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Abstract

Given the limited efficacy of current interventions and the complexity of chronic pain,
identifying perpetuating factors is crucial for uncovering new mechanistic pathways and
treatment targets. The oral and gut microbiome has emerged as a potential modulator
of pain through immune, metabolic, and neural mechanisms. Contemporary evidence
indicates that chronic pain populations exhibit altered oral and gut microbiota, character-
ized by reduced short-chain fatty acid (SCFA)-producing taxa and an overrepresentation
of pro-inflammatory species. These compositional changes affect metabolites such as SC-
FAs, bile acids, and microbial cell wall components, which interact with host receptors to
promote peripheral and central sensitization. Microbiota-derived metabolites modulate
peripheral sensitization by altering nociceptive neuron excitability and stimulating immune
cells to release pro-inflammatory cytokines that increase blood–brain barrier permeability,
activate microglia, and amplify neuroinflammation. Activated microglia further disrupt the
balance between excitatory and inhibitory neurotransmission by enhancing glutamatergic
activity and weakening GABAergic signaling, thereby contributing to the induction and
maintenance of central sensitization. While observational studies establish associations
between dysbiosis and chronic pain, animal models and early human fecal microbiota
transplantation studies suggest a potential causal role of dysbiosis in pain, although human
evidence remains preliminary and influenced by diet, lifestyle, and comorbidities. Overall,
microbiota appears to regulate pain via peripheral and central mechanisms, and targeting
it through specific interventions, such as dietary modulation to enhance SCFA production,
alongside broader lifestyle measures like sleep, physical activity, stress management, and
oral hygiene, may represent a new therapeutic strategy for the management of chronic pain.
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1. Introduction
Chronic pain represents a major public health challenge. Low back and neck pain are

the most common chronic pain conditions and rank among the leading causes of years
lived with disability worldwide, with persistently high prevalence across regions and
age groups [1,2]. In 2021, an estimated 629 million people experienced low back pain,
and 253 million experienced neck pain [1], numbers projected to rise to 955 million and
281 million, respectively, by 2050 [1]. Low back and neck pain combined were the second
leading cause of disability-adjusted life years (DALYs) globally in 2021, accounting for
90.6 million DALYs (95% UI, 63.8–123.0 million) [1]. Beyond personal suffering, chronic
pain also imposes substantial economic costs, with direct healthcare expenditures and
productivity losses in the United States alone estimated at $560–635 billion annually [3].
Current treatments, including nonpharmacological strategies such as cognitive behavioral
therapy, exercise, and multidisciplinary care, provide meaningful benefits for many pa-
tients [4,5]. However, treatment effects are often modest, and a considerable proportion
of individuals continue to experience persistent pain and functional limitations despite
appropriate care [6–8]. This limited effectiveness may reflect the complex pathophysiology
of chronic pain, which involves low-grade systemic inflammation [9,10] and central sen-
sitization [11], defined as an amplification of neural signaling within the central nervous
system that elicits pain hypersensitivity [11]. Given the limited effectiveness of current
interventions and the complexity of chronic pain, identifying perpetuating factors is crucial
for uncovering new mechanistic pathways and treatment targets.

Among emerging targets, the oral and gut microbiota have gained attention for their
potential role in modulating pain through immune, metabolic, and neural pathways [12–14].
The oral and gut microbiota comprise diverse populations of microorganisms, including
bacteria, fungi, protozoa, and viruses, inhabiting the oral cavity and gastrointestinal tract,
respectively [15]. The gut microbiome further encompasses these organisms along with
their genetic material, metabolites, and environmental interactions [13,16,17]. There is a
significant overlap between oral and gut bacteria [18], with four phyla dominating both
niches: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria, while Fusobacteria
are also prominent in the oral microbiota [19–21]. Oral microbiota can translocate to the
gut, and microbial communities in one niche are often predictive of the other, suggesting
an integrated oral–gut axis [20]. Despite the anatomical continuity of the gastrointestinal
tract and this integration between oral and gut microbial communities, most microbiome
research in chronic pain has remained organ-specific, focusing mainly on the gut–brain axis
and regarding the oral cavity as primarily relevant to local dental disease [22]. However,
current evidence supports an integrated view, wherein the oral and gut microbiota together
form a dynamic and interconnected system that influences metabolic functions, immune
responses, and overall health [15]. This ecosystem is highly dynamic, shaped by intrinsic
host factors such as genetics, sex, and intestinal physiology [16,23–25], and to an even
larger extent by extrinsic influences including diet, geography, stress, physical activity, and
sleep [16,17,25,26].

Alterations in gut microbiome composition, termed dysbiosis [16], can increase intestinal
permeability [19], promote systemic inflammation [27], and have been linked to a wide range
of diseases, including inflammatory [28], metabolic [29], neurological [30–32], and chronic
pain conditions [13,14,27,32]. Emerging evidence suggests that the oral microbiome may
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contribute to chronic pain, thereby extending the microbiome–pain framework beyond
the gut [33]. Oral dysbiosis has been associated with chronic pain [20,34,35]. Studies
have reported poor oral health in different chronic pain populations [20], including those
with fibromyalgia [36], abdominal pain [20], low back pain [37], and rheumatoid arthritis
(RA) [38]. Recent advances in sequencing and metabolomics provide new opportunities
to unravel the molecular mechanisms by which the oral and gut microbiome modulate
systemic inflammation and drive peripheral and central sensitization through the oral–gut–
brain axis.

Despite these advances and growing evidence supporting an integrated oral–gut axis,
previous reviews have primarily focused on the gut–brain axis, with limited consideration
of the oral microbiome. The aim of this review is to address this gap by synthesizing
evidence on the integrated oral–gut–brain axis in chronic pain. It examines how microbial
metabolites such as short-chain fatty acids (SCFAs), bile acids, and tryptophan derivatives
are produced and how they modulate pain through peripheral and central sensitization
mechanisms. It also highlights differences in microbial composition between healthy and
chronic pain populations, considers emerging causal evidence, and discusses therapeutic
strategies and future research directions.

Search Strategy and Selection Criteria

Articles for this narrative review were identified by searching PubMed using the terms
“gut microbiome”, “oral microbiome”, “dysbiosis”, “chronic pain” and “systemic health”
up to August 2025. Articles were selected based on their relevance to the key arguments of
this narrative review. Additional papers were identified from the reference lists of retrieved
articles and through forward citation tracking of key publications. Only papers published
in English were reviewed.

2. Microbial Metabolites
The oral cavity and gut lumen contain dense and diverse microbial communities

that generate metabolites such as SCFAs, bioactive compounds, and secondary bile acids,
which are fundamental to host physiology, immune regulation, and the development of dis-
ease [39]. Although the oral and gut niches are anatomically distinct, they interact through
an oral–gut microbiota axis that jointly shapes the host’s metabolite and inflammatory
milieu [40]. Oral microbes and their metabolites are continuously swallowed and can mod-
ulate gut microbial composition (dysbiosis) and epithelial barrier function, thereby shifting
gut-derived metabolites (e.g., SCFAs, bile acids, and tryptophan metabolites) and other
microbial-associated signals [20,40–45]. These combined oral- and gut-derived products
may contribute to systemic immune activation and neuroimmune sensitization pathways
relevant to nociception and central sensitization.

2.1. Metabolite Production by the Oral Microbiota

The oral cavity hosts more than 700 microbial species, making it the body’s second
most diverse microbial community [46]. These communities generate diverse metabolites
that shape oral health largely through immune regulation [33,47]. SCFAs in the oral cavity
are generated mainly through two routes: carbohydrate fermentation and amino acid
metabolism. Carbohydrates are fermented into monosaccharides and further converted
to pyruvate via glycolysis or the pentose phosphate pathway [48]. Most oral bacteria
produce SCFAs from pyruvate through the acetyl coenzyme A (acetyl-CoA) pathway,
including Streptococcus, Actinomyces, Lactobacillus, Propionibacterium, and Prevotella [49].
Beyond dietary carbohydrates, salivary mucins rich in glycans can also serve as substrates
once degraded by sialidases, supporting SCFA synthesis [50]. In addition, amino acids
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act as substrates for SCFA production, where proteolytic bacteria such as Actinomyces,
Veillonella, and Fusobacterium degrade proteins and peptides, and subsequent deamination
generates SCFAs [49]. Figure 1 shows the oral microbiota involved in the production of
oral microbial metabolites.

Figure 1. Oral microbiota genera and their major metabolic outputs (SCFAs, VSCs, nitrite/NO,
bacteriocins) in the oral cavity, based on current evidence in the literature [47,51–55]. Abbreviations:
SCFAs: short-chain fatty acids; VSCs: volatile sulfur compounds. Created with BioRender.com.

2.2. Metabolite Production by the Gut Microbiota

The gut microbiota produce diverse metabolites by metabolizing dietary components,
including SCFAs, secondary bile acids, vitamins, and amino acid-derived compounds such
as indoles from tryptophan and phenols, which modulate host immunity, metabolism,
nutrient homeostasis, and gut barrier integrity. Furthermore, bacterial cell wall components
like lipopolysaccharides (LPS) from Gram-negative bacteria and peptidoglycans function as
microbial-associated molecular patterns (MAMPs) that interact with host immune receptors,
potentially leading to inflammation, endotoxemia, or systemic effects when intestinal
permeability increases [56].

2.2.1. Short-Chain Fatty Acids

SCFAs are the most abundant microbial metabolites in the colonic lumen [17,57],
mainly composed of acetate, propionate, and butyrate, with an approximate molar ratio of
60:20:20 [17]. They are produced through microbial fermentation of dietary fibers, with most
metabolized by colonic epithelial cells and a smaller portion entering systemic circulation
to influence host physiology [39]. Acetate is formed via the acetyl-CoA or Wood–Ljungdahl
pathways [58,59] (Figure 2), propionate primarily through the succinate, acrylate, and
propanediol routes [56,57,59] (Figure 3), and butyrate mainly through two routes, the
butyryl CoA/acetate CoA transferase and the butyrate kinase pathways, using acetate as a
co-substrate [57,59,60] or amino acids as alternative precursors [56] (Figure 4).
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Figure 2. Microbial pathways for acetate biosynthesis from carbohydrates: Acetyl-CoA and Wood–
Ljungdahl routes with key gut bacterial contributors. Bacterial species shown are based on published
literature describing acetate-producing gut bacteria and are thus not exhaustive [57,61–63]. Carriage
of the different pathways in gut microbes is indicated by color. Abbreviations: CoA, coenzyme A; CO2,
Carbon dioxide; CO, Carbon monoxide; CoFeSP, Corrinoid iron–sulfur protein; H4F, tetrahydrofolate.
Created with BioRender.com.

Figure 3. Microbial Pathways for Propionate Biosynthesis from Carbohydrates: Acrylate (Blue),
Succinate (Green), and 1,2-Propanediol (Red) Routes with Key Bacterial Contributors. Bacterial
species shown are based on published literature describing propionate-producing gut bacteria and
are thus not exhaustive [56,57,61–63]. Carriage of the different pathways in gut microbes is indicated
by color. Abbreviations: CoA, coenzyme A; DHAP, dihydroxyacetone phosphate. Dotted lines
indicate that several intermediate steps are involved. Created with BioRender.com.
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Figure 4. Microbial pathways for butyrate formation from carbohydrates, organic acids and amino
acids. Butyryl CoA/acetate CoA-transferase (Blue) and phosphotransbutyrylase and butyrate kinase
(Red) routes with Key Bacterial Contributors. Bacterial species shown are based on published
literature describing butyrate-producing gut bacteria and are thus not exhaustive [56,57,61–63].
Carriage of the different pathways in gut microbes is indicated by color. Abbreviation: CoA, coenzyme
A; spp, Species plural. Dotted line indicates that several intermediate steps are involved. Created
with BioRender.com.

2.2.2. Other Microbial Products: Amino Acid-Derived Metabolites, Bile Acids, and
Structural Components

High protein intake promotes the microbial fermentation of undigested dietary pro-
teins in the colon, producing amino acid-derived metabolites such as branched-chain fatty
acids (isobutyrate, 2-methylbutyrate, isovalerate), phenylacetic acid, and other compounds,
including phenols, indoles, p-cresol, amines, and ammonia, contributing minimally to
the total SCFA pool [56,61,64,65]. Bacteroides spp. and certain Firmicutes degrade aromatic
amino acids to yield these metabolites [65], which can exert both beneficial and detrimental
effects on host metabolism, immunity, and inflammation [14,57]. Microbial tryptophan
metabolism by Clostridium sporogenes and Escherichia coli produces indole, further con-
verted by Limosilactobacillus reuteri (formerly Lactobacillus reuteri) and Lactobacillus johnsonii
to indole-3-aldehyde [66,67]. Polyamines (putrescine, spermidine, spermine) arise from
bacterial decarboxylation of ornithine and arginine via Bifidobacterium and Lactobacillus
enzymes [61,68].

Primary bile acids escaping enterohepatic recirculation are deconjugated by bile salt
hydrolases and converted via 7α-dehydroxylation by Clostridium (clusters XIVa and XI), Eu-
bacterium, and Bacteroides into secondary bile acids such as deoxycholic and lithocholic acids,
encoded in the bai operon [61,67,69–71]. In addition, microbial structural components such
as LPS from Gram-negative bacteria [72,73] and peptidoglycan from both Gram-positive
and Gram-negative taxa [67,74] serve as MAMPs detected by host pattern recognition
receptors (PRRs), such as Toll-like receptors (TLRs) and nucleotide-binding oligomeriza-
tion domain-like receptors (NLRs, including NOD1 and NOD2), potentially promoting
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low-grade inflammation and systemic immune activation when gut barrier function is
impaired [75–77].

3. Mechanistic Pathways: Microbial Metabolites and Pain
3.1. Oral Dysbiosis and Pain Regulation

Periodontal and other oral dysbioses are increasingly recognized not only as local
causes of gingival and periodontal tissue damage but also as initiators of systemic inflam-
matory and neuroimmune responses that extend far beyond the oral cavity. In healthy
individuals, short-term cessation of oral hygiene led to increased gingival bleeding and
elevated systemic inflammatory markers (high-sensitivity C-reactive protein (hsCRP),
interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1)), which normal-
ize upon resuming oral care [78]. Across systemically healthy periodontal disease and
severe periodontitis, periodontal therapy modulates systemic inflammation: intensive
treatment induces a transient inflammatory surge but subsequently improves endothelial
function and reduces systemic inflammatory activity [79], while non-surgical therapy low-
ers circulating IL-6 (with only modest reductions in hsCRP) [80]. Consistent with these
interventional findings, periodontitis is also associated with endothelial dysfunction and
vascular inflammation, accompanied by elevated neutrophil counts and circulating IL-6
and C-reactive protein (CRP) [81]. At the cellular level, periodontal inflammation activates
circulating monocytes through nuclear factor kappa-B (NF-κB) signaling, reinforcing sys-
temic pro-inflammatory responses [82]. Porphyromonas gingivalis is found at low abundance
in a subset of periodontally healthy individuals (reported in about 19% of healthy subjects
and representing ~0.02% of the interdental biofilm) [83]. However, it acts as a keystone
pathogen primarily within dysbiotic polymicrobial communities, where it orchestrates
inflammation [84]. Porphyromonas gingivalis can directly influence host cells through the
activation of NF-κB and mitogen-activated protein kinase (MAPK) pathways, thereby
enhancing cytokine secretion and promoting low-grade inflammation [85]. Moreover,
oral dysbiosis can induce production of pathogen-associated molecular patterns (PAMPs)
signals, such as LPS, resulting in systemic stimulation of innate immune responses and
inflammatory transcription factors, including NF-κB [86].

Beyond these systemic effects, oral dysbiosis characteristic of periodontitis also trig-
gers neuroinflammatory responses. Recent studies have found associations between several
oral microbial taxa and RA [35,87], fibromyalgia [20,34], and migraine [20]. However, it
is important to emphasize that current evidence linking oral dysbiosis to chronic pain
is predominantly cross-sectional and associative; therefore, it remains unclear whether
oral dysbiosis causally contributes to systemic inflammation, immune priming, or cen-
tral sensitization in chronic pain, or instead reflects comorbidities and shared risk factors.
Fusobacterium nucleatum infection promotes microglial proliferation and activation via its
lipopolysaccharide component, increases brain tumor necrosis factor-alpha (TNF-α) and
IL-1β expression, and upregulates myeloid differentiation primary response 88 (MyD88),
phosphorylated p38 (p-p38), and c-Jun N-terminal kinase (JNK) signaling, indicating local-
ized microglial-mediated neuroinflammation following oral infection [88]. Porphyromonas
gingivalis produces gingipains that citrullinate host proteins, trigger TLR2/4 activation, and
promote local and systemic inflammation [87]. Accordingly, Porphyromonas gingivalis and
its gingipain proteases were detected in brain tissue and cerebrospinal fluid of Alzheimer’s
disease patients, where their presence correlated with neuroinflammatory signaling [89].
In mice, chronic oral infection resulted in hippocampal colonization by Porphyromonas
gingivalis/gingipain, microgliosis, astrogliosis, and marked elevation of IL-1β, IL-6, and
TNFα expression, accompanied by neuronal loss [89–91]. Moreover, Porphyromonas gin-
givalis and its outer membrane vesicles can activate NLRP3 and NLRP1 inflammasomes,
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triggering pyroptotic cell death and release of neuroinflammatory interleukins (IL-1β and
IL-18), processes that may further amplify neuroinflammation [89,92]. Pharmacological
inhibition of gingipains reduced bacterial burden and suppressed hippocampal TNFα
mRNA, confirming attenuation of neuroinflammation [89]. Complementary evidence from
periodontal ligature models shows increased IL-1β, IL-6, IL-8, and IL-21 in both peripheral
blood and brain, with cortical and hippocampal microglial activation and engagement
of the TLR/NF-κB-Signal Transducer and Activator of Transcription 3 (STAT3) pathway,
linking systemic inflammation with neuroinflammatory responses [93].

Experimental models demonstrate that oral bacterial components and chronic inflam-
mation alter trigeminal nociceptive processing. Porphyromonas gingivalis-driven infection
modifies mechanical nociceptive thresholds [94]. Porphyromonas gingivalis lipopolysaccha-
ride activates trigeminal sensory neurons via TLR4-dependent mechanisms, triggering
calcitonin gene-related peptide release and NF-κB nuclear translocation, thereby modulat-
ing neuronal excitability and potentially contributing to acute and chronic inflammatory
pain [95]. In a rat model of periapical periodontitis, pulpal inflammation enhanced neuronal
activity in the trigeminal subnucleus interpolaris/caudalis (Vi/Vc) region, increasing Fos
and phosphorylated extracellular signal-regulated kinase (ERK) expression and facilitating
masseter hyperalgesia, suggesting that Vi/Vc and Vc nociceptive neurons contribute to
orofacial pain hypersensitivity associated with dental inflammation [96]. Consistently,
chronic inflammation of the tooth pulp induces bilateral and sustained phosphorylation
of ERK and p38 MAPK in Vc, suggesting sustained intracellular signaling changes within
neurons and astrocytes that underpin chronic pulpitic pain [97].

3.2. Oral–Gut Microbiota Axis in Pain Regulation

The oral cavity and gut contain dense and diverse microbial communities that interact
through enteric, hematogenous, and immune pathways, collectively shaping the oral–gut
microbiota axis [40]. Recent studies suggest that the oral–gut microbiota axis may serve as
a potential causal link between oral health and systemic disease [40,46,98–100].

3.2.1. Enteric Pathway

Oral microbes can translocate to the distal gut via the enteric pathway through daily
saliva swallowing, with humans producing approximately 1 to 1.5 L of saliva containing
around 1.5 × 1012 bacteria per day [101]. This pathway allows acid-resistant oral taxa,
such as Porphyromonas gingivalis, Helicobacter pylori, Fusobacterium nucleatum, Klebsiella, and
Streptococcus spp., to withstand gastric passage and colonize the intestine, contributing to
gut dysbiosis [40,102,103]. Such enteric translocation of oral microbiota can alter intesti-
nal microbiota (dysbiosis) and compromise epithelial barrier integrity, initiating systemic
inflammation and neuroimmune activation [40–45]. Chronic periodontal dysbiosis, par-
ticularly driven by Porphyromonas gingivalis, activates the TLR/NF-κB signaling cascade
in intestinal and neural tissues, amplifying cytokine release and sustaining inflammatory
communication along the oral–gut–brain axis [46]. In rodents, oral Fusobacterium nuclea-
tum exposure exacerbates visceral hypersensitivity alongside gut dysbiosis, supporting a
gut-mediated contribution to peripheral nociceptive sensitization [104]. Pro-inflammatory
mediators such as IL-1β, IL-6, and TNF-α, together with microglial activation, are well-
established facilitators to peripheral and central sensitization [105,106]. Oral Porphyromonas
gingivalis exposure, for example, has been shown to disrupt gut barrier integrity through
decreased intestinal zonula occludens-1 (ZO-1) expression, increase colonic TNF-α and
IL-1β, elevate serum IL-17A and brain IL-17 receptor A, and activate microglia in the sub-
stantia nigra [107,108]. Collectively, these findings indicate that oral microbiota–induced
alterations along the oral–gut axis can drive gut barrier dysfunction, systemic cytokine
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signaling, and neuroinflammation, which are mechanistically consistent with processes
that facilitate peripheral and central sensitization.

3.2.2. Hematogenous Pathway

Oral bacteria can enter the bloodstream during routine activities such as toothbrushing
and chewing or following dental procedures, with greater frequency and magnitude in
individuals with periodontitis [40]. These episodes of transient bacteremia enable oral
pathogens and their byproducts to disseminate systemically, where they can trigger en-
dotoxemia, activate immune cells, and drive cytokine-mediated inflammation [82,109].
For example, Fusobacterium nucleatum-induced apical periodontitis in rats caused bacte-
rial dissemination beyond the oral cavity, with Fusobacterium nucleatum DNA detected
in the gut [110]. Histopathological analyses confirmed inflammatory cell infiltration in
periapical tissues, while 16S rRNA sequencing revealed altered microbial composition
across the gut, heart, liver, and kidney. These findings indicate that oral infection with F.
nucleatum can reshape gut microbial communities and promote systemic dysbiosis through
hematogenous dissemination [110]. Similarly, translocation of Porphyromonas gingivalis into
the bloodstream increases cytokine production and drives mononuclear cell differentiation
into highly active osteoclasts, contributing to inflammatory bone loss disorders such as
RA [111].

3.2.3. Immune Pathway

Pathogenic microorganisms influence systemic inflammation through interconnected
immune pathways in both the oral cavity and the gut. Certain oral pathogens, such as
Porphyromonas gingivalis and Fusobacterium nucleatum, invade and colonize the oral epithelial
cells and periodontal tissues, where the bacteria can release virulence factors and toxins that
disrupt the integrity of the oral mucosa [112]. This disruption permits the oral microbes to
penetrate deeper into gingival tissue. These microbes then interact with local immune cells
to trigger activation and recruitment of neutrophils and natural killer cells, subsequently
enabling dendritic cells to prime CD4+ and CD8+ T cells, thereby promoting inflammation
through cytokine secretion [113]. Orally primed T cells can migrate to the intestinal mucosa,
where they aggravate barrier dysfunction and inflammation [40] (Figure 5).

 

Figure 5. The oral microbiome influences systemic inflammation through the oral–gut axis via
various microbial metabolites and specific bacterial taxa. Abbreviations: LPS, lipopolysaccharides;
TNF-α, tumor necrosis factor-alpha; IL-1β, interleukin-1 beta; IL-6, interleukin-6. Created with
BioRender.com.

3.3. Microbiota–Gut–Brain Axis in Pain Regulation

The microbiota–gut–brain axis represents a bidirectional communication system
through which gut microbiota influence the central nervous system via immune, auto-
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nomic, and neuroendocrine pathways [14,17,19,114]. Dysregulation of these interactions
has been increasingly linked to neuroinflammatory processes that precipitate central sensi-
tization [14], a maladaptive amplification of nociceptive signaling underlying many chronic
pain conditions [11].

3.3.1. Immunoregulatory Pathways

Gut microbiota influence pain through multiple immunoregulatory mechanisms,
shaping peripheral and central sensitization through converging systemic and neuroinflam-
matory processes. The gut microbiome interacts with immune cells to modulate cytokine
levels and prostaglandin signaling to influence brain function [17,115]. Experimental ev-
idence indicates that the absence of commensal gut microbiota disrupts neuroimmune
homeostasis and alters structural integrity within pain-regulatory circuits, as evidenced
by heightened visceral sensitivity, increased spinal TLR and cytokine (IL-6, TNF-α, IL-
1α/β, IL-10) expression, glial activation, and morphological alterations in pain-related
brain regions (reduced anterior cingulate cortex volume, enlarged periaqueductal gray,
and dendritic or spine hypertrophy). Restoration of the microbiota normalized these
changes, underscoring its essential role in maintaining balanced neuroimmune and pain-
processing mechanisms [116]. Similarly, dysbiosis is associated with increased production
of pro-inflammatory cytokines such as IL-1β and TNF-α, which can cross the blood–brain
barrier and activate microglia, sustaining neuroinflammatory cascades and facilitating cen-
tral sensitization [117,118]. Following peripheral nerve injury, dysbiosis exacerbates pain
through elevated spinal TNF-α, IL-1β, and glial activation, facilitating central pain sensiti-
zation, whereas probiotic administration suppressed these inflammatory and nociceptive
changes [119]. Microbiota-derived metabolites, such as SCFAs, bile acids, and tryptophan
derivatives, can act on host receptors (e.g., G-protein-coupled receptor (GPR) 43, TLRs,
and transient receptor potential (TRP) channels), thereby modifying immune and neuronal
signaling in ways that influence nociceptive plasticity (explained in Section 3.4) [14,27].
Translational evidence shows that microbiota from patients with fibromyalgia can transfer
mechanical hypersensitivity and immune alterations to germ-free mice, whereas fecal
microbiota transplantation from healthy donors alleviates symptoms [120]. Collectively,
these data demonstrate that gut microbial communities regulate pain through systemic
cytokine induction, microglial priming, and metabolite-mediated immune signaling.

3.3.2. Autonomic Pathways

The autonomic nervous system forms an essential link between the gut and the brain,
with the vagus nerve and the enteric nervous system playing central roles. Microbial
metabolites and commensal signals influence brain and pain pathways through vagal
afferents projecting from the gut to brainstem nuclei, where serotonergic, opioid, and
cholinergic anti-inflammatory circuits modulate nociception, stress responses, and systemic
inflammation [17,27,121–125]. By regulating motility and secretion, the vagus nerve sup-
ports gut barrier integrity and microbial balance, controlling systemic inflammation and
maintaining immune homeostasis [27].

Experimental evidence demonstrates that specific microbial taxa directly modulate au-
tonomic and sensory activity. In rats, oral administration of Lactobacillus reuteri inhibited the
cardio-autonomic reflex and prevented the increase in colonic dorsal root ganglion excitabil-
ity during colorectal distension, indicating that microbial signals can attenuate visceral pain
through local enteric–autonomic mechanisms [126,127]. Similarly, Lactobacillus rhamnosus
increased vagal afferent firing and responsiveness to gut distension and suppressed visceral
pain responses to colorectal distension, demonstrating that specific microbes can modu-
late both acute vagal signaling and longer-term visceral nociception through integrated
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enteric and autonomic pathways [128]. The gut microbiota also modulate vagal afferent
activity through metabolites such as bile acids, short-chain fatty acids, and 3-indoxyl sul-
fate, which act via G protein-coupled bile acid receptor 1 (GPBAR1), GPR43, and TRP
ankyrin 1 (TRPA1) receptors. These findings show that microbial metabolites serve as
chemical mediators of gut–brain communication, linking gut signals to autonomic and
brain function [129]. In the absence of commensal microbiota, enteric sensory neurons
display reduced excitability and altered membrane properties, which normalize following
microbial colonization, underscoring the essential role of gut microbes in maintaining
enteric neuronal and sensory function [130].

Microbiota–vagus nerve interactions are further supported by evidence from microbial
transfer studies. Transplantation of stress-altered gut microbiota to healthy mice activated
vagal pathways and disrupted serotonin–dopamine signaling, inducing hippocampal
neuroinflammation and reduced neurogenesis; these effects were abolished by vagotomy,
confirming that vagal integrity is essential for microbiota-driven modulation of brain and
behavioral responses [131].

3.3.3. Neuroendocrine Pathways

The hypothalamic–pituitary–adrenal (HPA) axis regulates stress responses and mod-
ulates the gut–brain axis through corticotropin-releasing hormone (CRH)- and adreno-
corticotropic hormone (ACTH)-driven cortisol release [132–134]. In people with chronic
pain, the HPA axis is often dysfunctional, implying alteration of corticosteroid expression,
which can imply two opposite phenomena, namely hyper- and hypo-cortisolism [135].
Hypercortisolism is characterized by basal hypercortisolism and/or hyperreactivity, with
basal hypercortisolism defined as a permanently increased cortisol level and decreased
HPA axis negative feedback system, whereas hyperreactivity refers to normal cortisol
levels with exaggerated behavioral and cortisol responses to stressful events [136]. Hy-
percortisolism has been found in several chronic pain conditions, including myofascial
pain and burning mouth syndrome [137,138], and hypocortisolism in patients with myal-
gic encephalomyelitis/chronic fatigue syndrome (ME/CFS), irritable bowel syndrome,
fibromyalgia and chronic pelvic pain [139–142]. While acute cortisol effects imply strong
anti-inflammatory properties, chronic elevation of cortisol alters microbiota [27], increases
gut permeability [143], and promotes neuroinflammation [144]. Chronic high cortisol is
also linked to hippocampal atrophy, impaired stress regulation, and heightened nocicep-
tive sensitivity [27,145]. In addition, gut microbes modulate neurotransmitters such as
gamma-aminobutyric acid (GABA), serotonin, and melatonin, which influence nociceptive
signaling, mood, and sleep [27,121].

Together, the immune, autonomic, and neuroendocrine pathways provide the major
routes by which microbial activity in the gut influences nociceptive processing [14,118].
Their actions on peripheral and central sensitization are discussed in the following sections.

3.4. Microbial Metabolites Modulating Peripheral Sensitization

Microbiota-derived mediators influence dorsal root ganglia neurons both directly, by
acting on receptors and ion channels (TLRs, TRPs, GABA), and indirectly, by stimulating
immune and other non-neuronal cells to release cytokines (e.g., TNF-α, IL-1β, and IL-6)
or chemokines (e.g., C–C motif chemokine ligand 2 (CCL2) and C–X–C motif chemokine
ligand 1 (CXCL1)) [13,14,39,146].

3.4.1. Short-Chain Fatty Acids

SCFAs primarily exert anti-inflammatory effects by modulating key signaling hubs
like NF-kB, MAPK, and mammalian target of rapamycin (mTOR). These effects occur
through GPR binding or histone deacetylase (HDAC) inhibition following cellular entry
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via transporters (e.g., Na+-coupled SMCT1/2 on the apical epithelium and H+-coupled
MCT1/4 on both apical and basolateral membranes) or passive diffusion [13,39]. However,
these actions are context-dependent, with paradoxical pro-inflammatory outcomes in
pathological states. For example, acetate can engage GPR43 on neutrophils, potentiating
their chemotaxis, oxidative burst, and cytokine production [14]. Their actions depend
on carbon chain length, with acetate favoring GPR43, propionate targeting GPR41 and
GPR43, and butyrate preferentially binding GPR109A and to some extent GPR41 [39,147].
Activation of GPR109A inhibits TLR4-induced expression and secretion of TNFα, IL-6 and
CCl-2 and activation of GPR109A by butyrate exerts anti-inflammatory effects in colonic
inflammation [148].

Microbiota-derived SCFAs can also modulate GPR41-mediated primary nociceptor
excitability at the trigeminal ganglion, thereby shaping peripheral input to the spinal
trigeminal nucleus caudalis (SpVc) [149]. In vivo studies demonstrate that intravenous pro-
pionic acid rapidly and reversibly suppresses SpVc wide-dynamic-range neuronal firing in
response to mechanical stimuli [149]. In models of inflammatory hyperalgesia, butyrate re-
duces inflammatory hyperexcitability in nociceptive primary trigeminal ganglion neurons,
thereby alleviating inflammatory hyperalgesia [150]. Evidence suggests that activation of
satellite glia in sensory ganglia may also play an important role in the development of
hyperalgesia and allodynia [151]. GPR43/GPR109A was detected in satellite glial cells of
the dorsal root ganglia in the peripheral nervous system [152,153], implying that SCFAs
could modulate satellite glial cells and thereby shape the local cytokine/chemokine milieu
within ganglia.

NF-κB Pathway

NF-kB mediates the transcription of various cytokines (such as the cytokines TNF-a,
TNF-b, IL-1β, IL-2, IL-3, IL-5, IL-12, and IL-18) and chemokines (IL-8, MIP-1a, CXCL-2, and
CCL-2) [39]. Two subunits of NF-kB, P65 and P50, are acetylated and transferred from the
cytoplasm into the nucleus to promote the secretion of pro-inflammatory cytokines [154].
SCFAs suppress NF-κB primarily through HDAC inhibition and GPR signaling [14,39,147].
Upon GPR43 binding, SCFAs recruit Gq/11 subunits to activate phospholipase C, gener-
ating inositol trisphosphate (IP3) and diacylglycerol (DAG), which trigger endoplasmic
reticulum Ca2+ release [14]. This elevates intracellular calcium, activating protein kinase
A (PKA) to ubiquitinate the NLRP3 inflammasome for autophagic degradation, thereby
inhibiting NF-κB-driven cytokine release [14]. In experimental models of diabetic nephropa-
thy, butyrate acts through GPR43-β-arrestin-2 signaling, enhancing the interaction between
β-arrestin-2 and IκBα. This stabilizes IκBα, prevents NF-κB nuclear translocation, and
reduces oxidative stress, collectively suppressing inflammatory responses [155,156].

Additionally, HDAC inhibition by SCFAs deacetylates NF-κB subunits p65 and p50, en-
hancing p65-IκBα binding to export the complex from the nucleus and curb pro-inflammatory
transcription [39,157]. Butyrate (80% inhibitory efficiency) and propionate (60% inhibitory
efficiency) are known HDAC inhibitors that regulate NF-kB activity. They upregulate the
production of IL-10 and inhibit the production of the pro-inflammatory molecules, including
IL-12, TNF-a, IL-1β, and nitric oxide (NO) [39,158]. In human colonic epithelial cell models,
HDAC inhibition by butyrate suppresses proteasome activity by downregulating the catalytic
β-subunits (β1, β2, and β5), thereby preventing the proteasome-dependent degradation of
IκBα and blocking TNF-α-induced NF-κB activation, while sparing proteasome-independent
signaling. This selective interference with the proteasome-dependent pathway contributes to
butyrate’s anti-inflammatory and anti-neoplastic actions [159]. Butyrate reduced TNF pro-
duction and pro-inflammatory cytokine mRNA expression in intestinal biopsies and lamina
propria mononuclear cells from Crohn’s disease patients. It inhibited LPS-induced cytokine
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expression and NFκB nuclear translocation in peripheral blood mononuclear cells, decreased
NFκB transcriptional activity while maintaining IκBα stability, and ameliorated trinitroben-
zene sulfonic acid-induced colitis, indicating suppression of inflammation through NFκB
inhibition [160] (Figure 6).

Figure 6. Schematic overview of gut microbiota-derived metabolites regulating peripheral and central
pain sensitization through neural, immune, and endocrine pathways. Created with BioRender.com.
At the bottom of Figure 6, microbial fermentation produces microbial metabolites like SCFAs, BAs,
and neurotransmitters (e.g., serotonin, GABA), while structural components of microbes provide
PAMPs such as LPS and peptidoglycans. On the left (neural pathway), vagal and spinal pathways
convey microbial signals, with epithelial mediators such as serotonin from enterochromaffin cells
and acetylcholine from neuropods, together with cytokines, directly modulating dorsal root ganglion
excitability via different receptors. Mast cell-derived histamine also activates vagal/spinal pathways,
stimulating spinal microglia to release pro-inflammatory cytokines, thereby bridging peripheral
inputs and central sensitization. In the center (immune pathway), LPS and other microbial products
activate immune cells, inducing TNF-α, IL-1β, and IL-6 that amplify nociceptive signaling. Anti-
inflammatory regulation occurs through SCFAs acting on GPR43/41/109A and inhibiting HDACs,
as well as kynurenic acid acting on GPR35. On the right (endocrine pathway), chronic pain results in
a dysfunctional HPA axis with hyper- or hypocortisolism. Acute cortisol exerts anti-inflammatory
effects, whereas chronic dysregulation promotes gut permeability. This promotes LPS translocation
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and alters bile acid and polyamine metabolism, which act on immune cells to drive pro-inflammatory
cytokine release. In parallel, tryptophan metabolism is shifted toward serotonin and melatonin
pathways, linking endocrine signaling with immune responses, sleep regulation, and nociceptive sen-
sitivity. At the top (central sensitization), pro-inflammatory cytokines disrupt the blood–brain barrier,
activating microglia to release glutamate, ATP, and PGE2, enhancing NMDA receptor phosphoryla-
tion, reducing GABAergic tone, and sustaining neuroinflammation and nociceptive hypersensitivity.

MAPK Pathway

SCFAs modulate the MAPK family (ERK, JNK, p38), which controls gene transcription
and pro-inflammatory cytokine secretion, through a balance of inhibition and activa-
tion [39]. SCFAs inhibit HDACs to acetylate and stabilize MAPK phosphatase-1 (MKP-1),
enabling dephosphorylation of ERK/JNK/p38 and reducing downstream inflammatory
signals [133,161]. However, activation of GPR41/43 by acetate can promote pro-
inflammatory effects via activation of the extracellular signal-regulated kinases 1/2
(ERK1/2) (via both receptors) and p38 MAPK (via GPR43) signaling pathways, thereby
increasing the production of cytokines (IL-6 and CXCL1/2) and chemokines like CXCL-
1α and CXCL-2 [148] (Figure 6). This paradoxical pro-inflammatory potential high-
lights the complexity of targeting SCFAs therapeutically, as SCFAs may exert context-
dependent pro-inflammatory effects via GPR43-mediated immune cell activation in specific
pathological settings.

mTOR Pathway

SCFAs target the mTOR pathway, encompassing mTORC1/2 complexes that oversee
cell growth, transcription, barrier function in the gut, and cytokine regulation, mainly
through metabolic reprogramming [39]. mTOR increases acetyl-CoA content via the gly-
colysis pathway, and acetyl-CoA in the nucleus promotes the binding of acetyl groups
to histones, thereby increasing the acetylation of histones and ultimately regulating gene
expression and the production of cytokines such as IL-10 and TNF [39]. SCFAs inhibit
HDAC and increase the acetylation of p70 S6 kinase and the phosphorylation of rS6, thereby
regulating the mTOR pathway [162]. This HDAC inhibition by SCFAs shifts the balance to-
ward enhanced histone acetylation, promoting anti-inflammatory effects through elevated
IL-10 and modulation of pro-inflammatory cytokines [39] (Figure 6).

3.4.2. Amino Acid Fermentation and Bioactive Microbial Metabolites

Gut microbes metabolize dietary amino acids such as tryptophan and histidine into
a range of bioactive compounds that influence pain signaling. Tryptophan metabolites
include indoles, serotonin, and kynurenic acid. Indoles can activate TLR4 and TRPA1
channels on dorsal root ganglion neurons, leading to calcium influx, oxidative stress,
and neuropeptide release, which in turn increase excitability and promote neurogenic
inflammation [14]. Indoles also stimulate the aryl hydrocarbon receptor (AhR), which
promotes the release of IL-6 and TNF-a upon activation, enhancing pro-inflammatory
IL-17 signaling [163] and amplifying neuroinflammation and nociceptor hyperexcitability.
In gut epithelial cells, AhR activation also increases serotonin release, which sensitizes
TRPV1 channels on afferent neurons, heightening visceral hypersensitivity. Indoles can also
directly activate chloride channels by binding to the extracellular domain of the GABA-A
receptor and induce hyperpolarization of the resting membrane potential in dorsal root
ganglion neurons, thereby reducing the frequency of action potential firing [14].

Polyamines, including putrescine, spermidine, and spermine, modulate neuronal
excitability by influencing N-methyl-D-aspartate (NMDA) receptor activity and microglial
activation [164]. Dysregulated polyamine metabolism in dysbiosis promotes neuroin-
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flammation and enhances glutamatergic signaling [146], thereby contributing to central
sensitization [165].

3.4.3. Bile Acid

Secondary bile acids such as deoxycholic acid and lithocholic acid modulate nocicep-
tion through both pronociceptive and antinociceptive mechanisms. On the pronociceptive
side, activation of TLR4 on dorsal root ganglion neurons upregulates TRPV4 channel
expression via NF-κB signaling, sensitizing the channels and promoting calcium influx
and neuronal hyperexcitability [14]. In addition, it activates ERK1/2 pathway via TLR4,
enhancing adenosine triphosphate (ATP)-induced calcium inward flow and synergistically
amplifying neuronal hyperexcitability [166]. Bile acids also disrupt inhibitory control by
inducing endocytosis of GABA-A receptors, which reduces chloride currents and promotes
depolarization [14]. Conversely, bile acids produce antinociceptive effect by acting on GP-
BAR1, expressed on sensory neurons and macrophages, where receptor activation triggers
TRPA1-dependent calcium influx and itch responses in neurons but promotes analgesia
through opioid release in macrophages. Beyond bile acids, the microbiota contributes to
the production of kynurenic acid, which signals through GPR35 in dorsal root ganglion
neurons to reduce excitability and induce dose-dependent analgesia in vivo [14].

3.4.4. Microbial Cell Wall-Derived Metabolites

Microbial cell wall components, including LPS, peptidoglycans, and β-glucans, act
as PAMPs of gut origin that are highly relevant to chronic pain [14]. Once released into
circulation, they activate TLRs on immune cells and sensory neurons in the dorsal root gan-
glia, inducing innate immune activation and neuroinflammation that promote peripheral
sensitization in models of neuropathic and inflammatory pain [12]. In neuroinflammatory
conditions, they promote glial activation and cytokine release, amplifying peripheral nerve
hyperexcitability [14,67]. LPS binds TLR4 on peripheral macrophages and dorsal root
ganglia neurons, initiating NF-κB signaling that upregulates pro-inflammatory cytokines
(e.g., TNF-α, IL-1β), resulting in peripheral sensitization [12,14]. Lipoproteins and pep-
tidoglycans activate TLR2 on peripheral immune cells and sensory neurons, initiating
downstream signaling [14]. This activation recruits Toll/IL-1 receptor domain-containing
adaptor protein (TIRAP) and MyD88. Together, these adaptor proteins assemble a complex
that phosphorylates interleukin-1 receptor-associated kinases (IRAK1 and IRAK4). The
activated kinases interact with tumor necrosis factor receptor-associated factor 6 (TRAF6),
forming a signaling hub that stimulates transforming growth factor β-activated kinase 1
(TAK1). TAK1 then activates both NF-κB and MAPK pathways. NF-κB activation promotes
transcription of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β, which pro-
mote the activation of macrophages, dendritic cells, and B lymphocytes. These immune
cells, once activated, further amplify inflammation through sustained release of TNF-α,
IL-12, and interferon gamma (IFN-γ), reinforcing inflammatory signaling via autocrine and
paracrine loops [14] (Figure 6).

3.5. Microbial Metabolites Modulating Central Sensitization

Under neuroinflammatory conditions, pro-inflammatory cytokines such as TNF-α,
IL-1β, and IL-6 impair blood–brain barrier (BBB) integrity by redistributing tight junction
proteins, thereby enhancing permeability and facilitating entry into the central nervous sys-
tem (CNS) [14,167]. Infiltrating cytokines activate microglia and astrocytes, which release
glutamate and other mediators that increase synaptic excitability and contribute to central
sensitization [12]. TNF-α, entering via permeable BBB or active transport, activates dorsal
horn microglia, leading to increased neuronal excitability while suppressing GABAergic
inhibition [14,168]. IL-1β accesses the CNS through meningeal lymphatics and binds to
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IL-1 receptor 1 (IL-1R1) on astrocytes, resulting in ATP release. This activates P2X4 recep-
tors and promotes phosphorylation of NMDA receptor subunit NR2B, thereby inducing
long-term potentiation (LTP) of C-fiber responses in neuropathic pain [14,169]. IL-6 pene-
trates via choroid plexus and stimulates astrocytic Janus kinase 2 (JAK2)-STAT3 signaling,
upregulating cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This downregulates
neuronal potassium-chloride cotransporter 2 (KCC2), causing chloride accumulation and
GABAergic disinhibition in neuropathy models [14,105]. Activated glia (e.g., microglia
and astrocytes) also produce pro-inflammatory cytokines such as TNF-α and IL-1β, or
chemokines like CXCL1, resulting in enhanced glutamatergic neurotransmission and ex-
citability, reduced GABAergic neurotransmission, or both [12,170]. These effects perpetuate
neuroinflammation, promote central sensitization, and contribute to pain hypersensitivity.

4. Microbiome Diversity in Chronic Pain
Microbial diversity is commonly described using alpha and beta diversity indices.

Alpha diversity reflects the richness and evenness of microbial taxa within an individ-
ual, typically measured by Shannon, Simpson, or Faith’s phylogenetic diversity [13,27].
Beta diversity refers to differences in microbial composition between individuals or
groups [13,27]. However, it is important to note that there is no universal ‘healthy’ micro-
biota profile, as composition varies significantly by geography, culture, and diet [13].

In chronic pain research, reductions in alpha diversity, particularly in Shannon and
Faith’s indices, have been reported [13]. Similar findings have been reported in other neuro-
logical and neuroinflammatory disorders, suggesting that reduced microbial diversity may
promote a pro-inflammatory environment relevant to central sensitization [13]. Beyond
overall diversity shifts, phylum- and species-level alterations are consistently observed
across chronic pain conditions [13,171–174]. Table 1 summarizes key species reported in
fibromyalgia, migraine, osteoarthritis (OA), RA, and bladder pain syndrome [13,172–174].
Within the Firmicutes, members of the Clostridia class, such as Faecalibacterium praus-
nitzii, Roseburia, and Coprococcus, key SCFA producers, are reduced in chronic pain [13].
Faecalibacterium prausnitzii, a dominant butyrate producer, contributes to suppression of
NF-κB/MAPK signaling, reduction in pro-inflammatory cytokine release, and maintenance
of epithelial barrier integrity through butyrate-mediated HDAC inhibition and GPR41/43
activation [148]. Its reduction, reported in fibromyalgia, migraine, ME/CFS, and RA,
may lower butyrate availability [12,13], weaken HDAC/GPR signaling, and promote neu-
roimmune activation and sensitization (Table 1) [14]. Roseburia and Coprococcus species,
which also produce butyrate and support Treg/IL-10 signaling [14,67], are reduced in
fibromyalgia, migraine, and ME/CFS [13]. Their loss could lower SCFA availability and
regulatory balance, potentially favoring Th17-related inflammation [175,176]. Other SCFA
producers, including Odoribacter splanchnicus and Blautia obeum (formerly known as Ru-
minococcus obeum), contribute to barrier integrity and immune regulation through SCFA
production. O. splanchnicus, decreased in bladder pain syndrome, migraine, ME/CFS,
and IBS, may provide epithelial support via SCFA-mediated mechanisms and may ex-
ert context-dependent pro-/anti-inflammatory effects [177,178]. Blautia obeum (formerly
known as Ruminococcus obeum), reduced in migraine and ME/CFS, ferments carbohy-
drates to produce acetate and propionate [179–183], potentially supporting epithelial and
immune function and participating in bile acid metabolism [184] (Table 1). Conversely,
some Firmicutes increase chronic pain. Clostridium symbiosum and Clostridium asparagiforme,
involved in bile acid metabolism [185,186], are enriched in migraine and ME/CFS [13],
shifting bile acid pools toward pro-nociceptive signaling via Farnesoid X Receptor (FXR),
Takeda G-Protein-Coupled Receptor 5 (TGR5) [186], and TRP channels [14,185], although
reductions have been reported in OA [174] (Table 1). Lactobacillus species, which normally
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produce SCFAs and lactic acid, may promote IL-10, protect the intestinal barrier via lac-
tate [187], convert glutamate to GABA, suppress nociceptive excitation [188], and reduce
pro-inflammatory cytokines [14,148]. They are reduced in fibromyalgia and migraine,
potentially altering anti-inflammatory effects and increasing nociceptor excitability. Within
the Actinobacteria, Bifidobacterium species are reduced in fibromyalgia, migraine, and
OA [13,174]. They convert glutamate into GABA [16], produce acetate [57,61], and promote
anti-inflammatory cytokines; when reduced, GABA levels may drop, anti-inflammatory
balance may be disturbed, and excitability may rise. In contrast, Eggerthella lenta is increased
in migraine and ME/CFS [13], which may be linked to mucosal and systemic inflammation
(Th17/IFN-γ activation) [189,190]. The Bacteroides species produce LPS and contribute to
bile acid metabolism [72,73], are increased in ME/CFS and OA but reduced in migraine,
potentially elevating LPS and activating TLR4–NF-κB signaling that promotes systemic
cytokine release. It is important to note that while these altered microbiota are reported
across cohorts, the evidence comes largely from cross-sectional studies; thus, it remains
unclear whether this dysbiosis functions as a primary driver of pathology or represents
a secondary consequence of pain-associated factors, such as altered diet, medication use,
reduced physical activity, and comorbidities. Longitudinal studies are therefore needed to
determine whether these microbiome changes precede or follow the onset of chronic pain.
Nevertheless, available evidence suggests that many patients with chronic pain present an
altered microbiome, potentially perpetuating central sensitization and the pain chronicity.
Perpetuating factors are important, or even the main treatment targets, for people with
chronic pain.

Metabolite-level findings complement these taxonomic shifts in chronic pain. In
pediatric migraine cohorts, analysis of plasma tryptophan metabolites reveals reduced
kynurenic acid alongside increased serotonin and quinolinic acid, while urinary indican
is elevated as a marker of metabolic dysbiosis [191,192]. Furthermore, in nitroglycerin-
induced migraine models, oral administration of sodium butyrate and sodium propionate
attenuates hyperalgesia and restores intestinal permeability, supporting a functional role
for microbial SCFAs in migraine pathology [193,194]. Similarly, in fibromyalgia, altered
metabolite profiles have been reported, characterized by low plasma acetate and an elevated
Kyn/Trp. Acetate was inversely associated with TNF-α and severity scores, linking mi-
crobial metabolite signals to inflammatory pain severity in humans [195]. In patients with
ME/CFS, stool metabolomics indicate depleted fecal acetate, butyrate, and isovalerate, with
key SCFA-producing taxa (e.g., Faecalibacterium) correlating with butyrate levels and fa-
tigue severity, further linking taxonomic depletion to functional metabolic deficits [196,197].
In summary, chronic pain is consistently associated with a loss of SCFA-producing Firmi-
cutes and Actinobacteria, alongside an overgrowth of pro-inflammatory species such as
Eggerthella, Clostridium, and Bacteroides. Together, these changes might reduce protective
metabolites and enhance inflammatory signaling, creating a microbial signature that may
contribute to central sensitization and the persistence of pain.

Although research on the oral microbiome in chronic pain remains limited, several
taxa show associations across RA [35,87], fibromyalgia [20,34], and migraine [20]. Within
the Bacteroidetes, Porphyromonas gingivalis, a periopathogen enriched in RA [35,87,198],
citrullinates host proteins, triggers TLR2/4 activation, and promotes local and systemic
inflammation, priming anti-citrullinated protein antibody responses and potentially initi-
ating RA [87]. A recent meta-analysis including 28 studies found a significant increase in
the risk of RA in individuals with Porphyromonas gingivalis exposure [199]. In fibromyalgia,
Prevotella denticola and Solobacterium moorei are increased [34]; both possess virulence traits
such as LPS production, protease activity, and volatile sulfur compound generation. These
mechanisms may contribute to periodontal inflammation and systemic immune activa-
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tion [200] (Table 1), although species-specific evidence and links to neuroinflammation or
pain remain limited and require further study. Finally, Mycoplasma salivarium, enriched in
migraine [20], can activate innate immune pathways in epithelial and immune cells. Its
overgrowth may contribute to mucosal inflammation and systemic cytokine signaling [201]
(Table 1), but evidence connecting this to neuroinflammation or pain outcomes is lacking
and warrants further investigation. Together, these findings support the hypothesis that
oral dysbiosis may contribute to systemic inflammation, immune priming, and sensitization
processes relevant to chronic pain. However, although theoretically plausible, studies exam-
ining whether oral dysbiosis creates or perpetuates such systemic inflammation, immune
priming, and central sensitization in people with chronic pain are essentially lacking and
represent an important research priority.

https://doi.org/10.3390/ijms27010114

https://doi.org/10.3390/ijms27010114


Int. J. Mol. Sci. 2026, 27, 114 19 of 40

Table 1. Microbiota Species Associated with Chronic Pain and Chronic-Pain-Associated Disorders.

Genus/Species Change in Chronic Pain Level of Evidence Role in Health Reduction/Increase May Lead to →

Faecalibacterium prausnitzii ↓ in FM, migraine, ME/CFS [13],
RA [87,202]

FM, Migraine, ME/CFS:
Meta-analysis of Human
observational studies [13].
RA: Human observational [87,202]

Produces butyrate → HDAC
inhibition [203,204] + GPR41/43
activation → suppresses
NF-κB/MAPK [203,205], ↑
IL-10 [206–208], maintains gut
barrier [203,209]

Reduction → ↓ butyrate [210,211],
weaker HDAC/GPR signaling, ↑
NF-κB activity, ↑ cytokines,
sensitization

Roseburia spp. ↓ in migraine, ME/CFS [13], and ↑
in FM [13]

Migraine, ME/CFS, FM:
Meta-analysis of Human
observational studies [13].

Butyrate producers [212] →
HDAC [204,213] + GPR
signaling [214–216], Treg/IL-10
support [175,214], restrains
Th17/inflammation [175,176] and via
vagal GPR41 signaling suppresses
central amygdala, a brain region
involved in pain perception [216]

Reduction → ↓ SCFAs, Th17
skewing, ↑ inflammation, ↑ pain
perception

Coprococcus spp. (incl. C. comes,
C. catus)

↓ in CWP [172], ME/CFS,
Migraine [13]

CWP: Human observational [172].
Migraine, ME/CFS: Meta-analysis of
Human observational studies [13].

SCFA producers (Acetate and
Butyrate) [212,217–221] regulate
HDAC/GPR [204,213], support gut
homeostasis [217] and may reduce
depression and
neuroinflammation [222].

Reduction → ↓ SCFAs, ↑ cytokines,
↑ low-grade inflammation [172,223]

Odoribacter splanchnicus ↓ in bladder pain, migraine,
ME/CFS [13], IBS [224]

Migraine, ME/CFS, Bladder pain:
Meta-analysis of Human
observational studies [13].
IBS: Human observation study [224].

Produces SCFAs [225,226] →
supports barrier integrity [178,227], ↓
gut inflammation [227],
Pro-/anti-inflammatory effects
(context-dependent) [177,178]

Reduction → ↑ permeability,
Pro-/anti-inflammatory effects
(context-dependent) [177,178]

Balutia (Ruminococcus) obeum ↓ in migraine, ME/CFS [13] Migraine, ME/CFS: Meta-analysis of
Human observational studies [13].

Carbohydrate
Fermentation [179], [181] SCFA
production (Acetate and
Propionate) [179–183], potential
epithelial/immune support via
SCFA-mediated mechanisms (e.g.,
macrophage type I interferon
responses) [182], Bile acid metabolism
via bile salt hydrolase activity [184]

Reduction → impaired metabolism,
↑ inflammation
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Table 1. Cont.

Genus/Species Change in Chronic Pain Level of Evidence Role in Health Reduction/Increase May Lead to →

Clostridium asparagiforme and
Clostridium symbiosum

↑ in migraine, ME/CFS [13],
OA [174]

Migraine, ME/CFS: Meta-analysis of
Human observational studies [13].
OA: Systematic review of Human and
Animal studies [174].

Bile acid biotransformation [185,186]
→ FXR, TGR5 [186], TRP signaling,
gut barrier permeability [185],
systemic inflammation [185]

Overgrowth → disturbed BA pools,
FXR/TGR5/TRP signaling;
Reduction → ↓ BA metabolism; ↓
gut barrier permeability [185],
systemic inflammation [185]

Lactobacillus spp. ↓ in FM [32], migraine [173]
FM: Human observational study [32].
Migraine: Systematic Review of
Human observational studies [173]

Produces SCFAs/lactate [187], ↑
IL-10 [228], ↓ TNF-α/IL-6 [228],
transforms glutamate into GABA [32],
exerts a protective effect on the
intestinal barrier through the
metabolite lactate [187], and
suppresses excitation of spinal
afferent nociceptive neurons [188]

Reduction → ↑ pro-inflammatory
cytokines [228], ↑ nociceptor
excitability [188]

Bifidobacterium spp. ↓ in FM [32], migraine [13]
FM: Human observational study [32].
Migraine: Meta-analysis of Human
observational studies [13].

Converts glutamate to GABA [32];
acetate production [229]; regulates
cytokines [229–231], reduces pain
sensitivity [232–234]

Reduction → ↓ GABA, weaker
anti-inflammatory control, ↑
excitability

Eggerthella lenta ↑ in migraine [13], ME/CFS [235]

Migraine: Meta-analysis of Human
observational studies [13].
ME/CFS: Meta-analysis of Human
observational studies [235].

Pathobiont [236]; Bile acid
biotransformation [185], linked to
mucosal inflammation [189], systemic
inflammation [189,237]

Overgrowth → Th17/IFN-γ
activation [189], systemic
inflammation [189,237]

Bacteroides spp. ↑ in ME/CFS [13], OA [19]; ↓ in
migraine [13]

Migraine, ME/CFS: Meta-analysis of
Human observational studies [13].
OA: Human observational study [19].

LPS producers [238]; bile acid
metabolism [239]; activate TLR4 →
NF-κB [238,240]

Overgrowth → ↑ LPS/TLR4
signaling [238,240], systemic
inflammation [238,240]

Oral Dysbiosis

Porphyromonas gingivalis
↑ in RA [87,198]
Human observational
studies [87,198].

Gingipains → citrullination of host
proteins; MAPK/NF-kB
activation [241]; immune
evasion [242]

Overgrowth → local/systemic
inflammation; anti-citrullinated
protein antibodies priming [243];
potential RA initiation/
progression [87].
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Table 1. Cont.

Genus/Species Change in Chronic Pain Level of Evidence Role in Health Reduction/Increase May Lead to →

Prevotella denticola ↑ in FM [34], RA [35] FM: Human observational study [34]
RA: Human observational study [35]

Periopathogen [34]; LPS and protease
activity [244]; biofilm former [245];
promotes cytokine release

Overgrowth → may contribute to
periodontal inflammation, but
species-specific evidence is limited
and further studies are needed.

Solobacterium moorei ↑ in FM [34] FM: Human observational study [34]

Produces volatile sulfur
compounds [34], oral gavage in mice
disrupted intestinal barrier and
activated NF-κB inflammation [246]

Overgrowth → may contribute to
inflammation and systemic immune
activation, but evidence on
neuroinflammation or pain
outcomes is lacking and requires
further study.

Mycoplasma salivarium ↑ in migraine [20] Migraine: Human observational
study [20].

Commensal turned opportunist;
activates innate immune cells and
epithelial adhesion
molecules [247,248]

Overgrowth → may contribute to
mucosal immune activation and
systemic cytokine
signaling [247–249], but evidence
on neuroinflammation or pain
outcomes is lacking and requires
further study.

Abbreviations: FM, Fibromyalgia; ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; RA, Rheumatoid Arthritis; OA, Osteoarthritis; CWP, Chronic Widespread Pain;
SCFAs, Short-Chain Fatty Acids; HDAC, Histone Deacetylase; GPR, G-Protein-Coupled Receptor; NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; MAPK,
Mitogen-Activated Protein Kinase; IL, Interleukin; TNF-α, Tumor Necrosis Factor-alpha; Treg, Regulatory T cell; Th17, T helper 17 cell; CNS, Central Nervous System; BA, Bile Acids;
FXR, Farnesoid X Receptor; TGR5, Takeda G-Protein-Coupled Receptor 5; TRP, Transient Receptor Potential channels; GABA, Gamma-Aminobutyric Acid; LPS, Lipopolysaccharides;
TLR4, Toll-Like Receptor 4; TLR2, Toll-Like Receptor 2; ACPA, Anti-Citrullinated Protein Antibodies. Arrows indicate direction and proposed mechanistic links:↓ decrease; ↑ increase; →
indicates a proposed mechanistic link (i.e., “leads to/results in”).
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5. Beyond Correlation: The Elusive Path of Causation
Although alterations in the gut and oral microbiota are frequently linked with chronic

pain, establishing a causal relationship remains a major challenge. It is unclear whether
such microbial changes actively contribute to the onset and persistence of chronic pain
or arise as consequences of pain and its related factors. Observational studies are often
confounded by influences such as diet, medication use, and reverse causation, where
pain itself may reshape the microbiome through lifestyle or stress-related pathways. To
address these limitations, approaches such as Mendelian randomization (MR), which
leverages genetic variants as instrumental variables to infer causality while minimizing
confounding, and fecal microbiota transplantation (FMT) in animal models have been
employed, providing stronger evidence for causality. However, microbiome MR estimates
require cautious interpretation because host genetic effects on microbial traits can be
complex and pleiotropic, potentially biasing “causal” signals [250].

For instance, a recent MR study [251] identified significant causal associations be-
tween 13 gut microbial taxa and chronic pain phenotypes, with eight protective and seven
increasing risk. Odoribacter was associated with reduced neck/shoulder pain via microstruc-
tural integrity in the brain’s fornix and stria terminalis, regions involved in cognitive and
emotional regulation within the corticolimbic system [251]. Similar MR approaches have
revealed causal links between gut microbiota and specific conditions, such as low back
pain [252], fibromyalgia [223], neuropathic pain [253], and chronic regional pain [254].
Further MR analyses extended these insights, identifying causal links between gut mi-
crobiota and multiple pain sites, including the back, knee, and abdomen [232], as well as
interstitial cystitis/bladder pain syndrome [255] and chronic prostatitis/chronic pelvic pain
syndrome [256].

Complementing these human genetic insights, preclinical animal FMT studies provide
direct mechanistic evidence of causality. FMT from fibromyalgia patients to germ-free
mice induced pain hypersensitivity, fatigue, and cognitive deficits, which were reversed
by FMT from healthy donors, implicating dysbiosis in central sensitization and glial ac-
tivation [120]. Similarly, in rodents, FMT from donors exposed to chronic unpredictable
mild stress induced anxiety and depression-like behaviors, often comorbid with pain,
and was accompanied by hippocampal neuroinflammation and altered neurotransmitter
levels [257]. In neuropathic pain models, FMT containing healthy microbiota attenuated
mechanical hypersensitivity, restored microbial composition, and reduced glial activation
and inflammatory markers [258]. In another model, FMT from ovariectomized mice ex-
hibiting allodynia induced allodynia in healthy mice, whereas transplantation from sham
mice alleviated allodynia in ovariectomized recipients, linking microbial shifts to spinal
glial activation and estrogen-modulated pain pathways [259]. A recent systematic review
confirmed these findings, showing robust effects of FMT on pain-related behaviors, with
meta-analyses reporting large impacts on mood, cognition, and motor function, thereby
supporting the microbiota’s causal role in modulating the gut–brain axis [260].

In contrast to these robust preclinical findings, evidence for FMT in human chronic pain
remains promising but preliminary. A pilot study in treatment-resistant fibromyalgia re-
ported symptom relief, including pain reduction, following FMT from healthy donors [261].
A systematic review further suggested that FMT may reduce pain intensity and improve
fatigue and quality of life, particularly in patients with fibromyalgia and irritable bowel
syndrome [262]. However, the generalizability of these limited findings to other distinct
pain phenotypes remains unclear. Collectively, these findings support a bidirectional causal
role for the gut microbiome in chronic pain pathogenesis, potentially mediated by micro-
bial metabolites and immune-neural crosstalk, and highlight the therapeutic potential of
microbiome-targeted strategies. Further well-powered, randomized, controlled trials across
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multiple chronic pain conditions are needed to establish efficacy and safety. Incorporating
multi-omics endpoints (e.g., metagenomics, metabolomics, and inflammatory markers)
and stratifying patients based on their baseline microbiome profiles may help identify
responders and improve reproducibility.

6. Therapeutic Opportunities
Building on this causal framework, the gut microbiome appears to contribute to the

pathogenesis of chronic pain, opening the door to novel treatment modalities aimed at
modulating this community. Even in the absence of causality, a possible perpetuating role
of oral and/or gut microbiome in people with chronic pain would warrant therapeutic
targeting of the microbiome and potentially fit into the global move towards precision pain
medicine. These prospects are of particular interest to both patients and clinicians and
are reinforced by anecdotal reports of symptomatic improvement following the adoption
of certain lifestyle changes [263]. Contemporary evidence shows that lifestyle factors
such as physical inactivity, stress, poor sleep, unhealthy diet, and smoking are not only
associated with chronic pain across age groups [264–267] but also shape gut microbiome
composition [263]. In particular, physical inactivity, stress, poor sleep, and unhealthy
dietary patterns are linked to reduced microbial diversity, depletion of beneficial taxa,
and expansion of pro-inflammatory species [13,17,268–270]. Favorable changes in gut
microbiome composition have been observed following lifestyle interventions, with these
changes linked to improvements in pain and quality of life [263]. Beyond the gut, poor oral
health has also been observed in subgroups with abdominal pain [20], low back pain [37],
fibromyalgia [36], and RA [38], further underscoring the role of microbial health in chronic
pain. In line with best-evidence clinical practice guidelines advocating a multimodal
lifestyle approach, interventions that address lifestyle factors such as diet, physical activity,
sleep, stress management, and oral health, together with microbial strategies including
probiotics, prebiotics, and synbiotics, may provide synergistic benefits for people with
chronic pain.

6.1. Lifestyle Factors as Multimodal Therapy
6.1.1. Diet

Diet is a major determinant of gut microbiome composition and function [271], with
broad implications for pain and overall health [17,263]. Diets rich in fiber from fruits,
vegetables, and whole grains promote the growth of beneficial bacteria that produce SC-
FAs, which exert anti-inflammatory effects, strengthen the intestinal barrier, and support
gastrointestinal, metabolic, and even sleep health [14,17,61,271,272]. In contrast, diets
high in processed foods, sugars, and animal fats are associated with dysbiosis, reduced
microbial diversity, and impaired intestinal permeability, which may contribute to disease
risk [17,271,273]. Excessive intake of saturated fats is associated with unfavorable microbial
shifts, whereas omega-3 polyunsaturated and monounsaturated fats (e.g., from fish oil and
extra virgin olive oil) enhance microbial diversity, SCFA production, and mucosal integrity,
partly via their polyphenol content [17,274]. High added sugar consumption, particularly
sucrose and fructose, disrupts the microbiota, reduces SCFA production, and increases
pro-inflammatory taxa, a pattern also seen in individuals with sleep disturbances [17]. Ex-
cessive consumption of red and processed meat further aggravates dysbiosis, reduces SCFA
production, and promotes systemic low-grade inflammation [275]. Alcohol consumption
contributes to similar microbial imbalances, weakening barrier function and amplifying
permeability [17] (Figure 7). Together, these findings underscore the potential of dietary
modification that emphasizes fiber, unsaturated fats, and polyphenol-rich foods while

https://doi.org/10.3390/ijms27010114

https://doi.org/10.3390/ijms27010114


Int. J. Mol. Sci. 2026, 27, 114 24 of 40

limiting processed foods, sugars, saturated fats, alcohol, and red or processed meat as a
microbiome-targeted approach to mitigate chronic pain.

Figure 7. Lifestyle factors shape the oral and gut microbiota and influence pain. Created with
BioRender.com.

6.1.2. Physical Activity

Physical activity is increasingly recognized as both a preventive and therapeutic
strategy for chronic pain [276], with growing evidence suggesting that gut microbiota may
partly mediate these benefits [277]. Regular physical activity has been shown to increase gut
microbial diversity, enrich taxa involved in SCFAs metabolism, and reduce both peripheral
and central sensitization [278,279]. In contrast, sedentary behavior has been linked to lower
salivary microbial diversity and a higher abundance of Streptococcus, a genus associated
with late-onset colorectal cancer, suggesting a possible connection between oral and gut
microbiota in disease risk [279]. Exercise can also mitigate the harmful impact of high-fat
diets by limiting inflammatory cell infiltration and preserving intestinal morphology [277],
whereas high-fat diets combined with sedentary behavior induce villus enlargement via
plasmacytoid and lymphocytic infiltration [280]. These changes may be counteracted
by regular exercise through downregulation of COX-2 expression in both proximal and
distal regions of the intestine [277]. The influence of exercise on the microbiome, however,
depends on type, frequency, intensity, and duration [263]. Moderate, regular activity
promotes a beneficial microbial profile, whereas irregular or excessive training can disrupt
gut barrier integrity, promote bacterial translocation, and trigger dysbiosis, leading to
impaired immune and gastrointestinal function [263,277]. Furthermore, activation of the
HPA axis during intense physical exertion or psychological stress can further aggravate
these microbial alterations [277] (Figure 7).

6.1.3. Sleep and Circadian Health

Emerging evidence suggests a bidirectional relationship between sleep and the gut
microbiome, mediated by the microbiota–gut–brain axis [17,281]. Sleep disruption alters
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microbial composition, with reductions in beneficial taxa such as Bifidobacterium and Lacto-
bacillaceae and increases in Firmicutes or Proteobacteria [281]. These changes are accompanied
by greater gut permeability and inflammation [281]. Conversely, dysbiosis can impair sleep
by disrupting the production of microbial metabolites such as SCFAs and GABA [17]. Sleep
restriction to 4–5 h per night for one week impairs glucose tolerance and reduces tissue
insulin sensitivity [282]. Extending time in bed by one hour improves insulin sensitivity in
chronically sleep-restricted healthy adults [283]. Both sleep disorders and gut dysbiosis
can contribute to abnormalities in carbohydrate metabolism [17] (Figure 7). Notably, sleep
disturbance is highly prevalent in chronic pain and may perpetuate dysbiosis through
stress-related neuroendocrine activation, low-grade inflammation, and pain-related lifestyle
changes. Therefore, optimizing sleep through structured sleep hygiene and behavioral
interventions (e.g., cognitive behavioral therapy for insomnia) should be considered a key
component of multimodal management to help break this vicious cycle and potentially
support microbiome recovery. A balanced diet rich in plant-based foods enhances the
production of sleep-regulating metabolites, potentially improving quality of sleep and
benefiting overall health [17].

6.1.4. Stress Management

Psychological stress may affect the oral and gut microbiomes independently, thereby
forming the oral–brain axis and oral–gut axis, respectively [32,284]. The HPA axis regu-
lates stress responses and modulates the gut–brain axis through ACTH-driven cortisol
release [132–134]. In people with chronic pain, this axis is often dysregulated, leading to
hypercortisolism or hypocortisolism. While acute cortisol has anti-inflammatory effects,
chronic elevation alters microbiota [27], increases gut permeability [143], and promotes
neuroinflammation [144]. Meditation therapy can improve gut microbiota composition
and is associated with reduced risk of anxiety, depression and cardiovascular disease and
could enhance immune function [285]. A randomized controlled trial showed that cog-
nitive behavioral therapy for irritable bowel syndrome reduced symptom severity, with
treatment success associated with baseline gut microbiome composition and concurrent
post-treatment changes in both brain networks and microbiota [286].

6.1.5. Oral Health

Poor oral health/oral dysbiosis triggers oral–gut inflammation, resulting in dysbiosis
and compromised barrier integrity. This dysbiosis elevates intestinal permeability, allowing
microbial metabolites to leak into circulation and drive pro-inflammatory cytokine pro-
duction, thereby fostering systemic inflammation [40]. Oral microbiota also cross mucosal
barriers during routine activities, entering the bloodstream and disseminating to organs,
where they induce immune activation and chronic low-grade inflammation [109]. Recent
studies suggest that the oral–gut axis may serve as a potential causal link between oral
health and systemic disease [46,98–100] and chronic pain [37,287]. Improving oral health
may downregulate inflammation through host modulation therapies, as prolonged systemic
antibiotic use is discouraged owing to resistance concerns as well as devastating effects
on the microbiome; instead, probiotics and bioactive metabolites have been extensively
explored for modulating inflammation [288].

Multimodal treatments combining nutritional intervention, oral hygiene, physical
activity promotion, and sleep and stress management work synergistically with microbial
or pharmacological therapies, ensuring that beneficial species can colonize and function in
a supportive host environment.
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7. Current Challenges and Future Directions
The gut microbiome has emerged as a promising modifiable factor, influenced by

lifestyle factors such as diet, sleep, physical activity, stress regulation, and oral hygiene,
as well as microbial interventions including probiotics, prebiotics, and synbiotics. These
factors position it as a potential therapeutic target for chronic pain conditions such as
fibromyalgia, OA, migraine, irritable bowel syndrome and low back pain. However,
evidence-based recommendations are limited due to their high variability; no univer-
sal “healthy” profile exists, as composition varies by geography, culture, and diet (e.g.,
European cohorts dominated by Firmicutes and Bacteroidota, versus diverse Asian pop-
ulations with Prevotella, Faecalibacterium, and Lactobacillus) [13]. The complexity of this
ecosystem warrants careful consideration before attempting to “normalize” the abundance
of disrupted bacterial species in chronic pain. For instance, Prevotella copri is depleted
in fibromyalgia yet elevated in inflammatory arthritis, highlighting the need for caution
when intervening in its population [289]. Similarly, Roseburia spp. show reduced abun-
dance in migraine and ME/CFS but are elevated in fibromyalgia [13], while Bacteroides spp.
are increased in ME/CFS and OA [13,19] but decreased in migraine [13]. These context-
dependent roles suggest that specific taxa cannot be universally categorized as beneficial
or harmful. Therefore, moving toward precision medicine requires future research that
prioritizes condition- or comorbidity-specific microbiome profiling and functional analyses
to identify causal pathways before firm recommendations can be made. Despite these
challenges, recent advancements in metabolomics and microbiome research provide an
opportunity to move beyond descriptive associations and toward mechanistic insights.
First longitudinal cohort studies with repeated microbial, metabolic, and immune profil-
ing are needed to determine whether microbiota changes precede or follow the onset of
chronic pain, with frameworks such as directed acyclic graphs applied to strengthen causal
inference. Second, multi-omics approaches (metagenomics, metabolomics, transcriptomics,
immunophenotyping) should be applied to identify causal pathways linking microbial
metabolites (e.g., SCFAs, LPS, bile acids) to neuroimmune activation and central sensi-
tization in people with chronic pain. For instance, combining gut microbiome profiling
with serum metabolomics (including SCFAs) and circulating cytokine analysis allows re-
searchers to test whether specific metabolite deficits co-vary with inflammatory signatures,
as recently illustrated in a multi-omics analysis of samples obtained from patients with
fibromyalgia [32]. Third, preclinical studies of FMT have shown promise in modulating
pain-related behaviors, suggesting translational potential. However, human application
requires careful evaluation of safety, durability, and specificity of microbial transfer, par-
ticularly given the heterogeneity of donor microbiomes and risk of unintended effects.
Finally, precision pain medicine approaches are needed. Microbiome composition varies
substantially across geography, diet, and cultural practices, suggesting that personalized or
stratified interventions based on baseline microbial and metabolic profiles will be necessary
rather than assuming a universal therapeutic strategy. The latter not only applies to direct
therapeutic targeting of the microbiome, such as done during FMT, probiotics, prebiotics,
and synbiotics, but also to indirect strategies such as dietary interventions.

8. Conclusions
This narrative review highlights the interplay between oral and gut microbiota, neu-

roinflammation, and central sensitization in the pathogenesis of chronic pain. Emerging
evidence from microbiome research shows alterations in oral and gut microbial communi-
ties in chronic pain populations, particularly a reduction in SCFAs-producing taxa (e.g.,
Faecalibacterium prausnitzii, Roseburia spp., Bifidobacterium spp.) and an overrepresentation of
pro-inflammatory species (e.g., Bacteroides spp., Eggerthella lenta). These compositional shifts
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are accompanied by altered microbial metabolites, including SCFAs, bile acids, tryptophan
derivatives, and cell wall components, which modulate gut–brain communication, inten-
sify neuroinflammation, and promote both peripheral and central sensitization through
immune, neural, and endocrine pathways.

While findings from animal models, MR, and early FMT studies suggest a potential
causal role of dysbiosis, clinical translation remains incomplete, as human data are still
preliminary and confounded by lifestyle, diet, and comorbidities. The complexity and
variability of the microbiome underscore the need for rigorous longitudinal, mechanistic,
and stratified research. Future work should integrate multi-omics approaches and apply
robust causal inference to establish whether microbial metabolites are causal drivers of
sensitization. Lifestyle factors such as diet, sleep, physical activity, and stress warrant
particular attention, since they shape microbial composition and pain trajectories. Research
should evaluate whether modifying these factors can beneficially alter the microbiome.
Future strategies should combine dietary, lifestyle, and microbial interventions tailored to
individual microbiota profiles to effectively address the heterogeneity of chronic pain.
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Acetyl-CoA Acetyl coenzyme A
LPS Lipopolysaccharides
MAMPs Microbial-associated molecular patterns
TLR Toll-like receptors
CRP C-reactive protein
NF-κB Nuclear factor kappa-B
TNF-α Tumor necrosis factor-alpha
IL Interleukin
GPR G protein-coupled receptor
FM Fibromyalgia
SCFA Short-chain fatty acid
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FMT Fecal microbiota transplantation
ME/CFS Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
OA Osteoarthritis
CWP Chronic Widespread Pain
GABA Gamma-Aminobutyric Acid
BA Bile acids
FXR Farnesoid X Receptor
TGR5 Takeda G-Protein-Coupled Receptor 5
NMDA N-methyl-D-aspartate
JAK2 Janus kinase 2
STAT3 Signal transducer and activator of transcription 3
COX2 Cyclooxygenase-2
PGE2 Prostaglandin E2
CCL2 C–C motif chemokine ligand 2
CXCL1 C–X–C motif chemokine ligand 1
Ahr Aryl hydrocarbon receptor
ACTH Adrenocorticotropic hormone
CRH Corticotrophin-releasing hormone
NLRs Nucleotide-binding oligomerization domain-like receptors
PRRs Pattern recognition receptors
BBB Blood–brain barrier
HDAC Histone deacetylase
RA Rheumatoid arthritis
PAMPs Pathogen-associated molecular patterns
MAPK Mitogen-activated protein kinase
TRP Transient receptor potential
MR Mendelian randomization
HPA Hypothalamic–pituitary–adrenal
TRPA1 TRP ankyrin 1
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