployment Scenario:

Our intended deployment scenario follows a typical smart-

city pipeline [45], where resource-constrained cameras act

as transmitters and a data center performs the receiver-side

reconstruction. Table III reports the average per-image runtime

of different schemes. Compared with traditional compression
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(a) AWGN channel.

(b) Rayleigh fading channel.

Fig. 5: Comparison of VCSC with 8-bit uniform and 4-bit attention-based quantization (thresholds 0.2 and 0.4), evaluated on the SmartCity Dataset under (a)
AWGN and (b) Rayleigh fading channels. JPEG is included as a baseline.

TABLE II: Compression rates of VCSC and baselines, where the compression

rate is computed as
Compressed Bits

Original Bits
. A smaller value means stronger compres-

sion.

Method Compression Rate

ItISC 0.01%
JPEG 6.5%
Huffman 95.4%

VCSC (8-bit) 2.1%
VCSC (4-bit-attn-0.4) 1.7%
VCSC (4-bit-attn-0.2) 1.5%

(e.g., JPEG), VCSC introduces additional computation at the

transmitter due to semantic encoding, requiring about 93–

95 ms per image for both the 8-bit and the attention-guided

4-bit variants. Meanwhile, the receiver-side overhead is 187–

189 ms per image, which is lightweight for data center

deployment. Notably, despite this added encoding cost relative

to JPEG, VCSC remains substantially faster than ItISC and

Huffman on both sides. Overall, these results suggest that

VCSC is suitable for smart-city deployments with moderately

capable edge devices, while placing the heavier reconstruction

workload on the data center receiver.

D. Ablation Study

To further investigate the performance of the proposed

VCSC, an ablation study was conducted using the SmartCity

Dataset. This study systematically analyses key components

of the method, including the impact of different quantization

levels, the role of Turbo coding, and the resulting visual quality

of reconstructed images.

TABLE III: Average per-image runtime of different methods on the SmartCity
Dataset.

Method Transmitter (ms) Receiver (ms)

JPEG 1.8 2.3
ItISC 392.5 4342.1
Huffman 1031.2 2010.7

VCSC (8-bit) 93.8 188.7
VCSC (4-bit-attn) 94.9 187.5

1) Quantization: Fig. 6 presents an ablation study exam-

ining the impact of three uniform quantization levels (8-bit,

4-bit, and 2-bit) alongside a single attention-based variant (4-

bit-attn) with a threshold of 0.2 under AWGN (Fig. 6a) and

Rayleigh (Fig. 6b) channels.

Under the AWGN channel, VCSC (8-bit) achieves high

SSIM and CLIP scores and low LPIPS and FID scores, indicat-

ing its effectiveness in preserving both structural and semantic

information. VCSC (4-bit) and VCSC (2-bit) maintain stable

performance at moderate to high SNR values while reducing

the total bit rate. VCSC (4-bit-attn) demonstrates effective

noise mitigation by allocating more bits to high-attention

regions, leading to improved robustness in challenging con-

ditions.

In the Rayleigh fading channel scenario, VCSC (4-bit-attn)

maintains stability compared to VCSC (4-bit). While VCSC

(2-bit) faces challenges under fading conditions, VCSC (8-

bit) provides consistent reconstruction quality across all SNR

levels. These results suggest that leveraging attention maps

for adaptive quantization contributes to a balance between
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(a) AWGN channel.

(b) Rayleigh fading channel.

Fig. 6: Impact of uniform quantization (8-bit, 4-bit, 2-bit) and 4-bit attention-based quantization (threshold 0.2) on VCSC performance under (a) AWGN and
(b) Rayleigh fading channels.

(a) AWGN channel.

(b) Rayleigh fading channel.

Fig. 7: Performance comparison of VCSC and baselines (JPEG, Huffman, ItISC) without Turbo coding under (a) AWGN and (b) Rayleigh fading channels.
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Fig. 8: Visual comparison of reconstructed images from VCSC variants (8-bit, 4-bit, 4-bit-attn) and baseline methods (JPEG, Huffman, ItISC) across SNR
levels from 0 dB to 35 dB on the SmartCity Dataset.
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compression efficiency and reconstruction quality in wireless

transmission.

Table IV summarizes the compression rates for different

quantization methods on the SmartCity Dataset. As expected,

lower-bit quantization results in greater compression, with

VCSC (2-bit) providing the most reduction (0.5%) but at

the cost of performance degradation. The VCSC (4-bit-attn)

method strikes a balance between compression and recon-

struction quality: although its compression rate (1.7%) is

higher (i.e., less compression) than standard VCSC (4-bit,

1.0%), it delivers better reconstruction due to adaptive bit

allocation. By contrast, VCSC (8-bit) achieves a compression

rate of 2.1%, ensuring strong preservation of structural and

semantic information. These findings highlight the trade-off

between compression and reconstruction quality, reinforcing

the advantages of attention-based quantization in challenging

scenarios.

TABLE IV: Compression rates of VCSC with varying quantization schemes,

where the compression rate is computed as
Compressed Bits

Original Bits
. A smaller value

means stronger compression.

Method Compression Rate

VCSC (8-bit) 2.1%
VCSC (4-bit-attn) 1.7%
VCSC (4-bit) 1.0%
VCSC (2-bit) 0.5%

2) Without Turbo: Fig. 7 illustrates the performance of four

methods, VCSC (8-bit), JPEG, Huffman, and ItISC, when

Turbo coding is removed, under both AWGN (Fig. 7a) and

Rayleigh (Fig. 7b) channels. SSIM, CLIP Score, LPIPS, and

FID are reported across varying SNR values.

In the AWGN channel, VCSC maintains stable SSIM,

CLIP, LPIPS, and FID scores, indicating that latent-space

transmission provides strong resilience against noise. JPEG,

Huffman, and ItISC exhibit rapid performance degradation,

with Huffman being particularly sensitive to channel impair-

ments.

Under the Rayleigh fading channel, VCSC continues to

demonstrate resilience across SSIM, CLIP, LPIPS, and FID

scores, maintaining relatively stable performance in chal-

lenging conditions. These findings highlight the effectiveness

of VCSC’s latent-space approach in scenarios where Turbo

coding is absent.

3) Visualization: Fig. 8 provides a visual comparison of

reconstructed images produced by various methods across a

range of SNR values (0 dB to 35 dB). The figure includes

results from VCSC (8-bit), VCSC (4-bit), and VCSC (4-bit-

attn) with a threshold of 0.2, alongside baseline methods such

as JPEG, Huffman, and ItISC. Several key observations can

be drawn from the visualization:

• VCSC (8-bit). VCSC (8-bit) effectively preserves struc-

tural details and maintains clear semantic content across

different SNR values. The reconstructed images exhibit

minimal artifacts and maintain a strong resemblance to

the original input.

• VCSC (4-bit) vs. VCSC (4-bit-attn). While VCSC (4-bit)

shows some degradation due to reduced bit depth, VCSC

(4-bit-attn) mitigates these effects by allocating higher

precision to regions of importance. As a result, VCSC

(4-bit-attn) retains structural clarity and semantic infor-

mation, particularly in challenging channel conditions.

• Baseline Methods. JPEG, Huffman, and ItISC experi-

ence significant quality degradation at low SNR levels.

Artifacts become noticeable, and fine details are lost,

indicating low resilience to channel noise. In contrast,

VCSC methods demonstrate smooth transitions and re-

duced distortions as SNR increases.

• SNR Impact. At low SNR values (e.g., 0 dB to 10

dB), all methods exhibit degradation; however, VCSC

methods, particularly VCSC (8-bit) and VCSC (4-bit-

attn), retain recognizable features. As SNR improves

(above 25 dB), the differences in reconstruction quality

diminish, but VCSC methods continue to produce images

that are perceptually close to the original compared to the

baselines.

Overall, the visual comparison highlights the effective-

ness of the proposed VCSC, particularly when enhanced by

attention-based quantization, in preserving both structural and

semantic information under noisy channel conditions.

VI. CONCLUSION

This paper introduced the VCSC system tailored for effi-

cient image transmission in smart city environments. Unlike

conventional compression and text-centered semantic com-

munication methods, VCSC directly encodes images into

a compact latent code using a pretrained encoder–decoder

network, ensuring high-fidelity reconstructions while signifi-

cantly reducing bandwidth requirements. The proposed VCSC

also integrates an attention-based quantization strategy to

dynamically allocate bit precision to semantically important

regions, enhancing compression efficiency without sacrificing

perceptual quality. Comprehensive evaluations across AWGN

and Rayleigh fading channel models demonstrate that VCSC

consistently outperforms traditional methods such as JPEG,

Huffman coding, and text-centered image transmission in

terms of SSIM, CLIP, LPIPS, and FID scores. The results

highlight VCSC’s robustness against channel impairments and

its ability to preserve both structural and semantic information,

making it well-suited for real-world applications such as

smart city surveillance, traffic monitoring, and infrastructure

management.

Future work will focus on refining the proposed quantization

strategy to further improve the trade-off between compres-

sion efficiency and reconstruction fidelity, particularly under

dynamic wireless channel conditions. In addition, we will

investigate adaptive coding and bit-allocation mechanisms to

enhance transmission robustness and efficiency across varying

SNR regimes.
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[43] Y. B. Sardoğan, “Traffic detection project,”
2023, accessed: 2025-03-04. [Online]. Available:
https://www.kaggle.com/datasets/yusufberksardoan/traffic-detection-
project

[44] L. Zhang, M. Shi, and Q. Chen, “Crowd counting via scale-adaptive con-
volutional neural network,” in Proc. IEEE Winter Conf. Appl. Comput.
Vis. IEEE, 2018, pp. 1113–1121.

[45] D. Pudasaini and A. Abhari, “Edge-based video analytic for smart
cities,” International Journal of Advanced Computer Science and Appli-

cations, vol. 12, no. 7, 2021.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2026.3656549

© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on January 26,2026 at 12:35:47 UTC from IEEE Xplore.  Restrictions apply. 



16

Yan Gong is a Lecturer in Computer Science
at the School of Computing and Engineering,
Bournemouth University, UK. He received his PhD
in Computer Science from Loughborough University
in 2023. His primary research interests include NLP,
cross-modal learning, generative AI, and AI agents.
Prior to his PhD, he gained over six years of industry
experience as an AI engineer, developing a strong
understanding of practical AI applications and their
impact on the technology sector.

Zheng Chu (Member, IEEE) is an Assistant Pro-
fessor with Department of Electrical and Electronic
Engineering, The University of Nottingham Ningbo
China. Prior to this, he held positions in Univer-
sity of Surrey, from 2017 to 2024, and Middlesex
University, from 2016 to 2017, respectively. He
received MSc and Ph.D. degrees from Newcastle
University, Newcastle-upon Tyne, UK, in 2012 and
2016, respectively. His current research interests
include 6G communications, IoT networks, Rydberg
atomic receiver, polarforming antenna, Space-air-

ground integrated networks, smart mobility and transportation, as well as AI-
empowered future networks. He received the Exemplary Reviewer for IEEE
TRANSACTIONS ON COMMUNICATIONS in 2022, and the Best Paper
Awards of IEEE/CIC UCOM (2024 and 2025), IEEE ICCT (2024), and EAI
CHINACOM (2024).

Zhengyu Zhu (Senior Member, IEEE) received
the Ph.D. degree in information engineering from
Zhengzhou University, Zhengzhou, China, in 2017.
From October 2013 to October 2015, he visited the
Communication and Intelligent System Laboratory,
Korea University, Seoul, South Korea, to conduct
a collaborative research as a Visiting Student. He
is currently a professor with Zhengzhou University.
He served as an Associate Editor for the IEEE
SENSOR JOURNAL, IEEE SYSTEMS JOURNAL,
JOURNAL OF COMMUNICATIONS AND NET-

WORKS, the PHYSICAL COMMUNICATIONS. His research interests in-
clude information theory and signal processing for wireless communications
such as B5G/6G, Intelligent reflecting surface, Internet of Things, machine
learning, millimeter wave communication, UAV communication, physical
layer security, convex optimization techniques, and energy harvesting com-
munication systems.

Pei Xiao (Senior Member, IEEE) is currently
a Professor of wireless communications with
the Institute for Communication Systems,
University of Surrey, Guildford, U.K. He is
also a Technical Manager of 5GIC/6GIC,
leading the research team in the new physical
layer work area, and coordinating/supervising
research activities across all the work
areas (https://www.surrey.ac.uk/institute-
communicationsystems/5g-6g-innovation-centre).
He was with Newcastle University and Queen’s

University Belfast. He also held positions with Nokia Networks, Finland. He
has authored or coauthored extensively in the fields of communication theory,
RF and antenna design, signal processing for wireless communications, and
is an inventor on more than 15 recent patents addressing bottleneck problems
in 5G/6G systems.

Ming Zeng (Member, IEEE) received the B.E.
and master’s degrees from Beijing University of
Posts and Telecommunications, Beijing, China, in
2013 and 2016, respectively, and the Ph.D. de-
gree in telecommunications engineering from the
Memorial University of Newfoundland, St. John’s,
NL, Canada, in 2020. He is currently an Associate
Professor and a Canada Research Chair with the
Department of Electrical and Computer Engineering,
Laval University, Quebec City, QC, Canada. He has
published more than 140 articles and conferences in

first-tier IEEE journals and proceedings, and his work has been cited over 5900
times per Google Scholar. His research interests include resource allocation
for beyond 5G systems and machine learning-empowered optical communi-
cations. He serves as an Associate Editor for IEEE TRANSACTIONS ON
COMMUNICATIONS, IEEE OPEN JOURNAL OF THE COMMUNICA-
TIONS SOCIETY, and IEEE WIRELESS COMMUNICATIONS LETTERS.

Yi Wang is currently an Associate Professor with the
School of Electronics and Information, Zhengzhou
University of Aeronautics, China. He received B.S.
degree from Information Engineering University,
Zhengzhou, China, in 2006, and the M.S. and Ph.D.
degrees from the school of information science and
engineering, Southeast University, China, in 2009
and 2016, respectively. His current research interests
include massive MIMO, energy-efficient communi-
cation, UAV-aided communication, physical layer
security, wireless power transfer and intelligent re-

flecting surface-aided wireless communication. He received the best paper
awards of the IEEE WCSP in 2015.

Hari Pandey is a Senior Lecturer in Data Science
and Artificial Intelligence at the School of Comput-
ing and Engineering, Bournemouth University, UK.
He is featured in Stanford University’s 2021-2025
list of the world’s top 2% scientists. Hari’s exper-
tise lies in Computer Science & Engineering, with
research interests in artificial intelligence, machine
learning, deep learning, natural language processing,
Large Language Models (LLMs), soft computing,
and computer vision. He has authored several books,
including State of the Art on Grammatical Inference

Using Evolutionary Method (Elsevier), and has published over 180 papers in
leading journals and conferences. He serves on the editorial boards of major
journals such as Neural Networks, Applied Soft Computing, and multiple
IEEE Transactions, and regularly reviews for top international conferences.
He is a Fellow of the UK Higher Education Academy, an award-winning aca-
demic, and has delivered keynote and invited talks worldwide. Previously, he
held academic and research positions at Edge Hill University and Middlesex
University London, where he worked as a Research Fellow on the EU-funded
DREAM4CARS project.

Jingrui Hou received his PhD from Loughborough
University, UK. He is currently a Postdoctoral Re-
searcher at the School of Information Management,
Wuhan University. His primary research interests
include artificial intelligence governance and natural
language processing.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2026.3656549

© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on January 26,2026 at 12:35:47 UTC from IEEE Xplore.  Restrictions apply. 


