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Abstract—This paper introduces a Vision-Centered Semantic
Communication (VCSC) system tailored for efficient image trans-
mission in smart city environments, where bandwidth is limited
and channels are subject to severe noise. Unlike conventional text-
centered or classical compression approaches, VCSC leverages
a pretrained latent encoder-decoder network to extract com-
pact, semantically rich representations directly from images. An
innovative attention-based quantization strategy is employed to
selectively allocate higher precision to critical regions, thereby
reducing the overall bit rate while preserving essential semantic
details. The quantized latent codes are robustly transmitted over
wireless channels modeled with additive white Gaussian noise and
Rayleigh fading. An end-to-end training framework minimizes
both reconstruction and perceptual losses, ensuring high-fidelity
image recovery even under adverse conditions. Extensive simula-
tions demonstrate that VCSC outperforms traditional methods in
preserving fine-grained details and semantic integrity, offering a
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promising solution for real-time surveillance, transportation, and
infrastructure monitoring in smart cities.

Index Terms—Semantic communication, smart city, image
transmission, latent code, and quantization.

I. INTRODUCTION

The widespread deployment of high-resolution cameras in
smart city applications has led to an exponential increase in
visual data transmission demands [1]. Real-time video surveil-
lance, intelligent transportation systems, and automated in-
frastructure monitoring require efficient image communication
over bandwidth-limited and noise-prone wireless networks.
These camera networks act as a critical component of urban
sensing, continuously capturing visual information to sup-
port city-scale perception and decision-making. Conventional
image compression methods, such as JPEG [2], struggle to
maintain acceptable visual quality under extreme noise condi-
tions or stringent bandwidth constraints [3]. Meanwhile, text-
centered semantic communication (TCSC) approaches, which
convert images into textual descriptions before reconstruction,
often discard critical low-level details, making them unsuitable
for tasks requiring precise spatial and texture information [4].
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Fig. 1: Comparison of text-centered and vision-centered semantic communi-
cation. Vision-centered semantic communication transmits image features to
preserve spatial details, while text-centered semantic communication transmits
text descriptions, which may discard fine-grained visual details.

To address these challenges, this paper proposes a vision-
centered semantic communication (VCSC) system in smart
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city environments, as illustrated in Fig. 1. This approach rep-
resents a promising paradigm, prioritizing the transmission of
essential visual semantics while preserving spatial fidelity. Fig.
1 illustrates the fundamental difference between TCSC and
VCSC schemes. Specifically, in the TCSC scheme, an image
is first transformed into a textual description, which is then
transmitted and used to reconstruct an image. However, this
process leads to significant information loss, often resulting
in structurally inaccurate and visually distorted outputs. In
contrast, the VCSC system directly encodes images into com-
pact latent code, allowing for faithful reconstructions while
ensuring robustness against channel impairments. Instead of
relying on text-centered descriptions, VCSC leverages a pre-
trained latent encoder—decoder model to transform images into
compact, semantically meaningful representations. These rep-
resentations are then quantized and transmitted over wireless
channels modeled with additive white Gaussian noise (AWGN)
and Rayleigh fading. At the receiver, a decoder reconstructs the
image by minimizing perceptual loss, thereby ensuring high-
quality reconstructions even under challenging transmission
conditions.

From an application perspective, VCSC is particularly at-
tractive for bandwidth-limited edge-camera deployments in
real-world domains. Typical use cases include city-wide traffic
monitoring (e.g., roadside cameras at intersections) and public-
safety surveillance, where uplink capacity is constrained but
timely and faithful visual reconstruction is required for sit-
uational awareness. VCSC can also support smart-city in-
frastructure monitoring (e.g., bridges, tunnels, and railways)
using UAVs or mobile robots over intermittent wireless links,
enabling more robust image recovery than conventional codecs
under harsh channel conditions.

The main contribution of this paper is summarized as
follows:

e VCSC Framework: A novel vision-centered semantic
transmission framework is proposed, which encodes im-
ages into a semantically rich latent space, preserving
both structural details and semantic integrity under noisy
conditions.

« Attention-Based Adaptive Quantization: Unlike uni-
form quantization, an adaptive quantization strategy dy-
namically allocates bit precision to semantically signif-
icant regions, enhancing compression efficiency without
compromising key image details.

o Comprehensive Evaluation and Benchmarking: Exten-
sive experiments are conducted to compare VCSC with
traditional image compression techniques (JPEG, Huff-
man coding) and text-centered semantic communication
methods. The results demonstrate that VCSC consistently
achieves superior performance in structural similarity,
perceptual quality, and robustness against wireless chan-
nel impairments.

The remainder of this paper is organized as follows. Sec-
tion II reviews advancements in semantic communication
and learned image compression. Section III describes the
proposed VCSC. Section IV presents the proposed VCSC
framework with quantization. Section V presents experimental

evaluations, while Section V-D analyses the impact of design
choices. Finally, Section VI concludes the paper and discusses
future directions.

II. RELATED WORK

In recent years, semantic communication has revolution-
ized wireless transmission by prioritizing the preservation
of essential meaning over bit-precision accuracy [5], [6].
This paradigm shift involves encoding and decoding semantic
content directly, rather than treating an image merely as a
collection of symbols devoid of inherent semantics [7]. In
[8], the authors introduced a semantic communication model
that integrates a dynamic decision generation network and a
generative adversarial network, effectively reducing required
bandwidth while maintaining critical task-related information.
In addition, Han et al. [9] explored the integration of genera-
tive models in semantic communication systems to enhance
transmission efficiency and robustness. The aforementioned
studies underscored that encoding the latent semantic content
of an image offers greater resilience to noise and relaxes the
bandwidth requirement in comparison to traditional pipeline-
based codecs.

A. Semantic Communication and Image Transmission

Early studies on semantic communication emphasized trans-
mitting meaning beyond symbol-level accuracy and were
mainly discussed in the context of text or symbolic mes-
sages [10]. Building on this concept, an important line of
research has developed vision-centered pipelines that follow
an image—feature—image paradigm, where compact latent em-
beddings are transmitted to preserve both high-level semantics
and local structures [11]. Representative works include end-
to-end deep joint source—channel coding for semantic image
transmission [12] and its attention-enhanced variants that
prioritize informative latent regions to improve robustness
under wireless impairments [13]. However, these methods are
typically trained end-to-end for specific datasets and channel
settings, and may require re-training when the data domain
changes, which can limit generalization and increase the risk
of overfitting, and this is a key concern for heterogeneous
smart-city environments. More recently, the emergence of
large pretrained models has enabled text-centered semantic
communication, where images are converted into captions
and the receiver re-synthesizes images from the transmitted
text [14], [15]. While such pretrained priors can improve
generalization, the image—text—image pipeline often loses fine-
grained spatial details, making it less suitable for smart-
city image transmission that demands faithful reconstruction.
Therefore, we propose VCSC, which revisits the image—
feature—image paradigm while leveraging a pretrained latent
image representation to better balance generalization and spa-
tial fidelity in smart-city deployments.

B. Learned Image Compression and Latent Space Models

The advent of deep learning has opened new avenues in
learned image compression [16]. Pioneering works introduced

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on January 26,2026 at 12:35:47 UTC from IEEE Xplore. Restrictions apply.
© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2026.3656549

autoencoders that map images into compact latent code, sur-
passing classical codecs like JPEG in certain rate—distortion
trade-offs [17]. Latent diffusion models have advanced the
field by jointly learning semantic and structural features
across multiple levels of granularity [18]. These latent mod-
els excel at capturing semantically relevant details even at
significantly reduced spatial dimensions. For example, Jia et
al. [19] explored the characteristics of latent space modeling
in generative image compression, establishing a framework
that effectively captures semantic content. Furthermore, Liu et
al. [8] proposed a semantic communication model that inte-
grates a dynamic decision generation network and a generative
adversarial network, enhancing image reconstruction quality
through adversarial and perceptual losses. These approaches
are particularly valuable for real-time surveillance in crowded
or bandwidth-limited scenarios.

C. Quantization Techniques for Semantic Image Transmission

Semantic image compression and transmission pipelines
rely on quantization as a critical step to turn continuous
deep features into compact discrete codes [20]. Early efforts
often employed scalar quantizers that independently quantized
individual coefficients [21]. With advancement of deep learn-
ing, researchers began integrating end-to-end differentiable
quantization modules into convolutional or recurrent networks,
ensuring that quantization errors are optimized for semantic
relevance rather than mere pixel-level distortion [22]. Recent
works extend this concept to scenarios with fluctuating channel
conditions by dynamically adjusting quantization parameters
based on channel feedback or error statistics [23]. Genera-
tive and adversarial models also employ sophisticated vector
quantization strategies, enabling decoders to reconstruct high-
quality images even when parts of the quantized code are lost
or corrupted [24].

D. Semantic Robustness Under Noisy Channels

Smart city deployments frequently encounter dynamic in-
terference and severe multipath fading, posing significant
challenges for reliable image transmission [25], [26]. Tra-
ditional source and channel coding strategies often struggle
to maintain image fidelity without increasing bit rates [27].
Recent studies have shown that coupling semantic encoding
with adaptive channel modeling can mitigate these effects in
resource-limited IoT devices [28], [29]. For example, Wang
et al. [30] introduced a perceptual learned source-channel
coding approach for high-fidelity image semantic transmission,
combining encoder, wireless channel, decoder, and discrim-
inator, which are jointly learned under both perceptual and
adversarial losses, resulting in improved robustness against
channel impairments. Similarly, Han et al. [9] proposed a
generative model-based semantic communication approach
that leverages GAN inversion methods to extract interpretable
latent code, enhancing transmission efficiency and robustness.
However, these methods are typically trained for specific
channel settings, which limits their adaptability to the diverse
and dynamic wireless conditions in smart-city environments.

E. Semantic Communication for Smart City Imaging

As smart cities continue to evolve, integrating semantic
communication into urban imaging systems presents promis-
ing avenues for innovation [31]. One such advancement is
federated learning, which enhances data trustworthiness and
user participation in large-scale smart city sensing by en-
abling collaborative model training without centralized data
collection, thereby addressing privacy and security concerns
[32], [33]. Another advancement is the application of deep
learning to efficient image transmission and analysis in traffic
monitoring and infrastructure inspection, as it effectively cap-
tures complex data patterns [34]. Furthermore, the integration
of edge computing with semantic communication frameworks
allows for real-time data processing closer to the end users,
which reduces latency and bandwidth usage, which is crucial
for time-sensitive smart city applications [35], [36]. However,
the capabilities of pretrained networks have not been fully
explored in smart city applications.

III. VCSC SYSTEM DESCRIPTION

As shown in Fig. 2, a VCSC system is a pretrained latent
encoder-decoder network and is designed to exploit the latent
space for efficient image transmission over wireless channels,
aiming to preserve essential semantic information compared
to the traditional TCSC counterpart. This VCSC system com-
prises two main parts: a transmitter and a receiver, connected
by a wireless channel (i.e., AWGN or Rayleigh fading).
Particularly, the transmitter is responsible for processing the
input image from the camera and preparing it for transmission,
which is composed of a semantic encoder and a quantization
module. After processing at the transmitter, the image can be
converted and represented by the quantized latent codes, which
are fed into the wireless channel, where the quantized latent
codes are transmitted. Without loss of generality and for sim-
plicity, the wireless semantic transmission is assumed to occur
under the AWGN or Rayleigh fading channel. After the wire-
less channel, the receiver aims to recover the transmitted image
from these received quantized latent codes. Accordingly, the
receiver comprises a dequantization module and a semantic
decoder. The following subsections are detailed descriptions
of each module of the system model under investigation.

A. Transmitter

1) Semantic Encoder: The semantic encoder transforms the
input image into a compact latent code using the VAE encoder
under the Stable Diffusion [18]. This pretrained encoder
facilitates the extraction of semantically meaningful features
while significantly reducing spatial redundancy. The encoding
process comprises the following blocks:

1) Convolutional Downsampling Block: A convolutional
layer followed by downsampling operations extracts low-
level features and reduces the spatial resolution of the
input image.

ii) Residual Abstraction Block: A stack of residual blocks
refines the feature maps, capturing mid-level semantic
information and improving representational depth.
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Fig. 2: The proposed VCSC system: the transmitter employs a semantic encoder and quantization modules to compress an image into a compact latent
code, which is then transmitted over a noisy channel (e.g., AWGN or Rayleigh fading). At the receiver, dequantization and semantic decoding are applied to

reconstruct the image.

iii) Latent Reparameterization Block: The encoder predicts
the mean and variance of the latent distribution and
applies the reparameterization trick to sample the latent
code. This process yields a compact and expressive rep-
resentation suitable for robust transmission.

2) Quantization Module: After generating the semantic
representation, the encoder passes it to the quantization mod-
ule, which plays a crucial role in preparing the semantic
representation of the image for efficient transmission over the
wireless channel.

The primary purpose of the quantization module is to
reduce the amount of data that needs to be transmitted while
ensuring that the most important information is preserved
by converting the continuous or high-precision values of the
semantic representation into discrete or lower-precision values.
This process reduces the bit rate required for transmission,
making the system more efficient. In this work, we investigate
two quantization schemes, i.e., uniform 8-bit quantization and
attention-based 4-bit quantization.

Specifically, the former is suitable for scenarios where a
lower but acceptable precision is sufficient, and it divides the
range of the semantic representation into uniform intervals,
each represented by an 8-bit value. The number of intervals
is determined by the quantization step size. The semantic
representation values are then mapped to the nearest interval
center, effectively reducing the precision of those regions.
This ensures that even the less critical regions are quantized
in a standardized and efficient manner, further contributing
to the overall efficiency of the system. The latter leverages
a spatial attention mechanism to identify and preserve the
details of critical regions by allocating higher precision to

them. Simultaneously, 4-bit quantization is applied to less
critical regions, converting their values into discrete 4-bit
representations. This approach ensures efficient utilization of
bandwidth, while maintaining the essential semantic details
of the image, and, in the meantime, enhances the robustness
of the transmitted data against wireless channel impairments.
This attention mechanism identifies critical regions within
the semantic representation that contain significant semantic
information, which is significant for preserving the overall
meaning and quality of the image.

B. Wireless Channel Modeling

The quantized latent codes are transmitted over the wireless
channel modeled as AWGN or Rayleigh fading. The VCSC
system addresses these channel impairments by incorporating
techniques to enhance the robustness of the transmitted signal.
This includes the design of the quantization process and the
integration of error correction mechanisms within the overall
communication pipeline.

C. Receiver

1) Dequantization Module: The main goal of the dequan-
tization module at the receiver is to reverse the quantization
process that was applied at the transmitter. When the quantized
latent codes are received, they undergo dequantization to
transform them back into a form that is compatible with the
semantic decoder. This critical step reconstructs the semantic
representation of the image, which was compressed during
quantization, preparing it for the final image reconstruction
process. The dequantization process reconstructs the original
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continuous values from discrete quantized data, or approxi-
mates them when exact recovery is infeasible. This minimizes
semantic information lost during quantization, allowing for a
more accurate recovery of the image details.

2) Semantic Decoder: The semantic decoder reconstructs
the original image from the dequantized latent code using
the Variational Autoencoder (VAE) decoder under the Stable
Diffusion [18]. This pretrained decoder mirrors the encoder’s
operations, ensuring perceptually consistent image reconstruc-
tion. The decoding process involves the following blocks:

1) Latent Expansion Block: The dequantized latent code is
projected into a higher-dimensional feature space through
a learnable transformation.

2) Residual Upsampling Block: A combination of upsam-
pling layers and residual blocks progressively restores
spatial resolution and enhances semantic consistency.

3) Convolutional Reconstruction Block: A final convolu-
tional layer transforms the refined feature maps into
the RGB image space, yielding the reconstructed output
image.

IV. PRETRAINED NETWORK FOR VISION-CENTERED
SEMANTIC TRANSMISSION FRAMEWORK WITH
QUANTIZATION

This section investigates the pretrained latent encoder-
decoder network with a quantization-dequantization mecha-
nism for the VCSC system. Before delving into the details, we
first summarize the notations in Table I, providing a concise
overview of the mathematical symbols introduced in this work.

TABLE I: Summary of Notations

Symbol Description

X Input image.

bd Reconstructed image.

Dsgem Semantic distortion.

S Similarity function between x and X.

z Latent code of image.

Mean vector.

Standard deviation vector.

€ Gaussian noise vector ~ N'(0,TI).

q Quantized latent code.

q Received quantized code after channel noise.

Z Dequantized latent code at the receiver.

Ghigh Qlow Quantized values by region importance (high vs. low).
Qeom Combined quantized latent code with attention.

Geom Received combined quantized code with attention.

Scale factors for quantization.
Min and max values for uniform quantization.

S, Shigh, Slow

Zmin, #max

h:;’}:l, z?,',%:'x Min and max values in high-attention regions.
oW L 2low  Min and max values in low-attention regions.
Number of channels in the latent code.

A, 7) Attention value at spatial location (3, 5).

Anorm (%, 7) Normalized attention value.

M(i,35) Binary attention mask at location (%, j).

T Mask threshold.

Loss Loss function.

A Weighting (trade-off) coefficient.

v? Noise variance in AWGN channel.

h(t) Time-varying Rayleigh fading coefficient.

o Doppler frequency.

On, On Angle and phase used in Rayleigh channel model.

n Additive Gaussian noise in AWGN, 1 ~ N (0, 2?).

SNR Signal-to-noise ratio.

A. Definition of Visual Semantics

In this work, we define visual semantics as the preserva-
tion of structural and semantic integrity in the latent space.
Formally, given an input image x and reconstructed image X,
semantic distortion D, can be expressed as:

Dsem =1~ S(X7 )A()a (1)

where S denotes the similarity between the input image x and
reconstructed image X. Hence, our objective is to minimize
both structural and semantic distortion simultaneously. In
practice, S can be instantiated using perceptual or semantic
similarity metrics, including the Structural Similarity Index
(SSIM) [37], Contrastive Language-Image Pretraining (CLIP)
score [38], and Learned Perceptual Image Patch Similarity
(LPIPS) [39]. Additionally, the Frechet Inception Distance
(FID) [40] is employed to evaluate distributional alignment
between the reconstructed and original images, complementing
the semantic distortion measure.

B. Semantic Encoder of Transmitter with Quantization

1) Semantic Encoder: To extract the semantics of an image,
the semantic encoder processes an input image x and produces
a latent code z € R**64%64 To enable stochastic sampling of
the latent code while preserving gradient flow during training,
the semantic encoder predicts the mean p(x) and log-variance
log a?(x) of the latent distribution, and samples z as:

z=px)+ox)0e, €~N(0I), 2)

where o(x) = exp (3logo?(x)), and © denotes element-
wise multiplication. The random noise vector € is drawn
from a standard Gaussian distribution. This formulation allows
the model to learn a smooth and expressive latent space for
semantic communication.

2) Quantization: To enable efficient transmission of the la-
tent code z, two quantization schemes are proposed to balance
compression efficiency and semantic fidelity, as described in
a) and b) below. Specifically, the uniform 8-bit quantization is
used when bandwidth is less constrained to prioritize recon-
struction fidelity, while the attention-based 4-bit quantization
is designed for strict bandwidth-limited scenarios by allocating
more bits to semantically important regions.

a) Uniform 8-bit Quantization: The latent code is quan-
tized uniformly to an 8-bit representation. First, the global
minimum and maximum values of z are computed as:

Zmin = MIN(Z), Zmax = max(z), 3)

Based on these extrema, the scale factor s is determined as:

s= 0 @

Zmax — “min
Using zmin and zpy,.x defined in Eq. 3, the latent code is then
quantized by applying rounding and clipping within the valid
range, as follows:

g = dlip (round((z — Zmin) - 8), 0, 255), (5)

The uniform 8-bit quantization ensures efficient encoding
while maintaining the essential semantic structure of the latent
code.
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b) Attention-Based 4-bit Quantization: To further en-
hance compression efficiency while preserving semantic con-
tent, an alternative adaptive quantization scheme based on an
attention mechanism is proposed. This approach dynamically
adjusts the quantization precision based on the importance of
different spatial regions in the latent code.

First, an attention map A is computed to measure the
relative importance of each spatial location (4,7) across all
channels of z, as follows:

C
. 1
A(l,]) = 6 Z |ZC,i,j| ) (6)
c=1

where C' is the number of channels, and z.; ; represents the
latent code at channel ¢ and spatial location (i, 7). This opera-
tion calculates the mean absolute activation over all channels,
highlighting regions with stronger responses. The choice of
mean absolute activation in Eq. 6 provides a computationally
efficient and stable measure of spatial importance. Regions
with stronger activations typically correspond to semantically
salient objects or structures in the scene.

Next, the attention map A in Eq. 6 is normalized to a range
of [0,1] to facilitate thresholding, as follows:

A(i,7) — min(A)
max(A) — min(A)’

Anorm(iuj) = (7

Based on the normalized attention map Apem, computed
from A in Eq. 6, a binary mask M is generated using a
predefined threshold 7', as follows:

L, if Anorm (4, 5) > T,

M(i,5) =
(i-9) 0, otherwise,

®)

where M (i,j) identifies important regions (M (i,5) = 1),
which are assigned a higher quantization precision, while less
significant regions (M (i, 7) = 0) are assigned lower precision.
The threshold 7' is a tunable hyperparameter that determines
which spatial regions are assigned higher quantization preci-
sion. In this study, 7' was empirically set to 0.2 and 0.4, as
these values yielded a good balance between compression rate
and semantic fidelity during our experiments.

Two separate quantization schemes are then applied as
follows (see Eqgs. 9 and 11):

High-precision (8-bit) quantization for important regions:

. high
Ghigh = clip (round((z — ) - shigh), 0, 255), 9)
high high .. .
where 2z 5 and zmax represent the minimum and maximum
values of z in high-importance regions, and the scale factor
Shign 18 defined as:

255

high high ’
Zmax — Zmin

Shigh = (10)

Low-precision (4-bit) quantization for less important re-
gions:

Giow = clip (round((z - zig‘f’n) . slow), 0, 15), (11

where 21°% and z1°% are the corresponding extrema for low-

importance regions, and the scale factor sjoy is:
15

low __ ZIOW ’
max min

Slow = (12)
Finally, the two quantized representations are merged based
on the mask M:

Geom (4, 5) = M (4, 5) Gnign (4, 5)+ (1= M (3, 5)) qiow (i, 5), (13)

The attention-based 4-bit quantization ensures that impor-
tant regions retain high fidelity, while less critical regions are
compressed more aggressively, thereby achieving an effective
trade-off between compression rate and semantic preservation.
The current bit allocation strategy relies on min—max scaling
of activations within high- and low-attention regions, which
provides computational simplicity and efficiency. This design
is motivated by real-time transmission constraints in smart city
scenarios.

C. Receiver

At the receiver, the transmitted bitstream is first recovered
using channel decoding and demodulation, resulting in the
received quantized latent code ¢ (or gecom for attention-based
4-bit quantization). The variable ¢ is the noisy version of the
transmitted code ¢ after passing through the communication
channel, as described in detail in Section IV-E. The receiver
then reconstructs the latent code and ultimately the image as
follows.

1) Degquantization:

a) Uniform 8-bit Dequantization: For uniform quantiza-
tion, the latent code is recovered by inverting the quantization
process:

2= + Zmin, (14)
where ¢ is the received quantized latent code after transmission
through the channel, s = % is the quantization scale
factor, and zpi, is the global minimum of the latent values.

b) Attention-Based 4-bit Dequantization: When an
attention-based 4-bit quantization is used, the recovered latent
code is computed according to the binary mask M:

Geon(is) | Migh e o g
Z(’L,]) = qco:]héhj) + ZE;N 1 (7’7]) ) (15)
s 4zt if M(i,7) =0,

where Geom(%,j) denotes the received attention-guided quan-
tized value at position (3, j), Shigh and sjow are the scale factors
for high- and low-importance regions, respectively, and zgfg
and 2%V are their corresponding minimum values used during
quantization.

2) Semantic Decoder: The semantic decoder reconstructs
the output image X from the dequantized latent code z, mir-
roring the architecture of the semantic encoder. The semantic
decoder generates the reconstructed image:

% = D(2), (16)

where D(-) denotes the pretrained decoder function.

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on January 26,2026 at 12:35:47 UTC from IEEE Xplore. Restrictions apply.
© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2026.3656549

D. Pretrained Encoder—Decoder

The semantic encoder and decoder of VCSC are adopted
from the Stable Diffusion [18], which has been jointly pre-
trained on the large-scale LAION dataset, comprising approx-
imately 400 million image-text pairs. This pretrained network
provides a robust mapping between images and a lower-
dimensional latent space, endowing the system with strong
initial semantic representation capabilities. The loss function
used during pretraining is defined as:

Loss = ||x — %||? + A\ LPIPS(x, %), (17)

where ||x — %||3 is the reconstruction loss computed as the
squared Euclidean distance between x and %, LPIPS(x, X)
is the perceptual loss that measures semantic similarity via
deep feature comparisons [39], and A is a hyperparameter
balancing the contribution of the perceptual loss relative to
the reconstruction loss.

E. Channel Model

The quantized data, represented as ¢ (or gecom in the
attention-based scheme), is serialized into a byte stream and
transmitted over a noisy channel. To emulate realistic transmis-
sion conditions, two channel models are considered: AWGN
and Rayleigh fading.

The AWGN channel is modeled as:

n~N(0,1%),

where ¢ is the transmitted quantized latent code, ¢ is the
received noisy version, and 7 is additive Gaussian noise with
variance 1%, determined by the target Signal-to-Noise Ratio
(SNR). The received code ¢ is then used for dequantization at
the receiver.

In environments such as smart cities, the channel is subject
to multipath fading, which is represented as a time-varying
Rayleigh fading channel with additive noise:

q(t) = h(t) - q(t) +0(t), n(t) ~N(0,v?),

where h(t) represents the time-varying fading coefficient. In
the implementation, h(t) is generated using a Jakes model:

Gg=q-+mn, (18)

19)

h(t) = \/% ij:lexp{j (2wa tcosf, + ¢>n) } (20)

with:

o NN being the number of scatterers (e.g., 16),

o fp the Doppler frequency (e.g., 10 Hz),

e 0, uniformly distributed over [0, 27), and

e ¢, random phases uniformly distributed in [0, 27).
This formulation yields a Rayleigh fading coefficient with
the appropriate time-variation, and the received quantized
code ¢(t) is used for dequantization and subsequent semantic
decoding. It is worth noting that channel noise is injected only
during the simulation stage to emulate realistic transmission
conditions, rather than in the training phase of the encoder—
decoder. This is consistent with the design of VAE, where the
encoder already introduces stochasticity via the reparameteri-
zation trick.

V. NUMERICAL RESULTS

In this section, the performance of the proposed VCSC is
compared with several baseline methods, including Huffman
coding, JPEG compression, and text-centered semantic com-
munication, under both AWGN and Rayleigh fading channels.
The experiments were conducted on a system equipped with
an Intel Core 17-9700 CPU and an NVIDIA GeForce RTX
4090 GPU.

A. Simulation Settings

1) Proposed VCSC: The encoder and decoder of the pro-
posed VCSC adopt the pretrained model of “stable-diffusion-
v1-5” [18]. The input image is first converted into a latent
code (of size 1 x 4 x 64 x 64) using the encoder. For
quantization, VCSC employs the uniform 8-bit quantization
(8-bit), and an alternative version with the attention-based 4-
bit quantization (4-bit-attn) is also evaluated. The quantized
latent code is then converted into a byte stream, transmitted
over a communication channel, and subsequently dequantized
at the receiver. Finally, the latent code is decoded back into
an image using the decoder.

2) Baseline Methods: For comparison, three alternative
methods were considered:

o Huffman. The original image is converted into a byte
stream and compressed using Huffman coding. The com-
pressed data is then transmitted over the communication
channel and decoded to recover the image.

o JPEG. JPEG compression is applied to the image using
a predetermined quality factor (), which is set to 80
in the experiments because this value typically offers a
good balance between compression efficiency and image
quality. The resulting JPEG-compressed byte stream is
transmitted and decoded to reconstruct the image.

o Image-Text-Image Semantic Communication (ItISC).
ItISC was implemented to simulate the text-centered
semantic communication paradigm for image transmis-
sion. In ItISC, the original image is first processed by
a pretrained Bootstrapping Language-Image Pretraining
model (BLIP) [41] to generate a textual descriptive cap-
tion capturing the key semantic elements of the scene.
This caption, which encapsulates objects, actions, and
contextual relationships, is then encoded into a UTF-8
byte stream and transmitted. At the receiver, the trans-
mitted bit stream is demodulated and decoded to recover
the text. The recovered text is subsequently fed into
a Stable Diffusion model [18] text-to-image pipeline,
which generates an image that semantically corresponds
to the original input. Note that ItISC re-synthesizes an
image conditioned only on the transmitted caption, so it
is not expected to preserve low-level textures or exact
spatial details of the original image; therefore, weaker
LPIPS/FID scores are anticipated even when semantic
consistency is maintained.

For fairness, all baseline methods (JPEG, Huffman, and ItISC)
are transmitted with Turbo coding enabled, consistent with
the proposed VCSC. We do not include the semantic image
transmission and generative schemes in the literature [11]-[13]
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as quantitative baselines, since they are trained for a specific
dataset/channel setting, whereas our VCSC operates in the
frozen latent space of a pretrained diffusion model and targets
generalization across heterogeneous smart-city data without
fine-tuning.

3) Experimental Settings: All experiments are conducted
under a unified simulation framework. Both AWGN and
Rayleigh fading channels are simulated to assess performance
under varying channel conditions. Transmission is performed
using BPSK modulation/demodulation at a specified SNR (in
dB, where a higher SNR indicates lower noise power), with
additional tests conducted over a range of SNR values. To
enhance error resilience, Turbo coding is applied for channel
encoding and decoding in evaluated methods. Its implemen-
tation follows the approach in [42], utilizing the log-MAP
algorithm with 5 iterations.

B. Dataset Description and Evaluation Metrics

In this study, the proposed method was evaluated using
the Traffic Detection Project Dataset [43] and the SmartCity
Dataset [44]. The Traffic Detection Project Dataset offers a
rich collection of traffic camera images from various coun-
tries, providing diverse geographic coverage for global traffic
monitoring. Captured under diverse weather, lighting, and
traffic conditions, the dataset reflects real-world challenges.
It comprises 5805 training images and 279 test images. The
SmartCity Dataset was collected independently, comprising a
total of 50 images from 10 different urban environments, such
as office entrances, sidewalks, atriums, and shopping malls.
These images are all captured from a high-angle perspective,
mimicking typical video surveillance scenarios. This dataset
is intentionally designed to include both indoor and outdoor
scenes with relatively few pedestrians.

To quantitatively assess VCSC, four evaluation metrics are
employed: SSIM [37], CLIP [38], LPIPS [39], and FID [40].

SSIM score evaluates the structural similarity between the
original image x and the reconstructed image X by considering
luminance, contrast, and structure. It is defined as:

(2ﬁxl_75c + Hl)(2gpx& + ’{2)

SSIM Score = — =
(P2 + 3 + K1)(s2, + <2 + ka2)

, @D

where px and pi are the mean pixel values (i.e., average
intensity over all pixels in the image), g, and g,  are the
corresponding standard deviations, and ¢, is the cross-
covariance between the two pixel-level images. The constants
k1 = (K1L)? and ko = (K2L)? stabilize the division, where
L is the dynamic range, and K, Ko are small constants.

CLIP score measures the semantic similarity between the
original image and the reconstructed image in the CLIP
embedding space by computing:

CLIP Score = cos(Xe, Xe ), (22)

where x. and X, are the visual embeddings of the original
and reconstructed images, respectively.

LPIPS score evaluates the perceptual similarity between the
original and reconstructed images by comparing deep features
extracted from neural networks:

1 )
LPIPS Score = » _ W D lwr © (fruw(x) = fhuw(X))3,
l h,w

(23)
where f! () denotes the activation at location (h, w) in layer
l, and w; is a weighting vector.

FID score measures the similarity between the distributions
of original and reconstructed images by comparing their
feature representations extracted from a pretrained Inception
network. It is defined as:

FID Score = || — 9|2 + Tr [EX +3, - 2(5,2)% ],
(24)

where Yy and 1/; are the mean feature vectors, and X, X, are
the covariance matrices computed from the original image x
and reconstructed image X, respectively.

For SSIM and CLIP, higher values indicate better struc-
tural/semantic consistency, whereas for LPIPS and FID, lower
values are better as they measure perceptual distance and
distributional discrepancy, respectively.

C. Evaluation Results of VCSC and Various Methods

1) On the Traffic Detection Project Dataset: Fig. 3 com-
pares the proposed VCSC (8-bit) against three baseline ap-
proaches (Huffman, JPEG, and ItISC) under varying SNR con-
ditions in a communication channel for the Traffic Detection
Project Dataset.

Fig. 3a shows the results under the AWGN channel. Per-
formance trends emerge as the SNR increases from 0dB to
25dB:

e SSIM Score. VCSC rapidly increases from above 0.18
at 0dB to above 0.75 by 5dB, stabilizing around 0.78
beyond 10 dB. While Huffman and JPEG eventually reach
about 0.98 at 10dB, their initial performance is weaker.
In contrast, ItISC consistently remains significantly lower
(around 0.15) across all SNR levels.

e CLIP Score. VCSC starts at above 0.5 at 0dB, quickly
surpasses above 0.9 by 10dB and remains near perfect at
higher SNRs. Huffman and JPEG reach a peak of nearly
1.0, but only after 10dB. ItISC stabilizes around 0.6.

o LPIPS Score. VCSC starts at about 0.78 at 0dB (lower
than Huffman at about 1.35 and JPEG at about 1.1), and
drops sharply to near 0.1 by 10dB, maintaining stability
thereafter. ItISC stagnates above 0.75, failing to improve
perceptual fidelity.

e FID Score. VCSC begins at about 550, and rapidly
decreases to near 40 by 10dB, outperforming all other
methods (Huffman, JPEG, and ItISC). ItISC remains
above 200, failing to enhance image quality at higher
SNRs.

Fig. 3b shows the results under the Rayleigh fading channel.
Performance trends emerge as the SNR increases from 0dB
to 35dB:

e SSIM Score. VCSC rapidly increases from about 0.1 at

0dB to above 0.75 by 15dB, stabilizing around 0.78 at
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Fig. 3: Performance comparison of VCSC and baseline methods (Huffman, JPEG, ItISC) on the Traffic Detection Project Dataset under (a) AWGN and (b)
Rayleigh fading channels across varying SNR levels.
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Fig. 4: Performance comparison of VCSC and baseline methods (Huftman, JPEG, ItISC) on the SmartCity Dataset under (a) AWGN and (b) Rayleigh fading
channels across varying SNR levels.
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25dB. In contrast, Huffman and JPEG show slower im-
provements, and Huffman only surpasses VCSC beyond
30 dB, while ItISC remains consistently below 0.2.

e CLIP Score. VCSC starts at about 0.45 at 0dB, surpasses
0.9 by 20dB, and maintains near-perfect scores at higher
SNR levels. Huffman and JPEG improve gradually, reach-
ing about 0.98 and about 0.78 respectively, while ItISC
remains stagnant around 0.6.

o LPIPS Score. VCSC starts at above 0.8 at 0dB, lower
than Huffman (about 1.4) and JPEG (about 1.05), and
drops sharply to near 0.1 by 20dB. ItISC remains above
0.75.

o FID Score. VCSC begins at about 700 at 0 dB and rapidly
decreases to near 40 by 20dB, outperforming competing
methods (Huffman, JPEG, and ItISC). Meanwhile, ItISC
remains above 200, struggling to enhance image quality.

2) On the SmartCity Dataset: Fig. 4 presents a comparison
of the proposed VCSC (8-bit) against three baseline methods
(Huffman, JPEG, and ItISC) over a range of SNR values for
the SmartCity Dataset.

Fig. 4a presents the results for the AWGN channel. Per-
formance trends emerge as the SNR increases from 0dB to
25dB:

o SSIM Score. VCSC rapidly rises above 0.75 at 5 dB and
stabilizes near 0.78 by 10 dB, maintaining its advantage
over ItISC throughout. Although Huffman and JPEG
reach 0.98 at 20 dB, VCSC achieves high perceptual
quality much earlier, highlighting its robustness under
challenging channel conditions.

e CLIP Score. While Huffman and JPEG peak at 1.0 by
10 dB, VCSC closely follows at 0.98, demonstrating
superior consistency across noisy conditions. ItISC, in
contrast, lags behind at 0.6. The results confirm that
VCSC achieves high semantic fidelity while balancing
robustness in varying SNR conditions.

e LPIPS Score. VCSC starts at about 0.75 (lower than
Huffman/JPEG>1.0) at 0 dB, and quickly drops to about
0.1 by 10 dB, maintaining high visual quality across all
SNR levels. In contrast, ItISC remains high (about 0.8),
failing to improve significantly.

e FID Score. VCSC begins at around 560 (lower than
Huffman/JPEG at about 600), and drops sharply to around
30 by 10 dB, matching Huffman while significantly
outperforming ItISC (nearly 300 at high SNR).

Fig. 4b presents the results for the Rayleigh fading channel.
Performance trends emerge as the SNR increases from 0dB
to 35dB:

o SSIM Score. VCSC starts at about 0.1 at 0dB, rapidly
increases beyond 0.75 by 10dB, and stabilizes around
0.78 by 20dB. In contrast, Huffman and JPEG improve
gradually, while ItISC remains stagnant below 0.2, high-
lighting VCSC’s superior adaptability.

e CLIP Score. VCSC starts at about 0.45 at 0dB and
surpasses 0.95 by 20dB. Huffman and JPEG peak at 0.85
and 0.95 respectively, while ItISC remains lower at 0.6,
confirming VCSC’s robustness in maintaining semantic
content.

10

e LPIPS Score. VCSC starts lower than Huffman (about
1.35) and JPEG (about 1.05) at 0 dB and drops sharply to
near 0.1 by 20dB. Huffman and JPEG improve slowly,
while ItISC stagnates at approximately 0.8, demonstrating
its inefficiency.

o FID Score. VCSC begins at around 620, and plummets
to nearly 50 by 20dB, outperforming all benchmarks
(Huffman, JPEG, and ItISC). In contrast, ItISC remains
above 300, indicating persistent degradation in high-SNR
conditions.

3) Comparison Results of VCSC between 8-bit and 4-bit-
attn: Fig. 5 compares the performance of the proposed VCSC
under different quantization settings: VCSC (8-bit) for 8-bit
uniform quantization, and VCSC (4-bit-attn-0.2) and VCSC
(4-bit-attn-0.4) for 4-bit attention quantization with thresholds
of 0.2 and 0.4, respectively. The results are compared against
JPEG on the SmartCity Dataset. The results are presented for
both the AWGN channel (Fig. 5a) and the Rayleigh fading
channel (Fig. 5b), illustrating how each method performs under
varying levels of channel noise.

Under the AWGN channel, VCSC (8-bit) achieves the high-
est SSIM and CLIP Score, demonstrating superior structural
and semantic fidelity. VCSC (4-bit-attn-0.2) and VCSC (4-
bit-attn-0.4) closely follow, especially at moderate to high
SNRs, while benefiting from reduced bit usage. VCSC (4-bit-
attn-0.2) tends to slightly outperform VCSC (4-bit-attn-0.4)
in preserving image quality, as reflected by higher SSIM and
CLIP scores and lower LPIPS and FID scores. In contrast,
JPEG shows a pronounced drop in performance at lower
SNRs, indicating lower resilience to noise.

Under the Rayleigh fading channel, VCSC (8-bit) achieves
the highest overall reconstruction quality, while VCSC (4-
bit-attn-0.2) and VCSC (4-bit-attn-0.4) exhibit comparable
performance in the mid to high SNR ranges, reinforcing the
effectiveness of attention-based quantization. Despite JPEG’s
competitive performance at higher SNR values, its image
reconstruction quality declines when facing harsh fading con-
ditions.

4) The Comparison Results of the Compression Rates:
Table II presents the compression rates for different methods
evaluated on the SmartCity Dataset, where the compression
rate is computed as the ratio between the compressed data size
(in bits) and the original image size (in bits). The table clearly
illustrates that VCSC methods achieve high compression ef-
ficiency, while Huffman and JPEG exhibit low compression
efficiency. Although ItISC applies aggressive compression, its
capacity to retain sufficient image details is limited. These
results highlight that the proposed VCSC offers a balanced
trade-off between compression efficiency and image quality.
Overall, the findings underscore the effectiveness of VCSC in
achieving robust image transmission with minimal bit usage,
especially under challenging wireless channel conditions.

5) Computational Overhead and Deployment Scenario:
Our intended deployment scenario follows a typical smart-
city pipeline [45], where resource-constrained cameras act
as transmitters and a data center performs the receiver-side
reconstruction. Table III reports the average per-image runtime
of different schemes. Compared with traditional compression
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Fig. 5: Comparison of VCSC with 8-bit uniform and 4-bit attention-based quantization (thresholds 0.2 and 0.4), evaluated on the SmartCity Dataset under (a)

AWGN and (b) Rayleigh fading channels. JPEG is included as a baseline.

TABLE II: Compression rates of VCSC and baselines, where the compression

Compressed Bits
SOMPIESSES B8 A smaller value means stronger compres-

rate is computed as Original Bits

sion.
Method Compression Rate
ItISC 0.01%
JPEG 6.5%
Huffman 95.4%
VCSC (8-bit) 2.1%
VCSC (4-bit-attn-0.4) 1.7%
VCSC (4-bit-attn-0.2) 1.5%

(e.g., JPEG), VCSC introduces additional computation at the
transmitter due to semantic encoding, requiring about 93—
95 ms per image for both the 8-bit and the attention-guided
4-bit variants. Meanwhile, the receiver-side overhead is /87—
189 ms per image, which is lightweight for data center
deployment. Notably, despite this added encoding cost relative
to JPEG, VCSC remains substantially faster than ItISC and
Huffman on both sides. Overall, these results suggest that
VCSC is suitable for smart-city deployments with moderately
capable edge devices, while placing the heavier reconstruction
workload on the data center receiver.

D. Ablation Study

To further investigate the performance of the proposed
VCSC, an ablation study was conducted using the SmartCity
Dataset. This study systematically analyses key components
of the method, including the impact of different quantization
levels, the role of Turbo coding, and the resulting visual quality
of reconstructed images.

TABLE III: Average per-image runtime of different methods on the SmartCity
Dataset.

Method Transmitter (ms) Receiver (ms)
JPEG 1.8 2.3
TtISC 392.5 4342.1
Huffman 1031.2 2010.7
VCSC (8-bit) 93.8 188.7
VCSC (4-bit-attn) 94.9 187.5

1) Quantization: Fig. 6 presents an ablation study exam-
ining the impact of three uniform quantization levels (8-bit,
4-bit, and 2-bit) alongside a single attention-based variant (4-
bit-attn) with a threshold of 0.2 under AWGN (Fig. 6a) and
Rayleigh (Fig. 6b) channels.

Under the AWGN channel, VCSC (8-bit) achieves high
SSIM and CLIP scores and low LPIPS and FID scores, indicat-
ing its effectiveness in preserving both structural and semantic
information. VCSC (4-bit) and VCSC (2-bit) maintain stable
performance at moderate to high SNR values while reducing
the total bit rate. VCSC (4-bit-attn) demonstrates effective
noise mitigation by allocating more bits to high-attention
regions, leading to improved robustness in challenging con-
ditions.

In the Rayleigh fading channel scenario, VCSC (4-bit-attn)
maintains stability compared to VCSC (4-bit). While VCSC
(2-bit) faces challenges under fading conditions, VCSC (8-
bit) provides consistent reconstruction quality across all SNR
levels. These results suggest that leveraging attention maps
for adaptive quantization contributes to a balance between
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Fig. 6: Impact of uniform quantization (8-bit, 4-bit, 2-bit) and 4-bit attention-based quantization (threshold 0.2) on VCSC performance under (a) AWGN and

(b) Rayleigh fading channels.
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Fig. 7: Performance comparison of VCSC and baselines (JPEG, Huffman, ItISC) without Turbo coding under (a) AWGN and (b) Rayleigh fading channels.
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Fig. 8: Visual comparison of reconstructed images from VCSC variants (8-bit, 4-bit, 4-bit-attn) and baseline methods (JPEG, Huffman, ItISC) across SNR
levels from 0 dB to 35 dB on the SmartCity Dataset.
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compression efficiency and reconstruction quality in wireless
transmission.

Table IV summarizes the compression rates for different
quantization methods on the SmartCity Dataset. As expected,
lower-bit quantization results in greater compression, with
VCSC (2-bit) providing the most reduction (0.5%) but at
the cost of performance degradation. The VCSC (4-bit-attn)
method strikes a balance between compression and recon-
struction quality: although its compression rate (1.7%) is
higher (i.e., less compression) than standard VCSC (4-bit,
1.0%), it delivers better reconstruction due to adaptive bit
allocation. By contrast, VCSC (8-bit) achieves a compression
rate of 2.1%, ensuring strong preservation of structural and
semantic information. These findings highlight the trade-off
between compression and reconstruction quality, reinforcing
the advantages of attention-based quantization in challenging
scenarios.

TABLE IV: Compression rates of VCSC with varying quantization schemes,

. . C 4 Bit
where the compression rate is computed as —a P eSCCBIS A gmaller value

N Original Bits
means stronger compression.

Method Compression Rate
VCSC (8-bit) 2.1%
VCSC (4-bit-attn) 1.7%
VCSC (4-bit) 1.0%
VCSC (2-bit) 0.5%

2) Without Turbo: Fig. 7 illustrates the performance of four
methods, VCSC (8-bit), JPEG, Huffman, and ItISC, when
Turbo coding is removed, under both AWGN (Fig. 7a) and
Rayleigh (Fig. 7b) channels. SSIM, CLIP Score, LPIPS, and
FID are reported across varying SNR values.

In the AWGN channel, VCSC maintains stable SSIM,
CLIP, LPIPS, and FID scores, indicating that latent-space
transmission provides strong resilience against noise. JPEG,
Huffman, and ItISC exhibit rapid performance degradation,
with Huffman being particularly sensitive to channel impair-
ments.

Under the Rayleigh fading channel, VCSC continues to
demonstrate resilience across SSIM, CLIP, LPIPS, and FID
scores, maintaining relatively stable performance in chal-
lenging conditions. These findings highlight the effectiveness
of VCSC’s latent-space approach in scenarios where Turbo
coding is absent.

3) Visualization: Fig. 8 provides a visual comparison of
reconstructed images produced by various methods across a
range of SNR values (0 dB to 35 dB). The figure includes
results from VCSC (8-bit), VCSC (4-bit), and VCSC (4-bit-
attn) with a threshold of 0.2, alongside baseline methods such
as JPEG, Huffman, and ItISC. Several key observations can
be drawn from the visualization:

o VCSC (8-bit). VCSC (8-bit) effectively preserves struc-
tural details and maintains clear semantic content across
different SNR values. The reconstructed images exhibit
minimal artifacts and maintain a strong resemblance to
the original input.

e VCSC (4-bit) vs. VCSC (4-bit-attn). While VCSC (4-bit)
shows some degradation due to reduced bit depth, VCSC
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(4-bit-attn) mitigates these effects by allocating higher
precision to regions of importance. As a result, VCSC
(4-bit-attn) retains structural clarity and semantic infor-
mation, particularly in challenging channel conditions.

o Baseline Methods. JPEG, Huffman, and ItISC experi-
ence significant quality degradation at low SNR levels.
Artifacts become noticeable, and fine details are lost,
indicating low resilience to channel noise. In contrast,
VCSC methods demonstrate smooth transitions and re-
duced distortions as SNR increases.

e SNR Impact. At low SNR values (e.g., 0 dB to 10
dB), all methods exhibit degradation; however, VCSC
methods, particularly VCSC (8-bit) and VCSC (4-bit-
attn), retain recognizable features. As SNR improves
(above 25 dB), the differences in reconstruction quality
diminish, but VCSC methods continue to produce images
that are perceptually close to the original compared to the
baselines.

Overall, the visual comparison highlights the effective-
ness of the proposed VCSC, particularly when enhanced by
attention-based quantization, in preserving both structural and
semantic information under noisy channel conditions.

VI. CONCLUSION

This paper introduced the VCSC system tailored for effi-
cient image transmission in smart city environments. Unlike
conventional compression and text-centered semantic com-
munication methods, VCSC directly encodes images into
a compact latent code using a pretrained encoder—decoder
network, ensuring high-fidelity reconstructions while signifi-
cantly reducing bandwidth requirements. The proposed VCSC
also integrates an attention-based quantization strategy to
dynamically allocate bit precision to semantically important
regions, enhancing compression efficiency without sacrificing
perceptual quality. Comprehensive evaluations across AWGN
and Rayleigh fading channel models demonstrate that VCSC
consistently outperforms traditional methods such as JPEG,
Huffman coding, and text-centered image transmission in
terms of SSIM, CLIP, LPIPS, and FID scores. The results
highlight VCSC’s robustness against channel impairments and
its ability to preserve both structural and semantic information,
making it well-suited for real-world applications such as
smart city surveillance, traffic monitoring, and infrastructure
management.

Future work will focus on refining the proposed quantization
strategy to further improve the trade-off between compres-
sion efficiency and reconstruction fidelity, particularly under
dynamic wireless channel conditions. In addition, we will
investigate adaptive coding and bit-allocation mechanisms to
enhance transmission robustness and efficiency across varying
SNR regimes.
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