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ABSTRACT 

High quality silicon nitride ceramics have shown some advantages for rolling 

element bearing applications. In particular hybrid bearings (silicon nitride rolling 

elements and steel races) have the ability to withstand high loads, severe 

environments and high speeds. However, the difficulties of both sintering and 

machining the material may result in surface defects, such as surface ring cracks. It is 

difficult to detect surface ring cracks during high volume production processes and 
hence it is crucially important to understand their influence and the fundamental 

mechanism of the failures they cause. 

The purpose of this study is to examine the contact fatigue failure modes of 

silicon nitride rolling elements with surface ring crack defects. In this study, new 

experimental and computational techniques are developed to measure and model the 

interaction of the surface with pre-existing crack defects. A rolling contact fatigue 

test method is devised for positioning the ring crack in the contact path. Rolling 

contact fatigue tests are conducted using a modified four-ball machine in a hybrid 

ceramic/steel combination. A three-dimensional boundary element model is used to 

determine the stress intensity factors and to carry out the crack face contact analysis. 

Research shows that the RCF life performance of silicon nitride bearing 

elements is dependent upon the crack location and fatigue spall happens only at a 
few crack orientations. The spalling fatigue failure is not only influenced by the 

original ring crack propagation but also strongly influenced by the subsequent crack 
face contact. Secondary surface cracks play an important role in the forination of a 
fatigue spall. The crack gap and crack face friction coefficients significantly affect 
the formation of secondary surface cracks. Numerical calculation results are 

consistent with the experimental observations. A quantitative three-dimensional 
boundary element model has been developed, which can be used to determine the 

geometry of acceptable surface ring cracks. 
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CHAPTER I 

INTRODUCTION 

1.1 GENERAL BACKGROUND 

Ceramic materials such as silicon nitride applied to rolling element bearings 

show some practical advantages over traditional bearing steels (Hamburg et al. 1981, 

Miner et al. 198 1, Bhushan and Sibley 1981 and Aramaki et al. 1988). Silicon nitride 
has been found to have the optimum combination of properties suitable for this* 

application. Hybrid rolling element bearings, i. e. precision angular contact ball- 

bearings using ceramic rolling elements are now offered as standard components 

within the ball bearing manufacturing industry. 

Quality control of the ceramic ball surfaces has reached a satisfactory position 

and high volume inspection is practical. Surface cracks, however, are found on ceramic 
balls (Cundill 1990) and are difficult to detect, hence there is an important need to 

assess their influence and fundamental failure mechanism. 
At present there is little infon-nation on failure mechanics and the 

mechanisms of ceramic rolling elements with such surface defects. In this thesis, 

new experimental and computational techniques are developed to measure and 

model the interactions of the surfaces with pre-existing cracks. The techniques are 

applied to study the influence of surface ring crack defects on the stresses and 

consequent failure processes in lubricated rolling contacts. 

The concentrated contact analysis focuses on a hybrid ceramic/steel 

combination. A modified four-ball machine is employed which correctly models ball 

motions and precisely defines ball load. The upper ball is ceramic with surface ring 

cracks. Rolling contact fatigue tests are devised for positioning the ring crack in the 

contact path. In this way many stress cycles are applied to a fixed contact area on the 

upper ball and hence fatigue experimentation time is reduced. It is found that the 

fatigue life under rolling contact loading is markedly sensitive to the location of the 

ring crack on the contact track. Only a few locations on the contact track can lead to 

fatigue failure. A boundary element model is used to determine the stress intensity 

factors along the crack front. Consequently, a relationship between the crack location 
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CHAPTER I 

and crack propagation is established. 

To interpret the failure processes and accurately predict the fatigue life, a 

three-dimensional contact mechanics approach is adopted to model crack face 

contact behaviour and subsequent effects. It is found that the ring crack fatigue 

failure involves three possible periods and each stage corresponds differently in 

relation to the cracking behaviour. The findings of the research provide sufficient 

quantitative insight into the process of surface fatigue to enable performance 

prediction and rational design of a hybrid ceramic rolling contact bearing. 

1.2 OBJECTIVE AND SCOPE OF RESEARCH WORK 

The main objective of the study presented in this thesis is to investigate 

experimentally and model analytically the fatigue failure mechanisms and durability 

of silicon nitride rolling elements which have ring crack defects. The scope of this 

study includes: (1) subsurface and surface characterisations of surface ring cracks, 

(2) experimental studies of the influence of surface ring cracks on the RCF 

performance and failure modes of the ceramic balls, and (3) analytical modelling of 

the concentrated contact volume with surface ring cracks. 

1.3 OUTLINE OF THESIS 

In Chapter 1, general background and previous research work related to this 

subject are described. Chapter 2 describes the main programme of experimental 

testing. Section I describes test materials. Section 2 is concerned with crack 

geometry studies. Section 3 describes experimental methods and procedure. Section 

4 outlines experimental observations during fatigue testing. In the final section, 
Scanning Electron Microscopy (SEM) analysis is described. 

In Chapter 3, experimental results are presented. Section I presents the 

rolling contact fatigue (RCF) performance with ring crack locations. The effect of 

viscosity and crack location on the fatigue life is addressed. Section 2 describes the 

RCF performance with surface line defects. Section 3 describes surface observations 

of crack failure processes. Section 4 describes subsurface observations of crack 

propagation. Section 5 presents the investigation of micro-crack wear patterns in 
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CHAPTER 1 

rolling contacts. Crack characterisations are presented in Section 6. 

The analysis of ring crack propagation is described in Chapter 4. Section I 

describes ring crack geometry modelling and loading configuration. Section 2 

presents boundary element modelling. Section 3 is concerned with the calculated 

results of the stress intensity factors. The influence of crack geometry, loading 

conditions and crack positions on SEF is described. Section 4 describes life 

prediction of spalling fatigue failure. The predicted crack propagation path is 

described in Section 5. 

Contact analysis of crack faces is described in Chapter 5. A three- 

dimensional crack face contact model is developed to investigate the failure 

mechanisms of ceramic surface ring crack in rolling contact. The calculated results 

based on the model are discussed and compared with the experimental observations. 

Discussion, conclusions and recommendations for further research topics resulting 

from this present study are outlined in Chapter 6. 

1.4 LITERATURE SURVEY 

1.4.1 Surface ring crack 

Quality control of the ceramic ball surface has reached a satisfactory standard 

and high volume inspection is practical. Surface ring cracks, however, are commonly 

found on ceramic balls (Cundill 1990) and are difficult to detect. These ring cracks are 

circular extending for approximately one-quarter to one-third of the circumference of a 

circle, and they decrease the rolling contact fatigue performance substantially. Ring 

cracks caused by manufacturing pressing faults or blunt impact loads are the most 

common type found on ceramic ball surfaces. Lateral and radial surface cracks are less 

common and occur due to poor sintering mixture or a sharp indention load (Ueda 

1989). 

There have been a number of experimental studies of brittle fracture under 

contact loading. A typical experiment involves pressing an indenter into the surface of 

the solid with a progressively increasing load and observing the pattern of fracture 

which develops under the contact. Under a blunt indenter, a well-defined cone shaped 

crack pops in when the normal load reaches a critical magnitude (Roesler 1956, 
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CHAPTERI 

Chaudhri and Phillips 1990). Tillett (1956) and Roesler (1956) detail numerous 
historical observations of ring cracking being visible once the surface tensile stress is 

much greater than that required for fracture in bulk tensile test specimens. This has 

been attributed to the small volume acted upon by the contact-induced tensile stress. A 

number of theoretical models have been developed which can predict both the fracture 

load and the subsequent length of the cracks (Frank and Lawn 1967, Wilshaw 1971, 

Mouginot and Maugis 1985). The development of the cone crack from the ring crack 
in the strongly inhomogeneous Hertzian stress field was investigated by Frank and 
Lawn (1967). The mode I stress intensity factor at the cone crack front was calculated 
by modelling it as a two-dimensional plane strain crack in an infinite medium loaded 

by the stresses acting on the location of the cone crack in the corresponding uncracked 
body. It was assumed that the inclined sides of the cone crack followed trajectories of 
the minimum principal stress so that it was perpendicular to the maximum principal 

stress. This model predicts that the crack propagation arrests at a depth which is related 

to the applied load. The partial cone cracks can be generated if the indenter slides over 

the surface under the action of a combined normal and tangential load (Uwn 1967 and 
Bethune 1971). The cracks are initiated at the trailing edge of the contact, and 

propagate almost perpendicular to the surface. 

Warren (1978) used a similar two-dimensional approximation and considered 

the effect of ring crack initiation some distance outside of the circle of contact. The 

model was combined with experiments to measure the fracture toughness of carbides 

based on the initiation of the ring crack. Mouginot and Maugis (1985) also used the 

two-dimensional approximation to analyse cracks generated by both spheres and flat 

punches. Li and Hills (1991) fully analysed circular crack initiation and propagation 

using a numerical calculation method. A finite element method was used. They found 

that the mode H stress intensity factor was about one-tenth of the mode I stress 
intensity factor. A review paper by Warren et al. (1995) discussed ring crack initiation 

and propagation using analytical techniques. The first two stages of surface defect 

growth show that surface flaws develop into complete rings. In the final phase the 

crack develops into a cone. 

Ring crack initiation load of HEP silicon nitride bearing balls was 
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experimentally studied by Ichikawa et al. (1995a), Ichikawa et al. (1995b), Ohgushi 

and Ichikawa (1996). Initiation of a ring crack was detected using acoustic emission. 

The ring crack initiation load showed considerable scatter and ranged from 3 KN to 6 

KN (corresponding to the maximum Hertz contact pressure of 14 GPa and 18 GPa). 

The ring crack initiation load is much smaller than the crushing load, and 

approximately follows two-parameter Weibull distribution with a shape parameter 

ranging from 9-11. 

Impact cracking of silicon nitride balls, during ball finishing or by subsequent 
handling, is a cause for concern since a surface crack is the type of defect most likely 

to cause failure in a hybrid rolling element bearing. Ring cracks formed prior to, or 

during, the final lapping or polishing stage are particularly difficult to detect. Such 

cracks are not visible with optical techniques even at high magnifications except after 

processing with high sensitivity fluorescent penetrants. Impact cracking of silicon 

nitride balls was investigated by Cundill (1997), leading to a parameter for assessing 

impact resistance. Some material types were found to be more resistant to impact 

cracks than others. The types of silicon nitride densified by sintering followed by hot 

isostatic pressing and by gas pressure sintering have the best impact resistance. For ball 

sizes of 6.35 mm, the maximum contact pressure of 20-25 GPa was required to form 

surface ring cracks; for ball sizes of 12.7 mm, 10-15 GPa was required; for ball sizes 

of more than 20 mm, 10-12 GPa was required. 

1.4.2 Fatigue crack propagation 
Fatigue crack propagation is always involved in rolling contact fatigue 

failure. Many efforts have been completed to relate crack propagation behaviour 

with RCF life performance. The rolling and sliding wear processes have attracted the 

interest of many researchers over the past few decades. A general review of ceramic 

wear is given by Kato (1990) and a more specific overview of delamination wear 

arising from rolling and sliding contact is given by Suh (1977). The bulk of that 

research was focused on the experimental aspects of wear. Only a few attempts have 

been made to develop analytical models for predicting the wear process. The 

importance of determining analytical models for wear mechanisms has been 
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discussed by Braza et al. (1989b). Wear modes must be described mechanistically to 

better understand how they occur and to develop formulae for wear material 

removal. Fracture mechanics has been applied to the analysis of wear modes in a 

number of studies. Fleming and Suh (1977), Hills and Ashelby (1979), and 

Rosenfield (1980) have presented a fracture mechanics approach to delamination 

wear. They analysed a subsurface crack parallel to the surface of a half-plane 

subjected to a Hertzian surface load. The stress intensity factors at the crack tips 

were calculated from an approximate stress field induced by the contact load in a 

crack-free half-plane. Keer et al. (1982) presented an improved analysis for 

delamination and surface cracks. They calculated the stress field in the half-plane 

under surface Hertzian contact stresses using dislocation theory to model the cracks. 
Keer and Bryant (1983), Bryant et al. (1984) analysed cracks at an angle to a 

surface acted on by a Hertzian contact load. In Keer and Bryant, lubrication pressure 

was considered as a crack opening force; in Bryant et a]. sufficient lubrication was 

taken to exist in the crack such that the crack face friction was zero. The analyses 

were further extended in Miller et al. (1985) to include the effects of subsurface 

inclusions and asperity perturbations on the pitting crack. Finally, Bower (1988) 

thoroughly analysed the surface pitting crack, summarising the effects of crack face 

friction and lubrication pressures on crack propagation, and including loading 

history dependence when regimes of slip and stick were considered for the crack. In 

all of these analyses, mode II stresses were the main cause of crack propagation. This 

caused crack propagation to be highly dependent on the coefficient of friction 

between the crack faces. 

Several attempts have been made to explain the wear mechanisms in brittle 

materials. Braza et al. (1989b) discussed mechanical aspects of wear without regard 

to tribochemical effects. In the case of brittle materials, cracks may occur on the 

surface due to tension or subsurface cracks parallel to the contact path due to shear. 

Friction in rolling and sliding contact can arise from asperity interlock, adhesion or 

abrasion by debris trapped between the contacting surface and viscous drag of the 

lubricant. Keer and Worden (1990) presented a qualitative model to describe the 

micro-chipping wear mode in ceramic rollers. It is stated that microchipping cracks 
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can form as a result of the stress distribution due to a Hertzian contact. Because the 

direction of principal stresses varies rapidly at an indentation contact, cracks 

propagating at the surface will link or branch to turn parallel to the surface, thus 

providing a mode for wear material removal. A strong dependence was seen relating 

the wear particle size with the coefficient of friction. Thomsen and Karihaloo (1996) 

modelled near-surface cracks in zirconia ceramics which are subjected to contact 
loading. It is concluded that frictional contact may have a significant influence, 

especially upon the sliding mode (mode II) deformation of the closed crack. In the 

analysis for a phase-transforming material, the friction contact between the crack 
faces may even be of greater importance, since the transformation zones at the crack 
tip(s) showed a marked closing effect on the tips, thus exerting significant 

compressive stresses there. These compressive stresses would, in turn, induce 

frictional stresses opposing the sliding deformation of the crack tips. 

Fatigue crack propagation in ceramics has been studied in two modes: long 

crack and short crack studies. The long crack studies (typically with crack length 

about 3 mm) were done with through cracks in pre-cracked specimens, such as 

single-edge-notched specimens in three and four-point bending or tapered double- 

cantilever beam specimens, or compact tension specimens. Crack lengths were 

monitored optically or by measuring the resistance of a conducting coating. Linear 

elastic stress-intensity solutions for the various specimen geometry are given in 

standard handbooks (Tada et a]. 1985). Short crack experiments (typically with 

cracks less than 250 gm in length) were done by bending beams using surface cracks 
introduced from a notch or by indentation. Stress intensity factors for such surface 

cracks can be obtained from linear elastic solutions for three-dimensional semi- 

elliptical surface cracks in bending (and /or tension) (Newman and Ra u 1986). The 

long crack propagation studies gave results that could be described by the Paris law, 

but the exponent m varied between 12 and 40, which is much larger than the values 

of 2-4 typical of metals. The short crack studies gave much greater crack growth 

rates than the long crack studies at equivalent applied stress intensity values. Also, 

the crack growth takes place in the short crack studies at stress intensities below the 

threshold value required in long crack studies (Ritchie and Dauskardt 199 1). 
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Studies of cyclic fatigue in ceramics using long crack techniques are clearly 
important in understanding basic fatigue phenomena in ceramics and data obtained 
in such experiments may apply to design considerations in some circumstances. 
However, the same problem arises as with other uses of long crack data. Namely, 

ceramics having only the naturally occurring short cracks are generally used for load- 

bearing applications. Thus fatigue data for short cracks is needed. 

Results on small fatigue cracks in ceramics, however, are very limited. In 

contrast to long crack results, the small cracks grow at progressively decreasing 

growth rates with increase in size, until finally linking together as the density of 

cracks across the specimen surface increases; the specimen then fails. 

Dauskardt et al. (1992) investigated the ambient-temperature subcritical 

growth behaviour of both long and micro-structurally small cracks during cyclic- 
fatigue loading in a SiC-whisker-reinforced alumina ceramic composite. Based on 

long crack experiments using compact tension specimens, cyclic fatigue crack 

growth rates are found to be sensitive to the applied stress intensity range and load 

ratio. The long crack fatigue threshold, AKth, was found to be in the order of 60% of 

K,,, similar to behaviour in other ceramic materials. Cyclic fatigue crack growth rates 

for small surface cracks are found to occur at applied stress-intensity levels 

significantly smaller than the nominal long-crack threshold AKth. 

Reece and Guiu (1991) studied the influence of environment on the cyclic 

fatigue behaviour of a high-purity alumina bioceramic using the repeated indentation 

technique. Tests were conducted in the presence of water, a variety of alcohols, 

toluene and simulated physiological fluid environments. The results show that these 

environments do not have any detectable effect on the damage produced by single 
indentations, but those containing water cause a significant degradation in cyclic 
fatigue resistance which cannot be quantified in terms of subcritical. crack growth 
behaviour in static fatigue. 

A study of contact fatigue in silicon nitride was reported by Lee and Lawn 

(1999). The contacts were made using WC spheres, principally in cyclic but also in 

static loading, and mainly in air but also in nitrogen and water. Damage patterns 

were examined in three silicon nitride microstructures: (i) fine - almost exclusively 
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fully-developed cone cracks; (ii) medium - well-developed but smaller cone cracks, 

plus modest subsurface quasi-plastic damage; (iii) coarse - intense quasi-plastic 
damage, with little or no cone cracking. In the fine and medium microstructures 

strength degradation was attributable primarily to chemically assist slow growth of 

cone cracks in the presence of moisture during contact, although the medium 

material showed signs of enhanced failure from quasi-plastic zones at large number 

of cycles. The coarse microstructure, although relatively tolerant of single-cycle 
damage, showed strongly accelerated strength losses from mechanical degradation 

within the quasi-plastic damage, especially in water. 

Fatigue cone crack propagation in Si3N4 under cyclic fatigue loading was 

reported by Hu et al. (1996). The tungsten ball contacted with a disk-shaped silicon 

specimen and the tests were run under a maximum contact pressure of 15.01 GPa 

and 17.02 GPa. Unlike the so-called quasi-static Hertzian cone crack, the fatigue 

Hertzian cone crack propagation eliminates the dynamic effect on unstable crack 

propagation. The crack propagates following the path of pure mode I type. The 

multiple cracks and crack kinking were presented. 

Mechanisms of cyclic fatigue in ceramics have not yet been definitely 

established. The possible mechanisms have been classified into two categories: 

intrinsic and extrinsic (Ritchie and Dauskardt 1991, Ritchie et al. 2000). The intrinsic 

mechanism would involve the creation of a fatigue-damaged microstructure ahead of 

the crack tip that would produce a crack-advance mechanism operating uniquely in 

cyclic fatigue. Possible mechanisms are alternating crack tip blunting and resharpening 

or, for whisker-reinforced composites, whisker breakage. Extrinsic mechanisms may 

not involve a change in the crack propagation mechanism under cyclic fatigue 

conditions. Instead, the unloading may change the value of the crack tip shielding. 
Thus cyclic fatigue might reduce the crack tip shielding effect of transforrnation 

toughening or crack tip bridging. 

1.4.3 Failure modes 
Many test-rig types (see appendix 1) are used to investigate rolling contact 

fatigue of silicon nitride bearing materials. Typically, in such tests, a detector 
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coupled with a shutdown device is used to monitor the vibration of the assembly. 

When a preset vibration level is exceeded, indicating the fonnation of a spall or 

excessive uneven wear, the test is automatically stopped and the lifetime of the test 

is recorded. Alternatively, the tests are suspended at different durations to study the 

wear rate. The RCF performance and failure modes were influenced by the test-rig 

type and studied by Hadfield and Stolarski (1995a). Several failure modes of silicon 

nitride in rolling contact have been reported, i. e. spalling, delarnination and rolling 

contact wear. 

1.4.3.1 Spalfing 

Spalling describes a specific form of surface damage and it is the most 

common mode of failure in rolling contact fatigue tests. Silicon nitride spalls in a 

manner similar to bearing steels, which is, in fact, one of the reasons for silicon 

nitride being a good candidate for replacing bearing steels. Other structural 

ceramics, for example, SiC, typically fail by catastrophic fracture due to their low 

fracture toughness or severe wear by micro-fracture. Catastrophic failure can cause 

damage to the entire bearing assembly. 

The fatigue life of high-speed-ball bearings with hot-pressed silicon nitride 

balls was investigated by Parker and Zaretsky (1975). A five-ball fatigue test machine 

was employed to perform fatigue tests. Lubricated contact was studied with 12.7 mm. 

diameter balls, Hertz stresses ranging from 4.3 to 6.2 GPa, a shaft speed of 9600 rpm 

and a contact angle 30'. There was no evidence of a wear mode of failure, only fatigue 

spalls similar to those found on steel. Life predictions showed that ceramic-steel 

contact compared equally to steel-steel contact. Edge cracking was not detected on any 

region near spalled areas or along the contact path. 

Lucek and Cowley (1978) investigated the failure mode of hot-pressed ceramic 

using a disc-on-rod machine. All failures were of a spalling non-catastrophic nature 

and test loads varied from 4.1 to 5.5 GPa. Standard tests conducted with test rods of 

roughness O. Iltm R,, and non-standard tests conducted with various grades of ceramic, 

lubricants and roughness have been conducted by Hadfield and Stolarski (1995c). The 

results inferred that silicon nitride tested under various tribological conditions fails in a 
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non-catastrophic spalling mode. 
Silicon nitride hybrid bearings were tested by Morrison et al. (1984), using 

12.7 mm diameter balls, M50 steel rings and a brass cage. Contact pressure ranged 
between 1.95 and 2.44 GPa, and the film parameter was approximately 3.5 for all 
tests. Spalling was identified as the only mode of failure with no cases of the silicon 

nitride balls fracturing. Statistical analysis showed that bearing life varies in 

accordance with a power law model. 
Experimental work performed by Fujiwara et al. (1989), examined the dynamic 

and static load rating of silicon nitride as a bearing material. The ball-on-plate machine 

was employed. Steel balls revolving around an inner race were loaded against a flat 

test piece. The maximum contact stress was 6.4 GPa, the rotational test speed was 
1400 rpm and the lubricant was a turbine mineral oil. Spalling was identified as the 

most common long-term mode of failure; two other modes that occurred in very short 

times were 'cave-in' and peeling. 
Lucek (1990) reported the rolling contact fatigue perforinance of hot-pressed 

silicon nitride using a rod type machine. Peak contact stress of 6.4 GPa and synthetic 

turbine oil at ambient temperature provided boundary lubrication. The specimen speed 

was set at 3600 rpm or 8600 stress cycles per minute. Results showed that the 

predominant fatigue failure mechanism in silicon nitride involves the slow growth of 

circumferential crack from the edges of the contact path driven by tensile stresses. 

Spalling occurred when material in the compressive zone was insufficiently supported. 

The results of extensive testing carried out on perfect and artificially pre- 

cracked silicon nitride balls were presented by Hadfield et al. (1993a), Hadfield et al. 
(1993b) and Hadfield et al. (1993c). The cracks were artificially induced and tests were 

conducted using a modified four-ball machine at maximum contact stresses of 6.4 GPa 

and spindle speed of 5000 rpm. The lubricants investigated were high viscosity mineral 

oil, low viscosity synthetic oil and high penetration kerosene. The failure mode was 

sPalling in a non-catastrophic way. Experimental results showed that the artificially 

produced cracks failed in a non-catastrophic way, the pattern of failure was strongly 
influenced by the lubricating fluid and the final failure mode was spalling. 

Burrier (1996) studied the rolling contact fatigue performance using II silicon 

II 



CHAPTER I 

nitride bearing materials. Tests were conducted using a ball-on-rod machine at 

maximum contact stresses of 5.93 GPa and rod rotation speed of 3600 rpm. Research 

showed that the materials exhibited differences in life-span of several orders of 

magnitude and failure mode was spalling fatigue. Silicon nitride materials can exhibit 

a wide range of rolling contact fatigue endurance. Under the relatively high stress 

conditions, fatigue durability increased dramatically as the microstructure tended 

toward finer, more equiaxed gains and a uniform, minimum distribution of second 

phases. 

1.4.3.2 Delamination 

Studies of delarnination fatigue failure on perfect and artificially pre-cracked 

silicon nitride balls were carried out using a modified four-ball machine by Hadfield 

et al. (1993a), Hadfield et al. (1994), Hadfield and Stolarski (1995b), Hadfield et al. 

(1993c). The silicon nitride balls were in rolling contact with a steel ball to simulate 

the rolling condition of a hybrid bearing. The cracks were artificially induced being 

in the forms of ring cracks or radial and lateral cracks. Testing under high 

compressive cyclic stress and various tribological conditions resulted in 

delamination failure. Scanning electron microscope observations enabled the 

delamination failures to be classified by the location of crack initiation and 

subsequent propagation. For ring-cracked balls, failure occurred by spalling. For 

radial and lateral cracked balls, failure occurred in three ways: (1) lateral crack 

induced spalling, (2) radial crack induced surface bulging, and (3) radial crack 

induced delamination. The failure mode was also sensitive to the lubricant used 

because lubricant could penetrate into the subsurface cracks to produce significant 
hydrostatic pressure. 

In the case of surface delarnination, adjacent radial cracks were propagated 

and connected, the delamination area showed typical fatigue striations. Residual 

stress measurement by x-ray diffraction indicated compressive stress in the 

delaminated area. In the case of surface bulging, ferrous debris originating from the 

upper steel ball was trapped under the ball surface. The steel debris, suspended in the 

pressurized lubricant, was forced up through the ball surface. 
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A recent study by Hadfield (1998) showed that the ring cracks did not 

develop into conics but failed due to delamination. The surface ring cracks were 

found on silicon nitride as purchased from manufacturers and were not produced 

artificially. The critical depth of the ring crack defect is 5 to 20 Rm. Porosity was the 

dominant property which controlled wear mode and performance. 

1.4.3.3 Rolling contact wear 

Rolling contact wear is the most common type found on the contact path and 

it has been reported by a number of researchers. Preliminary work using a modified 

four-ball machine to assess hot-pressed silicon nitride as a rolling bearing material 

was reported by Scott and Blackwell (1973). Unlubricated contact was studied at 

different temperatures at 1500 rpm and a maximum Hertzian stress of 5.8GPa. 

Lubricated contact was also studied at 7.7 GPa and ambient temperature. Under 

unlubricated conditions upper ball wear after 30 minutes was measured as 0.6 mg, 

and the wear track on the ball surface retained modest surface quality. For lubricated 

contact, failure occurred to the upper ball after 20 seconds, the failure mode being 

wear and fracture. A silicon nitride upper ball was tested in contact with an En31 

steel lower ball and this increased the time of failure to 70 seconds. 

Wear properties of silicon nitride in dry rolling-sliding contact were studied 

by Akazawa and Kato (1988) using a ring-on-roller test machine. Under no 

lubrication and a maximum Hertzian pressure of 1.1 GPa, results showed thin flake- 

like wear particles that were rich in oxygen and depended on the roughness of the 

contact surfaces. Braza et al. (1989a) carried out rolling and sliding wear mechanism 

experiments. This work involved the use of a large diameter cast iron roller 

contacting with a smaller diameter silicon nitride roller with an internal steel pin 
lubricated with a standard lubrication oil. Contact pressure was small, i. e., 1.37 GPa, 

and three types of silicon nitride were tested: hot pressed, pressureless sintered and 

reaction bonded. The wear rate for the reaction bonded type was higher, the wear 

mode being by 'grain pullout'. The other two types had similar wear rates, the mode 

of wear being submicron chipping. Rolling contact friction coefficients were 0.0056 

and all similar. Dry rolling tests by Kim et al. (1986) on several ceramics concluded 
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that the silicon nitride wear rate was the smallest. A ring-on-disc testing machine 

was used, with the maximum Hertz stress ranging from 2.5 GPa to 5 GPa. A relation 

between wear rate and mechanical properties was attempted without success, 

suggesting that a combination of material properties and roughness was needed. 

Brittle fracture was concluded to be the dominant wear mode. 

Allen (1994) studied the effect of composition and physical properties of 

silicon nitride on rolling wear and fatigue performance using a ball-on-rod machine. 

Three commercial bearing materials were tested at maximum contact pressure of 6.4 

GPa. Wear and fatigue properties were compared to physical properties and material 

composition. It was found that a high fracture toughness was not required for high 

fatigue life and wear resistance. Grain boundary composition did not appear to affect 

the wear mechanism of these hot-isostatically-pressed materials. Chao et al. (1998) 

reported transient wear of silicon nitride in lubricated rolling contact. A ball-on-rod 

test machine was used, with the maximum Hertz stress ranging from 5 to 6.5 GPa. 

Wear rate and behaviour were dependent on the initial surface roughness. 

1.5 STATE OF ART RESULTING FROM LITERATURE SURVEY 

Surface ring cracks are commonly found on silicon nitride balls and fatigue 

failure is initiated from those cracks. The presence of surface cracks on silicon 

nitride balls necessitates the understanding of failure modes of rolling elements with 

such surface cracks. Currently, there is little fundamental understanding of damage, 

failure modes and mechanism. Detailed failure processes initiated from surface ring 

cracks have not been adequately explained. Since the size of surface ring crack is 

very small (0.2 mm in radius) and the contact radius has the same dimensional scale, 

slight changes in geometric orientation on the contact track will result in a 

significant change in rolling contact fatigue life. The influence of crack location on 

rolling contact fatigue life has not been fully considered and crack propagation 
behaviour in rolling contact has not been adequately studied at this stage. The crack 

face contact effect in rolling contact has not been dealt with. Clearly, much effort 

must be devoted to these aspects. 
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EXPERIMENT METHODOLOGY 

This chapter presents specifications related to experimental research. Test 

materials are described with regard to silicon nitride ceramic balls, steel balls and 
lubricants. Specimen preparation and procedures for crack geometry studies are 
described. The rolling contact fatigue test method is described with respect to the 

test machine, crack position method and test procedure. In-test surface observation 

and post-test analysis, using light microscopy and scanning electron microscopy are 

also described. 

2.1 TEST MATERIALS 

2.1.1 Silicon nitride ball 

Pure silicon nitride exists in two crystallographic forms: a and A both of 

which have a hexagonal crystal structure. The a phase has a unit cell approximately 

twice as large the B phase. Silicon nitride materials are classified according to the 

processing techniques used to prepare the solid form. The categories include sintered, 
hot-pressed, reaction-bonded and hot isostatically pressed. It is important to recognise 

that the composition, microstructure, and properties of silicon nitrides vary strongly 
depending on the processing route used in the fabrication of the product (Appendix 2). 

Silicon nitride typically has higher fracture toughness than the other non-transforming 

monolithic ceramics. This is attributed to the whisker-like interpenetrating morphology 

of the & Si3N4 grains which deflect the crack and thus increase the fracture 

resistance (Faber and Evans 1983). In the so-called self-reinforced silicon nitrides, 

this unique microstructure has been further exploited to increase the fracture 

toughness to 10 MPa m 1/2 (Li and Yamanis 1989). 

Silicon nitride balls used for this research are manufactured by a hot isostatic 

pressing (HIP) of 'green' preformed powder. Preformed 'green' ball blanks are 

produced by compaction after blending, milling and agglomeration operations. 
Geometry of preformed blanks may be soft machined by standard operations at this 

stage. Densification of ball blanks is achieved by HIP at pressures of 200-300 MPa 

and temperatures of 1750-1900 'C. Densification of silicon nitride is preferred to 
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other methods such as hot-pressing, gas pressure sintering and pressureless sintering, 

as greater control and superior quality of material properties is available. Ball blanks 

are ground and polished to 12.7 mm. diameter. Standardised procedures are adopted 

to ensure consistent quality of material and geometry. Average roughness (Ra) of the 

silicon nitride ball surfaces is typically O. OlRm and ball roundness is within ball 

bearing tolerances. Typical physical and mechanical properties are listed in table 2.1 

(Jahanmir 1994). 

Table 2.1 Typical properties of commercial bearing Si3N4. 

Grade (manufacturer) NBD-200 

Material fabrication process Hot-isostatic pressing 

Density (g /cm) 3.16 

Young's modulus (GPa) 320 

Poisson's ratio 0.26 

Fracture toughness (MPa rn'12) 5.46 

Hardness (Vickers indentation) (GPa) 16.6 (at 10 kg) 

Thermal expansion coefficient (196 / K), 20-800'C 2.9 

Thermal conductivity (Watt /m K) 29.3 (at 200C) 

2.1.2 Steel ball 

The steel ball is carbon chromium steel. The diameter and surface roughness 

are 12.7 mm and 0.02 gm R., respectively. The hardness of the steel balls is on 

average 839 H,. The elastic modulus and Poisson ratio are 210 GPa and 0.3, 

respectively. 

2.1.3 Lubricant 

Four test lubricants are used in rolling fatigue tests and are listed in table 2.2. 

Base oil (Shell Tapla 20) is a highly refined straight naphthenic mineral oil with high 

oxidation stability, low carbon-forming tendencies and natural detergent properties. 
Gas Turbine oil is a low viscosity synthetic lubricant with additives. The cylinder 

and gear lubricants are a highly refined mineral oil with additives. Low and high 
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viscosity oils are used to examine possible effects of viscosity and increased film 

thickness. 

Table 2.2 Physical and chemical properties of test lubricants 

Lubricant Viscosity @ 40'C 
(cst) 

Pour point 
(0c) 

Flash point 
(0C) 

Base Oil 94.6 -33 216 

Gas Turbine Oil 25 -54 250 

Cylinder Oil 1040 -6 260 

Gear Oil 680 -6 200 

2.2 RING CRACK GEOMETRY STUDIES 

2.2.1 Specimen preparation 
Manufacturing processing faults or blunt impact load often cause surface 

cracks on the ceramic balls due to their brittle characteristic. Surface cracks are 

extremely difficult to observe on ceramic surfaces even under high microscopic 

magnification. Other non-destructive test techniques such as X-ray radiography and 

ultrasonics are of restricted use for screening operations. To enable quick and effective 

surface crack screening, a fluorescent dye penetration technique is used. 

In preparation for the fluorescent dye penetration examination, the sample is 

thoroughly cleaned with acetone in an ultrasonic bath. It is important to remove any 

surface grease and debris. The sample is heated up to 500' for one hour to bum out the 

oil within the crack. The sample is then soaked for a period of time in a dye penetrant. 
After soaking and draining the sample is immersed in a dye remover for a short time; 

this process removes any dye from the ball surface. The sample is then washed 

thoroughly and then dried carefully leaving no wash marks on the surface. The sample 
is then ready for examination, dye present within surface cracks may be observed 

under microscopic analysis with an ultraviolet light source. It is important to inspect 

the sample as quick as possible due to fluorescent degradation. 
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2.2.2 Surface inspection 

The purpose of surface inspection is to obtain the crack geornetry characteristic 

on the ball surface. Light microscope techniques are used to observe the ball surface. A t7l 
custormsed manipulator (Appendix 3) positions each ball without manual contact 

interference. Figure 2.1 illustrates typical defect images found on the cerarnic ball 

surface. Most of the defects are ring cracks. Ring crack radius and length are measured 
from light rnicroscope observations. 

Figure 2.1 Typical surface defects found on ceramic ball surfaces. 

2.2.3 Subsurface observations 
To study the suhsuFface geometry of the surface ring crack, the crackcd ball is 

sectioned near the crack and then polished gradually across the ring crack to examine ID 11ý 
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the profile of the crack path. The polished sample is then inspected with a light 

microscope; various techniques are used to improve visual appearance. Light 

microscopy is employed to examine the silicon nitride ball surface and characterise 

ring crack defects. 

It is difficult to section and polish ceramics due to high hardness and moderate 

toughness of the material. A 'Sturers' cutting machine incorporating a diamond wheel 

with sample rotation facility is used to section ceramic balls. Sample feed rate is set at 
0.2 millimetres per minute, the cutting wheel head is lubricated with water. Once 

sectioned, the sample is mounted by means of a mounting machine. Silicon carbide 

paper (400,600 and finally 800) is used to grind and smooth the sample surface. The 

surface is polished by using a polishing cloth and diamond paste (9,6 and 3 Rm). At 

the final polishing stage, a light microscope is required to examine the sample for 

scratches. 

2.3 ROLLING CONTACT FATIGUE TESTING 

2.3.1 Test equipment 
The rolling contact fatigue tests are performed using a Plint TE92/HS 

Rolling Tribometer as shown in Figure 2.2. The equipment consists of a bench- 

mounted test machine and control interface. The computer is connected via the serial 

port to the micro-controller interface. The control software is installed on the PC. All 

test parameters are set up through menu-led utilities and a control panel generated on 

a colour monitor. Test data is stored on the hard disc. 

Tests are defined by a series of steps, each step containing load, speed and 

temperature set-points, data recording and alarm level information. Set-points can be 

adjusted by step change or ramp. The test sequence is followed unless interrupted by 

the operator or an alarm. 
The core of the machine is two rigid vertical columns which ensure accurate 

location of the drive spindle with respect to the normal loading axis. The test 

adapters are mounted on a cross beam which is guided by linear bearings on the 

columns and loaded by a pneumatic actuator. The load actuator assembly includes an 
in-line force measurement for direct feedback control of load. 
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This machine is employed as It SIMUlates rolling elements and precisely 

defines the contact load. It consists of an assembly that simulates an angular contact 

rollina element bearina. The stationary steel cup represents a hearing outer-race, three Z: ý Z: ) r__ 

lower balls represent the rolling elernents within a bearing-race and the Upper hall Z_ 

represents the inner-race. The uppcr-ball is assembled to a drive shaft via a collet and 

contacts three lower-balls when the machine is stationary. The contacting positions 
between the Lipper ball and lower balls are immersed in lubricating oil. The tests are 
terminated autornatically at a set number of drive-shaft revolutions measured by a 
tachometer. A vibration sensor automatically stopped tests at a pre-determined 

potentiometer sensitivity and light emitting diode duration (2 seconds). 

2.3.2 Ring crack location within the contact path 
Fil. ', Ure 2.3 shows the loadino geometry o[the test machine and the geometric I 1ý -- - 

attitude of a crack on the contact track. The contact load is given by 

L 
3 cos (p 
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where P is contact load, L is applied load (shaft load), ýo is contact angle (ýo = 35.3") 

The maximum contact pressure and contact radius are calculated using the following 

expressions (Johnson 1985): 

Po ý 
6PE *2 

1/3 

(2.2) 
IT 

3R *2 

3PR * 113 

4E* 
(2.3) 

-12 E* = 
L_nl 

+ 
V2 

(2.4) 
EI E2 

(2.5) 

where po is maximum contact pressure, P is contact load, a is contact radjus, Ei, 2 and 

Pi. 2 are the Young's modulus and Poisson's ratios of the ceramic ball and steel ball, 

and R,. 2 is the radius of the ceramic ball and steel ball respectively. 

Load (L) 

(a) 

- ----------- 

(b) 

13=w 

-- 
------- - ------ 

13=904) -- ----- 

6=0 (5 = 0.5a 6=a (3 = 1.5a 

Figure 2.3 Loading configuration and rinc, crack locations on the contact path. 

crack 

Rolling direction 
-11 
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Surface ring cracks distribute randomly on the ball surface and the cracks can 

occur in any positions when two balls contact together. Therefore, the probability for 

the crack being in the contact area is calculated using the expression 

P=A/Ao (2.6) 

in which p is contacted probability, A is area of contact track, Ao is area of ball 

surface. The A is approximately given by 

A= 41raRising (2.7) 

where a is the contact radius, RI is the radius of the ceramic ball. 

If Ri = 6.35 mm, a=0.21 mm, 9= 35.30, hence p=0.02. As can be seen 
from the calculated result, the probability is only two percent, so it is not possible to 

be certain that a crack will be on the contact track if the ceramic ball is put randomly 
into the collet. 

The geometric attitude of the crack location is described using two 

geometrical parameters as shown in figure 2.3(b). One is 8, which represents the 

distance from the centre of the crack circle to the central line of the contact track. 

Another is P, which is the angle of the chord of ring crack (arc AB) to the central 

line. From a mathematical point of view, there are unlimited possible positions. For 

the sake of simplicity, the speed difference of the upper border and lower border of 

the contact track has been ignored. Figure 2.3(c) shows twelve typical locations, 

which are used in the present RCF test. 

Tests must comply with certain experimental procedures to ensure the crack 
is on the contact path. This is will be addressed in the following section. 

2.3.3 The method for positioning a ring crack 
The crack orientation on the contact path is very important in fatigue testing 

due to the contact circle size being close to the crack. Fatigue life is considerably 
dependent on the crack orientation. The key to studying the influence of crack 
location on fatigue failure is to locate the crack on the target position. To do this, a 
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crack location too] is used in the experiment as shown in figure 2.4. 

IV 

Ag 

MEMENIM-1 .ý 
Figure 2.4 Ci-ack location cletet-mination nt, C- I 

Figure 2.5 Schematic showing how a crack is located on the target location. 
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Figure 2.5 presents the schematic showing how a crack is located on the 

target location. Test preparations must be done in terms of the following procedures: 
(1) Observe the ring crack under microscopy with UV light, and at the same time, 

draw a circle line around the crack (1-2 mm diameter) indicating its direction. 

(2) Put the examined ceramic ball on the location setting tool as shown in figure 2.4. 

(3) Measure the height (1.17mm) starting from the top surface of the ball and turn 

the ball in the direction indicated. 

(4) The height (h) is calculated by the equation h= radius - (radius X cosq) (see 

figure 2.5(a)). In the present study, radius = 6.35mm, contact angle (0 =35.30, 
hence h=1. l7mm. 

(5) Press the ball into the collet (figure 2.5(b)). 

2.3.4 Test procedure 

The collet assembly is pressed into the drive spindle after completing the 

crack location procedure. The cup is finally cleaned with acetone before the lower 

balls are fitted. Lubricating oil is poured into the cup until all lower balls are 
immersed, the oil spill cover is fitted on the cup assembly. The safety cover is fitted 

to the machine and the test is started. Vibration sensitivity reading is increased by 

potentiometer adjustment. When a light emitting diode begins to flash on and off, 

the sensitivity is decreased until the off mode is reached. When the machine vibrates 

such that the diode remains in the on mode for more that two seconds, the drive 

motor will cut-out and the timer stops. 
Lubricating oil is replenished during long-term tests as some oil lubricant is 

lost due to rotational force. The machine is run overnight if necessary without 

supervision. Dynamic damage observations of surface cracks during the fatigue 

testing are performed using light microscopy. To do this, the collet holding the 

ceramic ball is taken off the test machine at intervals during the testing time, cleaned 

and put on the platform (Appendix 3) designed for supporting microscopy detection. 

After each observation, the collet is returned to the test machine to continue the 
fatigue test until failure or expiry of the suspending time (180 hours). 

After test completion, the collet is taken off the machine and the upper 
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ceramic ball is pushed out of the collet and cleaned in acetone. Balls requiring 

further analysis are stored in a desiccator, other samples are stored in a sample file. 

All machine components are cleaned in 'genclean' after test completion; the steel 

cup is inspected for surface damage and replaced if necessary. 

2.4 SURFACE CRACK OBSERVATIONS DURING TESTING 

2.4.1 Apparatus 

A light microscope (Olympus BX60) is employed to inspect surface crack 

propagation behaviour. The information on crack propagation can be directly 

obtained from the image even though there is a limitation in magnification. Various 

techniques are used to improve visual appearance. Eluminated light intensity, dark 

field and Normasky interference are examples of light microscope techniques. The 

ultra-violet light illumination is also used to identify the original crack and the 

propagated crack. 

2.4.2 Observation procedure 
The collet is taken off the test machine at interval testing times and then is 

thoroughly cleaned with acetone in an ultrasonic bath for 20 minutes. The sample is 

then dried carefully leaving no wash marks on the ball surface. The sample is then 

ready for examination. The collet is put on the platform designed for supporting 

microscopic observation to observe the crack (Appendix 3). After each observation, 

the collet is returned to the test machine to continue the fatigue test. 

2.5 SURFACE SEM STUDIES 

2.5.1 Sample preparation 
Sample preparation is directly related to the quality of the electron 

microscopic analysis. Good electrical conductivity is required to prevent 'charging' 

of the specimen which may result in variation in brightness or signal strength. 

Sample cleanliness from dust or grease is important to maximise image clarity and 

chemical analysis. It is also important to make the sample mechanically stable for 

remote manipulation within the microscope. 
Selected ball samples which have been analysed with a light microscope, are 
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mounted on special metallic stubs. Ball samples are attached to the stubs with 

conductive adhesive. A conductive path is necessary from the sample and stub to the 

goniometer to prevent electron charge saturation. Silver paint is spread on the 

metallic stub, adhesive and sample to increase conductivity. 

Ceramic materials have low electric conductivity and hence require a thin 

coating of conductive material. The type of coating influences the image quality and 

resolution; for ceramic balls gold is the most suitable material. A diode splutter 

method of coating is employed. The coating should be as thin as possible to avoid 

charging in the electron microscope. The sample is coated in a clean vacuum to 

improve the consistency and reduce debris on the surface. 

Coating the sample to ensure high distribution and adhesion especially for 

spherical samples is time consuming. The sample is placed in a vacuum chamber 

pumped out to 0.1 torr pressure. Argon is then released into the chamber and the 

vacuum is increased to 0.2 torr. Pressure is released to 0.1 torr whilst flooding the 

chamber with argon gas. The chamber is pumped out again and the process of argon 

flooding is repeated. Finally, the chamber is sealed and pumped out to 0.7 torr 

pressure. Electric power is applied to the gold diode and gas is released from the 

chamber to control the charging rate and position. After approximately 5 minutes the 

power is stopped and vacuum is released, the sample is placed in a desiccator ready 

for analysis. 

2.5.2 Machine description 

A Scanning Electron Microscope (SEM), PHELIPS SEM505, is used for 

fatigue surface analysis. High resolution and large depth of field are features of SEM 

analysis. The basic principle of the scanning electron microscope is the use of a fine 

probe of electrons interacting with a specimen to produce a variety of signals and 
images. The electron probe is produced by an electron gun and focused along an 

electron column by condenser lenses. 

The microscope may be considered as five distinct systems: electron gun 

source, condenser system, scanning system, detection facility and display system. 
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EXPERIMENTAL RESULTS 

This chapter presents results of rolling contact fatigue (RCF) tests. The aim 

of the experimental studies is to investigate failure modes of pre-cracked ceramic 

elements under various tribological conditions. The influence of ring crack location 

on the RCF performance is tested and described in Section 3.1. The rolling contact 
fatigue performance is tested with various load ranges. Low and high viscosity oils 

are used. The RCF performance with surface line defects is tested and results are 
described in Section 3.2. The influence of lubricant properties on line defect failure 

is considered. 

Surface observations of crack failure processes are carried out and results are 
described in Section 3.3. Results from low viscosity oil lubrication are described in 

Section 3.3.1 and results from high viscosity oil lubrication are described in Section 

3.3.2. Subsurface observations of crack propagation are discussed in Section 3.4. 

The investigation of micro-crack wear patterns in rolling contacts is discussed in 

Section 3.5. 

Light microscopy is employed to examine the ball surfaces and characterise 

ring crack defects. A dye-pentrant method is utilised to enhance the detection of 

surface ring cracks. Ring crack characterisations are described in Section 6. Surface 

appearances are described in Section 3.6.1. Subsurface geometry of the ring crack is 

studied and geometric equations are described in Section 3.6.2. 

3.1 RCF PERFORMANCE WITH RING CRACK LOCATION 

3.1.1 Low viscosity oil lubrication 

Two parameters 3 and 6 were used to describe the crack orientations within 

the contact path and were discussed in Chapter 2, Section 2.3.2. Twelve typical 

locations were described. Synthetic turbine oil is used to examine the effect of crack 
locations on RCF performance. Test conditions are described in table 3.1. All of the 

tests are conducted at a speed of 5000 rpm. The oil temperature variation (in 24 
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hours) during testing is shown in figure 3.1. 

Table 3.1 Experimental test conditions (low viscosity lubricant) 

Test 

No. 

Contact Pressure 

(GPa) 

Crack Locations 

1 5.58 p= 0', 43= 0 

2 5.58 p= 00,6 = 0.5a 

3 5.58 6= 00,6=a 

4 5.58 00,3 = 1.5a 

5 5.58 45', 8=0 

6 5.58 jS = 45', 8=0.5a 

7 5.58 
jS = 45', 8=a 

8 5.58 .8= 
45*, 8=1.5a 

9 5.58 p= go" 8=0 

10 5.58 6= 900,8 = 0.5a 

11 5.58 p= go" 8=a 

12 5.58 
.8= 

900,8= 1.5a 

13 6.63 'S = 90', 8= 0.5a 

14 7.58 P= 90', 8=0.5a 

15 8.35 6= 45*, 8=a 

Results (Tests I to 12) are plotted in the bar chart shown in figure 3.2. As can 

be seen from the results, silicon nitride balls do not always fail although the cracks are 

exactly in the contact region and the contact loading traverses the crack. The rolling 

contact fatigue perfonnance is the function of parameters B and 8 for a given contact 

load and lubrication regime. The fatigue life changes with the change of P and & 

The rolling contact fatigue life decreases as the P increases. When 6=0, the 

fatigue life is 24 hours (1.626x ICý fatigue cycles) for p= 900,40.7 hours (2.758 x 107 
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fatigue cycles) for 8= 45', and 180 hours (1.215 x 108 fatigue cycles) no failure for 8 

= 00. When b=0.5a, the fatigue life is 72 hours for 8= 90" and ISO hours no failure 

for, 8 = 45" and, 8= 0". When i3= a or 6=1.5a, no fatigue failures happen for, 8 = 0", 8 

= 45' and 8= 90' in 180 hours of fatigue testing. 

80 
70 

60 

50 

40 
0. 
E 30 
CD :ý 20 
0 

10 

0 

- 8.4 GPa 

- 7.6 GPa 

6.6 GPa 

5.6 GPa 

10 15 20 25 

Test time (hours) 

Figure 3.1 Temperature variation in a day at various contact pressures (turbine oil). 

The rolling contact fatigue life increases as the 3 increases. When P= 0", no 
fatigue failures happen for 3=0,3 = 0.5a, b=a, 3=1.5a in 180 hours of fati(ILie 

testing. When 8= 45", the fatigue life is 40.7 hours for 3=0 and 180 hours no failure 

for (5 = 0.5a, 3=a and 6=1.5a. When #= 90", the fatigue life is 24 hours for t5 = 0, 

71.7 hours for (3 = 0.5a and 180 hours no fai lure for (3 =a and (5 = 1.5a. 

The contact loading is increased to 8.35 GPa (Test 15) to attempt low cycle 

failure modes. There is no fatigue spall in the fatigue cycles of 2.84 million for 8= 45" Zý 
and b=a. Due to this loading being too high, it is not easy to keep tile test running Z:, L- In 

without frequent changes of the lower steel balls, so the test is suspended. 

It can be seen from the results of the experiment on twelve typical locations, 

that only three locations lead to fatigue failure when maximurn contact pressure is 5.58 

GPa. The previous calculation shows that the probability of the surface ring crack Z1- 
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being in the contact region is only 2 percent. Furthermore, the failure probability of 

surface ring crack is to be 0.5 percent only if the ball is put into the collet randomly. 

This may explain why the fatigue life is too discrete to correlate the fatigue 

performance with such properties as density and hardness etc. 

200 

150 

100 

50 

0 

6= 00 180 180 180 180 
11 [3 = 45" 4 0.7 180 180 180 

06= goo 24 71.7 180 180 

Figure 3.2 Fatigue life of 12 typical crack locations under test conditions. 

The reason for differences in rolling contact fatigue performance is that 

different crack locations have different stress intensity factor values, which govern the 

crack propagation behaviour, when (3 =0 and 8= 90', K, and K,,, reach maximum 

value compared with other crack locations (see Chapter 4, Section 4.3.3). When stress 

fields are activated, surface ring cracks propagate along specific lines. The magnitude 

of the stress intensity factors decides whether the crack propagates and how fast it will 

grow. When 3=0, both K, and K,.,, along the crack front at the location of [3 = 90" are 

higher than those for 8= 45" and 8= 0". The K, and K,.,, at the location ol', 8 = 0" are 

then the lowest. Hence, the fatigue performance is different for these test conditions. 

Crack propagation is a necessary condition for a fatigue spall of silicon nitride bearing 

elements because the crack does not always grow toward the ball surface. Detailed 

stress intensity factor calculation will he discussed in Chapter 4. 
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Figure 3.3 presents the comparison of fatigue life for three crack locations at 

increased load. The crack location is 8= 90" and 3=0.5a. It is obvious that the fatigue 

life decreases with the increase of contact stresses. Oil temperature variation in a day 

during testing is shown in figure 3.1. As temperature gradually increases with contact 

load, film thickness reduces due to the effects of the viscosity. 

100 

80 

60 

40 

20 

0 
5.6GPa 6.6GPa 7.6GPa 

Figure 3.3 RCF performance at different contact stresses in the same crack location. 

In general, surface ring cracks are not visible without an UV light Source. The 

cracks are only to be detected using the dye-penetrant method under Liltra-violet light. 

During the fatigue tests, however, the cracks become visible under normal light tn 
conditions. Sorne examples are given in the following discussion. Detailed surface :n 
damage analyses during rolling contact are discussed in Section 3.3. 

Figure 3.4(a) shows a surface ring crack u-nage before testing and this crack is 

used for Test 1. Figure 3.4(b) shows the crack location on the contact path. The wear 

track is clear, and the crack is obvious. Figure 3.5(a) is the ring crack image before test 

(Test 7), and figure 3.5(b) shows the Surface image after 180 hours of testing. 
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--O-TTE-S 
180 hours oftesting (white h-lit ý 

Figure 3.4 Surface observations of silicon nitride balls (Test I ). 

0. as 
(b) 180 hours oftesting (white light) 

Figure 3.5 Surface observations of silicon nitride balls (Test 7). 

Figure 3.6(a) and figure 3.6(b) show the ring crack image before testing and 
during testing ( 17 hours) used in Test 9 respectively. Figure 3.6(c) shows an optical 

irnage of a fatigue spall. The SEM image is shown in figure 3.6(d). The spalling shape L_ tý LI 

of rolling contact fatigue looks like an ellipse. The longer semi-axis is always parallel 
to the rollina direction, and the short axis is perpendicular to the rolling direction. The 

semi -axis approximates to the magnitude of the contact radius under the applied 
load. 
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!' 

0.1 7as 

17 IIOLII-S of' testing (white light) I 

Figure 3.6 Surface observations of silicon nitride balls (Test 9). 

Observations of silicon nitride ball surfaces from Test 10 are shown in figure 

3.7. The test condition is contact stress = 5.58GPa, 43 = 0.5a and 8= 90". Figure 3.7(a) 

shows this surface ring crack image with UV light before the testing. This crack has a 

radius of 0.225 mm and is 0.314 mm long. As the fatigue test proceeds (22 hours of 

testing) the crack becomes visible with normal light as shown in figure 3.7(b). The 

contact track is very clear and three arrows indicate the ring crack. Figure 3.7(c) is all 

optical micrograph, and figure 3.7(d) is a spall SEM micrograph. As call be seen, the 

spalling contours always resemble an ellipse no matter how 3 and 8 change. The 

contour shape seems to be directly related to the geometry of the contact region. 

33 

(a) Pre-test rincy cracks (UV light) 

IiI. 
Ii 

"N Iý,,,, 
1ý, 

lk 
(C) spall Optical lill't-k. 



CHAPTER 3 

1' 

.9-. 
4 

.. » 

0. l7aft 

(b) After 22 hours of testin- 

Figure 3.7 Surface observations ofsIllcon n1tride balls (Test 10). 

(b) After 4.2 hours of testing 

Figure 3.8 Surface observations of silicon nitride balls (Test 15). 
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Figure 3.8(a) shows a ring crack image before testing, and figure 3.8(b) shows 

the image after 4.2 hours of testing (Test 15, maximum contact pressure 8.35 GPa, 3= 

45). 

3.1.2 High viscosity oil lubrication 

Results from the previous section describe how the ring cracks behave in the 

different crack locations operating with low viscosity lubrication oil. A high 

viscosity lubricant, gear oil, is used to examine how lubrication oil affects failure 

modes. Test conditions are described in table 3.2. All of the tests are conducted at a 

speed of 5000 rpm. Temperature variation during testing is shown in figure 3.9. As 

in low viscosity oil, temperature increases with contact load. 

Table 3.2 Experimental test conditions (high viscosity lubricant) 

Test 

No. 

Contact Pressure 

(GPa) 

Crack Locations lubricant 

A 5.58 90" 6= 0 Gear oil 

B 5.58 0 8= 90 8=0.5a Gear oil 

C 5.58 0 90 8=a Gear oil 

D 5.58 -900,8=0 Gear oil 

E 6.63 0 90 ,8=0.5a Gear oil 

F 6.63 B= 450,8=0 Gear oil 

G 7.58 p= 450,8 = 0.5a Gear oil 

H 6.63 B= -90" 8=0 1 Cylinder oil 

The first three tests examine the influence of 8 on fatigue life. The result is 

shown in figure 3.10. It is clear that rolling contact fatigue life increases as the J 

increases. This result confirms the sensitivity of spalling fatigue failure mode to the 
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crack locations even with high viscosity oil lubrication. 
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Figure 3.9 Temperature variation in a day at various contact pressures (gear oil). 
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Figure 3.10 Influence of i5on fatigue life at the contact pressure of 5.6 GPa. 

Figure 3.11 describes the influence of contact stresses on the fatigue life at 13 

90" and 8=0.5a (Tests B and E). The results show that increasing contact stress 

reduces fatigue life. 
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Figure 3.11 Influence of contact stresses on fatigue life at, 6= 90" and (5= 0.5a. 

Figure 3.12 describes the influence of crack locations on fatigue life at high 
Z-ý 

contact stresses (Tests F and G). The results indicate that the fatigue failure mode 

depends on the crack location. This further confirms the sensitivity of the spalling 

fatigue failure to the crack location. tn 
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Figure 3.12 Intluence of crack locations on RCF performance at 8= 45". 
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Dynamic observations of fatigue damage frorn Test B are shown III 1'1('LII-C 

3.13. Figure 3.13(a) shows an untested ring crack u-nage with UV light source. 

Figure 3.13(b) shows the image after a 0.7-hour fatigue test. The ring crack becomes 

visible and the location is clearly exhibited on the surface. At the beginning of' tile 

test, the oil deposit is found only on the edge of the contact track. As tile tc. st 

proceeds, the oil deposit is found everywhere on the contact track and shown ill 

figure 3.13(c). The crack becomes more visible. Figure 3.13(d) shows an overview 

of the spall. The oil deposit is removed after the fatigue spall clue to niachlillill, 

effects of the debris. It can be seen from the photographs that the original ring crack 

is still clear after the fatigue spall. Crack propagation occurs on both sides of' tile 

original crack. 

A 

p" 

(c) Wear track and ring crack (47 lirs) zn (d) Spall and wear track ( 117 Ilrs) 

Figure 3.13 Surface observations of silicon nitride balls (Test B). 

38 

(, t i( mý-, Icd i ml, -, ý j, i. - k (h) Wear track mid rInIg crack (0.7 lirs) 



CHAPTER 3 

Figure 3.14 shows a series of observations from Test E. This test differs from 

Test B in that the load is different. The maximum contact pressure is increased from 

5.6 GPa to 6.6 GPa, and the crack is kept in the same location. Figure 3.14 (a) 

shows the image after a 0.5 hour test. The oil deposit appears on the contact track. 

Unlike in Test B, the pattern of the contact path is changed after several hours of 
fatigue testing. Figure 3.14(b) shows the image after 22.5 hours of testing. As call be 

seen, the substances deposited become bright except the outer edge. This bright 

deposit material can be removed using polishing powder or diamond paste. Figure 

3.14(c) shows an image after 93.5 hours of testing. After the spall the bright deposit 

disappears as shown in figure 3.14(d). The contact path is still in a good condition. 

(a) Wear track and ring crack (0.5 lirs) 

AL 

I., ý,, I ý.. 

(d) Wear track and spall (107 lirs) 

Figure 3.14 Surface observations of s'llcon nitride balls (Test E). 
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The surface damage process at high load (Test G) is shown in figure 3.15. 

Figure 3.15 (a) shows the contact path after 52 hours of testing. A bright substance 

covers the contact track. The crack is clearly shown on the contact path. The contact 

track is in a good condition. Figure 3.15(b) shows the image after 72 hours of 

testing. The bright material is being removed starting from the outer edge of' the 

contact path. The pattern of the deposit material is different from that after 52 hours 

of testing. The wear occurs along the original ring crack. After 94 hours of testing, 

more bright material is removed from the edge of the contact track and the wear 

occurs on the contact track shown in figure 3.15(c). Figure 3.15(d) shows an optical 

micrograph after deposit substances removed. 

I WWý, 11 

Figure 3.15 Surface observations of silicon nitride balls (Test G). 
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Figure 3.16 illustrates surface images from Test H. The cylinder oil is 

adopted as a lubricant. The composition of the oil has been described in Chapter 2, 

Section 2.1. The fatigue failure modes are shown to be the sarne as with the other 
lubrication oils apart from a different fatigue life performance (2.8 hours in this 

case). Figure 3.16(a) shows an overview of the fatigue spall and the SEM 

micrograph is shown in figure 3.16(b). The delaminated failure characteristic is 
found and shown in figure 3.16(c). Figure 3.16(d) illustrates a fractography of 
fatigue crack propagation initiated from the original ring cracks. The cli-cic t, tn 
undulations are clearly displayed on the micrographs. 

(a) Overview of a spall 

Figure 3.16 Surface observations of silicon nitride ball (Test H). 
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Tests A and D are designed to study the influence of surface traction 

direction (rolling direction) on fatigue failure modes. Test conditions are described 

in table 3.2 and the result is shown in figure 3.17. The results indicate that the 

spalling fatigue failure will occur independently of the rolling directions. 

50 

40 
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W 

F- 10 

0 
Test A Test D 

Figure 3.17 RCF performance comparison ot'different traction directions 

Fracture surface shows that the failure mode is fatigue spall. The spall size Is 

, similar and the shape is elliptical. Figure 3.18 shows the surface damage processes 

frorn Test A. Figure 3.18(a) shows the ring crack and contact path after 0.5 hours of 

testing. The crack location is clear and lubricant deposit tends Initially towards the 

edge of the contact path. Figure 3.18(b) is the spall Image after 34.6 hours of testing. 

The lubricant deposit is removed after spall. 
The surface observations front the reversed rolling direction (Test D) are Z-- 

shown in figure 3.19. As in Test A, the lubricant deposit tends initially towards tile 

edge of the contact path and gradually covers the whole contact path. The surface LI 

after 28.5 hours of testing is shown in figure 3.19(a). Figure 3.19(b) shows a spall 
image after 42.7 hours of testing. 
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(a) Contact path and ring crack (0.5 hrs) (b) Spall ovcrvicýý (-)-4. () hrs) 

Figure 3.18 Surface observations of silicon nitride balls (Test A). 

0 OR.. 

(a) Contact path and ring crack (28.5 lirs) (b) Spall ovei \ ic\ý ý42.7 lirs) 

Figure 3.19 Surface observations of silicon nitride balls (Test D). 

3.2 RCF PERFORMANCE WITH SURFACE LINE DEFECTS 

Results from the previous sections dc. scribe the rolling contact fatlicluc 

performance with surface ring crack defects. The fatigue test is performed oil 

ceramic balls with surface ring crack defects. The results describe the surface ring z: 1 

crack behaviour in the different crack locations. The radius of ring cracks, 

commonly found on the commercial cerarnic ball surface, is in a range of 0.2 to 0.25 

nim. It is difficult to find surface ring cracks with the radius of more than 0.3 nini 
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due to Hertzian contact. To investigate how the radius affects the fatigue failure 

modes a line defect (pressing defect) is used to examine the radius effect. From a 

mathematical point of view, when the radius of a ring crack approaches -, the ring 

crack defect becomes a line defect. Therefore, a line defect can be considered to be a 

special type of ring crack. zn 

Table 3.3 Experimental test conditions 

Test 
No. 

Contact Pressure 
(GPa) 

Crack Locations 
(for line defects) 

lubricant 

1 5§8 P= 900 Gear oil 

11 6A3 900 Gear oil 

III 6J3 900 Base &I 

80 

L) 60 
0 

M 40 
CL 
E 
FW 20 

0 

Gear oil 5.6GPa 

-Gear oil 6.6GPa 
Base oil 5.6GPa 

05 10 15 20 25 

Time (hours) 

Figure 3.20 Oil temperature variation during testing. 

Test conditions are described in table 3.3. Two kinds of lubricant oil are 

adopted to examine how surface defects affect rolling contact fatigue failure modes. 
Temperature variation during testing is shown in figure 3.20. 
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Test results are described in figures 3.2 1 and 3.22. It is clear that the fatigue 

life decreases with the increase of the maximurn contact pressure (see figure 3.2 1 ). 

Rolling contact fatigue performance is considerably influenced by lubricant 

properties and is shown in figure 3.22. 
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Figure 3.21 Rolling contact fatigue life at different loads for gear oil 
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Figure 3.22 Rolling contact fati-Lie life at the same load for different oils L, 
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Dynamic observations of surface damage processes are described In figures 

3.23 to 3.25. Surface observations from Test I are shown in figure 3.23. A line defect 

is shown in figure 3.23(a). Figures 3.23(b) and 3.23(c) are dark and bright field 

images respectively. It is obvious that the ball surface is perfect and the line defect 

can not be seen without an UV light source. Figure 3.23(d) shows an optical spall 

iniage (dark field), and figure 3.23(e) is the bright field image. As discussed above, 

the lubricant deposit is removed after fatigue spall. 

I 

m", 
- 

(d) Spall overvic\\ (daik l'ield) (e) Bright field (70.3 hrs) 

Figure 3.23 Surface observations of silicon nitride balls (Test 1). 
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Surface observations from Test 11 are shown in figure 3.24. Figure 3.24(a) 

shows an untested line defect under UV light illumination. The image in the same 

position is shown in figures 3.24 (b) and (c). The defect can not be seen under a 

normal light source. Figure 3.24(d) is an overview after 1.4 hours of testing. The 

dark field image of fatigue spall is shown in figure 3.24(e). 

(c) Dark field 

0, Fý*ý 
L 

(d) Contact path and I ine defect (1.4 hrs) (e) Fatigue spa II mci view (7.8 hrs) 

Figure 3.24 Surface observations of silicon nitride balls (Test 11). 

Figure 3.25 shows surface darnage micrographs from Test 111. The optical Z-7 
micrograph of the fatigue spall is shown in figure 3.25(a) and the SEM micrograph 

in figure 3.25(b). The upper edge of the spall is shown in figure 3.25(c), and lower 
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edge is shown in figure 3.25(d). The central part is shown in figure 3.25(e). High 

magnification is shown in figure 3.25(f). These surface images clearly describe how 

a spall is generated in rolling contact. Aspects of the mechanics of the fatigue failure 

processes will be discussed in Chapter 5. 

Figure 3.25 SLirface observations of silicon nitride balls (Test 111). 
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3.3 SURFACE OBSERVATIONS OF CRACK FAILURE PROCESSES 

3.3.1 Low viscosity oil lubrication 

In previous sections, some micrographs have been shown to dernonstrate 

fatigue spall and crack positions. Detailed investigations of failure processes of 

surface ring, cracks are clescribcd in thk ScCtIon. 
15 51 54 00 2OX 1 &As 05-11 94 11 31 15 0'5 20 X LLOn, 11-11-, gs 

18sh'. t. N --d w*ar*t, ýtk 

_0 --- 6WO-0 

(a) Contact path and ring crack (50 lirs) (b) Contact path and ring crack ( 180 hrs) 

1-- 5% *0 wi 5QX Lvný 06-1 1-1915 1,, -i7 31 01 5OX Lon% 08-11 
A 17 5 hrs tost, 117 'S hri tost 

F 
.0 

T474-'ý _uo 

(c) Left part detailed view (117 hrs) 

T4-74TU-s 

(d) Rigght part detailed view ( 117 hrs) 

Figure 3.26 Optical micrographs ot'surface damage (Test 1). 

A dynamic observation of surface damage is carried out for Test 1. Figure 

3.26 shows micrographs of surface damage. The crack can not be seen without UV 
t7l 

light. During the fatigue test, however, surface ring cracks become visible under 

white light illumination. This is due to the loss of materials caused by crack face L- 
friction. Figure 3.26(a) shows a surface after 50 hours of testing. The longer the test Z: ) 

runs the more obvious is the crack. Figure 3.26(b) is the surface after 180 hours of 

testing. Comparison of figures 3.26(a) and 3.26(b) reveals that the crack does not I 
propagate along the ring crack circle. Detailed surface images after 117 hours of 
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testing are shown in figures 3.26(c) and 3.26(d). Microcracks are found near the 

edge of the contact track. These micro-cracks are distributed in a regular pattern. 

The results of surface examinations from Test 3 are shown in figure 3.27. Tile 

observation of the contact path, figure 3.27(a), shows that the ring crack is not easy to 

see under a white light source. In contrast, the crack can be detected easily under the Z: ' 

UV light illurnination, figure 3.27(b). No evidence of crack growth is found along the 

original ring circle on the surface. The observations from this test provide 

experimental evidence supporting the mode I stress intensity dominating crack 

propagation. 
5 4*5.43 02 
49h ts t crack 

50X t ns Of -1 1 -99 

(a) White light source (148 hrs) 

Figure 3.27 Optical mici-ogi-aphs of sufface damage (Test 3). 

10 57 12,07 50X Lons 14-a6-99 

(a) Contact path and ring crack (102 hrs) (b) Contact path and ring crack ( 180 hrs) 

Figure 3.28 Normaski micrographs of surface damage (Test 7). 

Results frorn Test 7 are shown in figure 3.28. Figure 3.28(a) shows the ring 

crack after 102 hOLU'S of testing and figure 3.28(b) after 180 hours of testing Z-- r-I I 
Comparison reveals that there is no significant change in the ring crack and contact 
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path. The crack still stays at the original crack length. The cerarnic ball surface is still 

in a good condition even though it has been subjected to 180 hours of testing (121 

million stress cycles). 

The observations from Test 9 provide evidence supporting the assumption of 

crack gap enlargement. The results are shown in figure 3.29. As discussed above, the 

ring cracks are not visible using a non-nal light source but become visible as the tests 

proceed. Figure 3.29(a) is a ring crack after 8 hours of fatigue testing and figure 

3.29(b) is the same ring crack after 17 hours of fatigue testing. No evidence of crack 

growth is found along the original ring circle on the surface. The observations reveal 

that the crack gap is proportional to the test time and it is possible to reach a value of zn 
0.5 ýLrn. 

a Oak 

W) ('011ULct path and ring crack (S lirs) (b) Contact path and ring crack ( 17 lirs) 

Figure 3.29 Optical mici-ogi-aphs of sufface damage (Test 9). 

Figure 3.30 SEM micrographs of surface damage (Test 9). 
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Figure 3.30 Continued 

Detailed SEM investigation of the test ball is carried out. Figures 3.30(a) to 

3.30(f) show micrographs from Test 9. Figure 3.30(a) is an overview of a fatigue 

spall. The ring crack is still clear. Fatigue crack propagation initiates from the 

original ring crack and grows outwards in both directions. The propagation striations 

on the right side are shown in figure 3.30(b). The original ring crack propagation 

forming a striation-like pattern is clearly displayed on fatigue fracture surfaces. 

Unlike the striations found on metal fatigue surfaces (e. g. alurninluni alloy), 

striations formed in ceramics under rolling contact show apparent branch cracks. 

The branch crack geometry always takes the shape of the pre-existing crack fronts. 

The mechanisms of ring crack growth inust somehow be related to the formation of' 

fatigue striations. The mechanics of the subsequent branch crack formation will be 

described in Chapter 5. Figure 3.30(c) shows the propagation area formed oil the left 

side. Fatigue crack propagation initiates from the site of the original conic face in 47, zn 
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which the subsurface branch cracks are formed. This subsurface branch crack 

formed on the lower crack face propagates in the opposite direction to the original 

ring crack growth. From optical observation, there is no significant evidence for tile 

crack growth along the original ring crack circle. Figure 3.30(d) illustrates the upper C, 

area on which the original ring crack is clearly seen. The symptom of subsequent 

surface cracks is clearly seen on both sides of the original ring cracks. The SEM 

observation confirms that the crack gap may reach 0.5 [tin. Figure 3.30(e) illustrates 

a peeling failure mode found at the left edge. Figure 3.30(f) is the micrograph from 

the right bottom corner, which shows the secondary surface cracks and the brittle 

fracture. 

, >s la oo Le.. 17 la 4b ., OX a-. ne 2 Ihr% t2t st n3 -, 
24 -. 

. 

0 0. A-Iwo 

(a) Contact path and ring crack (2 1 Ilrs) (h) Contact path and ring crack (32 firs) 

(c) Contact path and ring crack (49.5 lirs) (d) Spall o\, ct-\ ic\\ (7 1.1 lirs) 

Figure 3.31 Optical micrographs of surface damage (Test 10). L, t- 

I/ý 

4 

Figure 3.31 shows the results from Test 10. Figure 3.31 (a) is an optical inia-c 

after 21 hours of fatigue testing, in which the original crack is clearly displayed on Ilic 

contact track- and indicated by the arrows. Figures 3.31(b) and 3.31(c) show the 
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micrographs after 32 and 49.5 hours of testing respectively. No evidence is found for 
t) 

crack growth along the ring crack circle. Micro-cracks are found in the contact path. Cý 
The ellipse-like spall is shown in figure 3.3 1 (d). 

Figure 3.32 SEM micrographs of surface damage (Test 10). t: l 

Figure 3.32 shows results from the scanning electron microscope (SEM) 

analysis of the fatigue spaH, from Test 10. The optical image of the crack during 

testing has been shown in figure 3.31. The SEM image of the spall overview is 4: ) 
shown in figure 3.32(a). The original ring crack can be identified clearly. It is 
obvious that there are two directions of crack propagation. One is crack growth 
towards the right, which shows the original ring crack growth path. The other is 
towards the left, which shows the growth path of the subsurface branch crack 
formed on the lower crack face. Figure 3.32(b) enhances the magnification of the 

micrograph. The characteristic of fatigue fracture is apparent and SLIhsurface hi-anch 

cracks are clearly displayed on the spall surface. The geornetry of' the subsurface 
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branch cracks is influenced by the contact circle and will normally inherit the 

geometry of that circle. Figure 3.32(c) shows the circle-like striations formed on the 

left, and figure 3.32(d) those on the right. The distance between two striations is 

around 5-10 pin, and is close to the predicted distance in terms of crack face contact 

analysis. Detailed mechanics analysis of crack face contact will be discussed in 

Chapter 5. 

Figure 3.33 SEM micrographs from the centre to the right edge (Test 10). 

The surface characteristic of the fatigue spall varies with the position of' the 

spall surface. The result from Test 10 is shown in figure 3.33. Tile images are 

scanned from the centre (figure 3.32(a)) to the right edge. The smoothness of the Z7, Z7, 
surface decreases as the scanning position moves from the centre to the edge -. 11-ca. 1ý 
Figures 3.33(a) and 3.33(b) show a smooth fatigue surface, on which the subsurface 
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branch cracks are clearly displayed. The smoothness of the surface lessens in the 

edge area, see figure 3.33(c). Figure 3.33(d) shows the rough surface formed at the 

edge of the spall, on which secondary surface cracks are apparent. 

Figure 3.34 shows the images scanned from the centre to the left edge of the 

spall. As discussed in figure 3.33, the smoothness of the spall surface changes as the 

scanned position changes. The surface is smoother in the centre area, and rougher in 

the edge area. Figure 3.34(a) shows the centre area image, which illustrates (lie 

circle-like striations formed at the initial stage of fatigue crack propagation. Fatigue 

crack growth derives from the subsurface crack generated on the lower crack face. 

Figures 3.34(b) and 3.34(c) show the variations of the spall surface gradually 

moving outwards from the centre. Figure 3.34(d) shows the peeling failure mode 
formed in the edge of the spall. 

4 

Figure 3.34 SEM micrographs from the centre to the left edge (Test 10). 
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Post-test analysis of the ceramic balls reveals that the fatigue spall at high 

contact load is similar to that at low contact load. SEM micrographs from Test 13 

are shown in figure 3.35. An overview of the spall, figure 3.35(a), shows that the 

original ring crack is clearly displayed on the top of the micrograph. Figure 3.35(b) 

shows the origin of crack propagation derived from the original ring crack. Figure 

3.35(c) shows the secondary surface cracks which are formed on the left edge area. 

Figure 3.35(d) shows the detailed view from the right edge area. The secondary 

surface cracks are obvious. 

Figure 3.35 SEM mici-ographs of surface damage (Test 13). z: l 
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Figure 3.36 shows the SEM micrographs from Test 14. Figure 3.36(a) shows 

a spall overview. The contact stress is quite high in this case (7.6GPa). Unlike the 

fatigue spall which occurs at low contact stresses, the peeling area increases. Figure 
tn 

3.36(b) shows a crack growth path. Figure 3.36(c) shows the left edge area of the 

spall, on which secondary surface cracks are displayed. Figure 3.36(d) shows the 

right edge area, on which the secondary surface cracks are shown. Again, tile 

fracture surface in the centre area is smoother than the edge area. 

Figure 3.36 SEM micrographs of surface damage (Test 14). 

3.3.2 High viscosity oil lubrication 

Observations of' surface damage under low viscosity oil lubrication are r. 7, 
described above. The spalling shape of rolling contact fatigue always looks like an 1ý 

ellipse. The longer semi-axis is always parallel to the rolling (fircction, and the short L_ 
axis is perpendicular to the rolling direction. The short serm-axis approximatcs to dic 
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magnitude of the contact radius under applied load. Results from the high viscosity oil 

lubrication are discussed below. 

Results of surface observation from Test A are shown in figure 3.37. The 

contact track after 22 hours of testing is shown figure 3.37(a). The contact track is 

covered by lubricant deposit. The lubricant deposit tends initially towards the edge 

of the track. As the test proceeds the whole track will be covered. Figure 3.37(b) 

shows that the lubricant deposit is removed after spalling due to the effect of debris 

machining. The SEM image is shown in figure 3.37(c), in which the striations are 

displayed clearly. Crack propagation occurs in both sides of the original ring crack. 

Figure 3.37(d) shows the high magnification of the striations formed on the spall 4: 1 

surface. 

I 

(a) Optical micrograph (22 hi-. s) (h) Spall optical micrograph (34.6 lirs) 

Figure 3.37 Micrographs of surface darriage (Test A). 

dalb 
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Observations of surface damage from Test D are shown in figure 3.38. 

Figure 3.38(a) shows an optical micrograph after 28.5 hours of testing. The deposit 

material pattern is similar to the previous images. Figure 3.38(b) is an overview ofa 

spall. As in figure 3.37, the deposit material is removed after the spall. Figure 

3.38(c) shows a SEM micrograph of the spall. Figure 3.19(d) shows the central part 

in a greater detail. 

,. ogmw 

(a) Optical micrograph (28.5 hrs) 

Figure 3.38 Micrographs of surface damage (Test D). 

SEM micrographs of surface damage (Test F) are shown in figure 3.39. 

Crack propagation is initiated from the original ring crack. The striations are 

strongly influenced b the contact stress field (see figures 3.39(a) and 3.39(b)). As I-- y 
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discussed above the circle-like striations are formed due to the characteristic of the 

stress field. Figure 3.39(c) illustrates the detailed striations formed on the spall 

surface. Figure 3.39(d) shows a peeling failure which occurs on the left edge area. 

Figure 3.39 SEM micrographs of surface damage (Test F) 
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3.4 SUBSURFACE OBSERVATIONS OF CRACK PROPAGATION 

TO understand the mechanics process of a ring crack failure, experimental 

observations of the spalling processes are important. A dynamic experimental 

observation has been carried out to ascertain ring crack propagation behaviour. A 

typical transition process from normal to a spall is shown in figure 3.40. All the 

images in figure 3.40 are from Test 5. Figure 3.40(a) shows pre-test ring cracks (note 

a 'V' defect on the right side). After 27 million stress cycles, new surface cracks are 
found beside the original ring cracks (see figure 3.40(b), the 'V' defect is still visible). 

These new cracks are defined as secondary Surface cracks in this study. Most of tile 

secondary surface cracks lie to the right of the original ring crack and only it few to the 

left. This ball is sectioned and polished to investigate the subsurface crack- propagation 
behaviour. Figure 3.40(c) is a surface view of the failure ball, which shows the section 

positions to be observed. Figure 3.40(d) is a dark field irnage ot'surface view. 

AO" 

I 2t 
(c) Lines indicating section position L- 

Figure 3.40 Sufface observations of original nng crack incipient failm-e (Test 5). 
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(c) 30 [Lin Ir( m lim: I 

Figure 3.41 Subsurface observations of the original ring cracks and secondary surface 

cracks (Test 5). 

The ball is sectioned near the crack and then polished gradually across the rin- I- 
crack to examine the profile of crack propagation. There are five lines on figure 

3.40(c), which show the sites at which the section iniages are taken. From the first fille 
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to the secondary line the micrographs are taken at every 15 Pill. The subsurface image 

from the first section (line 1) is shown in figure 3.41 (a), using microscopic analysis 

with ultra-violet light. Figures 3.41(b) and 3.41(c) show later iniages taken at every 15 

pm. Figure 3.41(d) shows the image taken at the second line. The number in figure 

3.41(a) indicates the cracks corresponding to the cracks in figure 3.40(c). In this case 

the maximum crack extension is 0.21 nim for crack number I and 0.13 mrn for crack 

number 2. The ring crack section indicates that the crack growth path is conical away 

from the surface. 

Figure 3.42 Subsurface ohservatlons at Ime 3 (Test 5). 

Figure 3.43 Subsurfacc obsei-vations at fine 4 (Test 5). 

Figure 3.42 shows the subsurface images observed at line 3. A detailed crack 

network (_Just before spalling) is clearly exhibited. Figure 3.42 reveals that the 

secondary surface cracks propagate conically towards the material. Subsurface 4: 1 

64 

(h) Crack network (dark field miaoc) 

, Ilk k:, 1)) Crack network (dark field Image) 



CHAPTFR 3 

branched cracks are formed along the crack growth path. Results indicate that the 

spalling may reach a depth of about 100 pm. 

Figure 3.43 shows the subsurface images observed at line 4. Results reveal 

that the depth changes due to the section position are less than the depth observed at 
line 3 (figure 3.42). Some material is removed during the processes of grinding and 

polishing. The crack network is clearly shown in figures 3.43(a) and 3.43(b). 

Figure 3.44 Subsurface observations at line 5 (Test 5). 

Fi,, ui-e 3.44 shows the subSUrface images observed at line 5. This location vs, zn 

close to the central line of the contact path. An overview of crack network is shown in 
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figures 3.44(a) and 3.44(b). The subsurface network is clear and the depth is less than 

the depth observed at line 4 (figure 3.43). Unlike figure 3.43, many branched cracks 

are generated on the upper and lower crack faces. A detailed view of these branched 

cracks is shown in figure 3.44(c). The distance between the branched cracks is on 

average of 8-10 Rm, which is close to the predicted distance (5-10tim) (see Chapter 

5). The subsurface observations provide evidence supporting the prediction that 

subsurface branch cracks can be generated on the crack faces from numerical analysis. 

Figure 3.44(d) shows a detailed view of the right part in figure 3.44(a), which shows 

how a spall is formed. 

Subsurface observations reveal that the fatigue spall is mainly caused by two 

factors. One is from secondary surface crack propagation. The secondary surface 

cracks propagate conically away from the surface and will meet the main crack 

growth path from original ring cracks. Branched cracks can also be generated on the 

faces of each secondary crack and these cracks connect with each other to form a 

broken crack network. Spalling sheets eventually come away due to the broken crack 

network. Another contributing factor is from subsurface branch crack propagation. 

These branched cracks formed on the upper crack face may grow towards the ball 

surface acted on by the contact circle when they lie in certain positions. Aspects of 

crack growth mechanics will be discussed in Chapter 5. 
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3.5 INVESTIGATIONS OF MICRO-CRACK WEAR PATTERNS 

In prevIOUS sections, spalling fatigue failure caused by pre-cxisting ring Ll Cl 
cracks is described. Micro-cracks on the contact path are found, which cause Surface 

damage. Detailed observations of micro-crack wear patterns are described below. 

Surface damage derived from these micro-cracks always starts at the edge of' 

the contact path and then gradually spreads into the centre of' the contact path as the 

test proceeds. The micro-cracks form first and develop into wear scars. The micro- 

cracks always take the shape of a small partial circle. These nilcro-cracks may be 

caused by Hertz contact through the asperity contacts. The contact geometry and 

surface traction conditions (slip or spin) influence the micro-crack distribution on 

the contact path. Figure 3.45 shows ail example of' micro-crack wear patterns ill 

silicon nitride from Test C (high viscosity lubricant). 

(a) Prc-tcst rliw, crack and hall surface 

I 

(h) Contact track after 21 hours oftesting 

(d) After deposit removed 180 III-S) 

"as() 0 

Figure 3.45 Surface observations ofthe contact track jest C). 
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(e) Detailed views of the contact tntck after deposit muwal 

Figure 3.45 COlItIllUed. 

Figure 3.45(a) illustrates ceramic ball surface with a pre-test ring crack 

(bright field and with UV light). The surface is in an excellent condition and tile ring 

crack can hardly be seen without the UV light Illumination. However, the ring crack 

becomes more visible during the fatigue test. Figure 3.45(b) shows the contact track 

after 21 hours of testing. Oil deposits cover the contact track. Tile inicro-cracks can 

be seen but not very clearly. Figure 3.45(c) shows the contact track after 180 hours 

of testing. As in figure 3.45(b), oil deposits cover the contact track. Figure 3.45(d) 

shows the contact track after removal of the oil deposits, when the i-nicro-cracks and 

wear scars can be seen clearly. It is obvious that tile rnicro-cracks and wear scars are 

mainly distributed on the edge of the contact track. A detailed view of the contact 

track is shown in figure 3.45(e). 

The micro cracks occur in the early stages of the tests. After a great many 

micro-cracks are formed the number of the inicro-cracks are not significantly 

increased as the tests proceed. A stationary phase exists in which no more micro- 

cracks are generated. Consequently, the contact path will not significantly change ill 

this period of time. Figure 3.46 shows this phenomenon (Test 10, low viscosity 

lubricant). Figure 3.46(a) is the surface after 26 hours of testing, which shows that 

micro-cracks have occurred at the edge. Figure 3.46(b) shows the nilcro-cracks 
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occurring at the upper edge. Figure 3.46(c) shows the micro-cracks occurring at tile 

lower edge area. Figures 3.46(d) to 3.46(f) show the surface image of the sarne area 

but after different testing times. 

!-, " -Flev"tý-P 11 32ý 41 - 07 ýOX Lens I -ýW 11 581 19,00 5OX Lon* 15-1 1 -911 11 Sh test k rac k, n5a 26 5h test crack n55 microcracks 

34 us' 

(a) Overview of contact track (26.5 hrs) (h) Upper edge area detail (26.5 lirs) 

II r_65 ý42, ý. 03 Ox L O'n So11,46 5OX Lens 15-11 -99 
test crm. ý 

. 11.5h to C n55 sicrocracks 

I PI 

7T 

(c) Lower edge area detail (26.5 hrs) (d) Micro-crack detail (26.5 lirs) 

'147 4 -, u w 

(e) Micro-crack detail (32 hrs) (f) Micro-crack detail (49.5 hrs) 

Figure 3.46 Surface observations of the contact track (Test 10). 
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Contact track observations of high contact stresses (Test G) are shown in 4n 

figure 3.47. The process of surface damage has been described in the previous 

section (see figure 3.15, Section 3.1), where the micro-crack wear did not occur 

before about 70 hours of testing. Figure 3.47(a) shows the contact track after 94 

hours of testina. The micro-cracks and wear scars are distributed on the contact track 

and more wear is seen around the original ring crack. The wear scars are not easy to 

see clearly due to the oil deposits covering the contact path. Figure 4.47(b) shows 

the contact path after removal of the oil deposits. The wear distribution is clearly 

shown on the track. The surface damage caused by spin is apparent. A detailed view 

of the contact track is shown in figure 3.47(c). Figure 3.48 shows another example 

of micro-crack wear patterns found on ceramic balls (Test G). 

(a) Contact track (94 lirs) 

/ 

dj 

r 

I 

34 4 us 

(c) A detailed view of' the Contact track 
Figure 3.47 Surface observations around the rIng crack (Test G). 
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4091 

34 42us 

Figure 3.48 Surface observations of the contact track (Test G). 

The reason for these rmcro-crack wear patterns can be explained using tile 

mechanics of crack face contact (see Chapter 5) though the scale of' illicro-cracks is 

small. As discussed above, the micro-cracks are normally formed at tile beginning of' 

the tests. Wear scars derived frorn these rnicro-cracks occur after some hours of' 

testing. According to the analysis of the crack face contact, secondary surface cracks 

will not be generated until the crack gap reaches a certain size. Tillie is required for 

this gap to form. When the crack gap reaches the critical size, secondary surface 

cracks are generated around the pre-microcracks. These new small surface cracks 

propagate and connect to form a very small scar. 
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3.6 RING CRACK CHAR ACTERISATION 

3.6.1 Surface appearance 

Light microscopy is employed to examine the silicon nitride ball surfaces 

and characterise ring crack defects. A dye-penetrant method is utiliscd to enharicc 

the detection of ring cracks. Seventy-five silicon nitride balls are inspected, and 

ninety six percent are found to contain surface defects, the majority of which are 

surface ring cracks. 

p 

II,.. 

1kr .'j: 

(c) Single crack on two sides x 140) (d) Multiple cracks oil two sides x 140) 

Figure 3.49 Surface ring cracks found on silicon nitride ball surfaces. 

Figure 3.49 shows four examples of ring cracks found on the silicon minde 
ball surfaces before testing. These ring cracks are circular, extending for the arc 
len-th, approximately one-quarter of the circumference of a circle. Most of them 

present in the form of a single ring crack on one side (figure 3.49(a)) or double 1_1110 Zý t7l I- 
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cracks on one side (figure 3.49(b)), a few are double ring cracks on two sides, or 

multiple cracks on two sides (figure 3.49(c) and (d)). 

0.8 

0.7 crack length - crack radius 
rn 
a 0.6 
(D 

'a 0.5 C 
co E 0.4 =E 

0.3 

0.2 
u 0.1 

0 
1 143 

Detected cracks 

Figure 3.50 Crack radjus and length versus detected cracks. 

Figure 3.50 plots the radius and arc length of the detected cracks. The ring 

crack radius varies in the range of 0.19 mm to 0.27mrn, most are around 0.22 111m 

and the average radius is approximately 0.224 rnm. These cracks are called "natural- 

ring cracks here because they were present on purchased silicon nitride balls. 

Statistical distributions of detected surface ring cracks in silicon nitride balls are 

shown in figure 3.5 1. 
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Figure 3.51 Statistical disti-ibutions of detected sufface i-ing cracks. 
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3.6.2 Subsurface geometry characteristics 
To study the subsurface geornetry of the surface ring crack, the cracked ball 

is sectioned near the crack and then polished gradually across the ring crack to 

examine the profile of the crack path. Subsurface and surface observations are 

carried out and the micrographs are taken at every 20 pm. Figure 3.52 shows an 

example of the subsurface and surface images taken at the same site. 

Figure 3.52 Surface and subsurface observations ol'a ring crack. 

The initial path of the ring crack at the middle-sectioned plane (figure 3.53(a)) 
1ý 

can be approximately described by the equation 

0.224( x-R )(' 50<. v -R<0.035 nini (3.1) 

in which R is the radius of the ring crack circle. 

Referring to figure 3.53(b), the crack path on the sectioned plane is described 

by the equation (3.1). The three-dimensional geornetry of the surface ring crack is 

shown in figure 3.53(b) and the position of an element on the crack face referrino to 

the co-ordinates, (x, y, z), may be written as 
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(R +I cos arl -(O/O, ý )COS 0 (3.2) 

(R +I cos all (0/0, ))2 ) sin 0 (3.3) 

(0/ )1/2 (3.4) z=-0.224(lcosa 1 00 

where 1= crack depth, 0<1 <= maximum depth ( line PIP-, ) 

a= angle of line PIP, to the ball surface, 0<a< 7rl2 

angle of an element position on the crack face, -, A) <0< A) 

half angle of ring crack arc AB, 0< (A) < 7r /2 

1 

V 
�a 

(a) (h) 

Figure 3.53 Ring crack geometry: (a) sectioned plane view, (b) 3D view. 
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CHAPTER 4 

ANALYSIS OF RING CRACK PROPAGATION 

An analytical study of surface ring crack propagation is presented in this 

Chapter. The purpose of the work is to accurately determine the stress intensity 

factor solution along the crack front loaded under both normal and tangential 

traction. A three-dimensional fracture model associated with surface ring crack 

propagation is developed and described in Section 4.1. Based on the model, stress 

intensity factors (SIF) are calculated using a boundary element method. The 

numerical fracture analysis scheme is described in Section 4.2. 

The SIF solution is compared with the fracture toughness KIc and threshold 

value dKh of silicon nitride bearing materials to determine the possibility of crack 

growth. The analysis of the calculated stress intensity factors is presented in Section 

4.3. The SEF with crack geometry is described in Section 4.3.1. The influence of 
loading conditions on the SEF is described in Section 4.3.2. The influence of crack 

positions on the SEF is described in Section 4.3.3. Life prediction of spalling fatigue 

failure is described in Section 4.4. The predicted crack propagation contours in 

different conditions are illustrated in Section 4.5. 

4.1 ANALYTICAL MODEL DESCRIPTION 

4.1.1 Loading configuration 
The physical configuration of the testing environment is described in the 

previous discussion (Chapter 2, Section 2.3). This loading configuration is often 

used to simulate the service conditions of a real bearing working environment. The 

surface loading traverses the surface of the silicon nitride ball. This cyclic load 

moves across the surface ring crack, repeatedly. Figure 4.1 shows a surface ring 

crack subjected to this surface loading. For the purpose of the calculation, the 

surface loading is specified in terms of an assumed contact stress distribution. 

Assume that normal pressure p(xy) and tangential traction &, y) within the contact 

region are expressed by the following equations: 
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P(X , y) = p()(1 _ X2 la 2_y2 la 2)112 

q(x, y) = fp (x, Y) (4.2) 

where po is maximum normal pressure, a is the radius of the contact circle and f is 

the friction coefficient of Hertzian contact. It is assumed thatf <0 when the contact 

circle passes over the ring crack (arc AB) from right to left and f>0 when passing 

from left to right. The maximum contact pressure po is assigned to the various values 

to compare the loading effect. The co-ordinate x measures the distance from the 

centre of the contact circle to the centre of the ring crack circle and the stress 

intensity factors will be changed as the distance x changes. 

Contact cii 

I 

x 

ack 

Crack front line 

I 

Figure 4.1 Coordinate system of a ring crack subject to rolling contacts. 
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As the contact circle passes over the ball surface, the crack front will pass 

from compressive to tensile stress continuously. When the crack lies in the 

compressive region (-2a <x< 0), the crack is suppressed (KI < 0). Consequently, 

the crack front will not propagate along the main growth path in the compressive 

region. However, subsequent surface cracks may occur due to the pre-existence of 

ring cracks, and the branch cracks on the crack faces may also occur due to the crack 
face contact. The co-ordinate x affects the subsurface behaviour, which may be a 

rather complex process due to Hertzian loading in a cyclic fashion. This aspect will 

be discussed in Chapter 5. 

Fluid lubricant effects are described in terms of different friction coefficients, 

which are determined in terms of the lubricant properties. For Hertzian contact 

friction coefficient f (contact between steel ball and ceramic ball), assume that f 

ranges from 0.005 to 0.05 due to EHL effect (Appendix 4). 

4.1.2 Ring crack geometry 
The geometry of a ring crack is very important to fracture mechanics analysis 

and will be considered carefully. Based on the experimental study, a surface ring 

crack is assumed to have a cone shaped crack face with a curved line as the crack 
front. The position of an element on the crack surface in figure 4.1 may be written 

as 

x= (R +1 11- (o /00)2 Cos a) Cos 0 (4.3) 

y= (R +1 [1 
0)2 cos a) sin 0 (4.4) 

)2 (o 01))2 )1/2 z= -0.224 (1 cos a0 On (4.5) 

where I denotes the crack depth, 0<1 :5 maximum crack depth (line PIP2), R is the 

radius of the ring crack, a is the angle of line PIP2 to the ball surface, 0< a< 7d2,0 

represents the angle of an element position on the crack face, - '00 <0< 00 and 00 

denotes the half angle of the ring crack arc AB, 0< 00 < 7d2. 
This crack geometry is observed in the experimental study. According to the 
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experimental observations, the dimension of an original ring crack was defincd as 

crack radius R=0.2 1 nim, crack angle a= 50", crack depth I=0.05 nim, and half 

angle 00 = 7T/4. 

The influence of the crack geometry change on crack propagation is also L, 

considered and three extra crack geometrical shapes are adopted to study their 

effects. Figure 4.2 presents a detailed view ofthe selected crack geometry. C7 

z 

(a) Geometry I 

', / 

- 

(c) Geometry III 

ý, 
T, 

x 

(b) Geometry 11 

.. 
> \>c 

-<s; çx/ / 

- 

(d) Geometry IV 

Figure 4.2 Detailed views of vai-ious ci-ack shapes. 

For the geometry 1, the co-ordinate system has been shown In figure 4.1 and 

the position of an element on the crack face has been presented in the eqUatIons (4.3) 

to (4.5). For the geometry 11. tile position of an element on the crack surface can he 

described by the following equations: Cl 
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11- 
x= (R +1 (o /00)2 Cos a) Cos 0 (4.6) 

(R +1 11- (o /00)2 cos a) sin (4.7) 

(0/00)2 cos cc tan cr (4.8) 

For the geometry III, the position of an element on the crack surface can be 

described by the following equations: 

(R +1 _11 
0 /00)2 Cos a) Cos (4.9) 

R sin (4.10) 

-JjFl (0 / 00 )' cos a tan a 

The geometry IV is a semi-ellipse crack. This crack geometry is always 

employed in the stress intensity factor analysis due to the simple flat surface. The co- 

ordinate system for this crack geometry is shown in figure 4.3. 

z 

c 

x, 

Figure 4.3 Coordinate system of geometry IV. 
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4.2 BOUNDARY ELEMENT MODELLING 

4.2.1 The dual boundary element method 
The analytical models for the three-dimensional fracture analysis have been 

developed in the above analysis. The computation of the stress intensity factors is 

now considered. In general, the geometry and loading encountered in three- 

dimensional crack problems is too complex for the stress intensity factors (SEF) to be 

solved analytically. The SEF calculation is further complicated because it is a 
function of the position along the crack front, the crack size and shape, type of 
loading and geometry of the structure. Therefore, in this study the current available 

numerical analysis tools are used to perform a fracture mechanics analysis. 
The boundary element method based computer modelling package BEASY 

(Computational Mechanics BEASY 1998) is utilised in the present study. There are 

several ways to model a crack in boundary element modelling. The dual boundary 

element method (DBEM) is used for the crack growth analysis. The dual boundary 

element method (Portela et al. 1992, Brebbia et al. 1984) considers two independent 

equations: the displacement and traction boundary integral equations, with the same 

integration path for each pair of coincident source points (Appendix 5). The crack is 

represented by two elements occupying the same physical location, each element 

representing a face of the crack. The displacement and traction boundary integral 

equations are on the crack surface. The use of dual elements for 3-D crack growth 

means that only one surface of the crack needs to be defined. 

Because of the continuity requirements of the displacements and tractions for 

the existence of the traction boundary integral equations and the coplanar 

characteristic of the crack surface, special consideration has to be given to modelling 
discretization. Discontinuous quadratic elements are used for the crack modelling. 

A discontinuous element plays an important role in the boundary element 

method because the problem variables are not forced to be continuous across the 

elements. The major benefit of discontinuous elements is their ability to model 
discontinuous stress results. They are therefore very useful in fracture mechanics 

analysis for modelling the stress behaviour at a crack front. Figure 4.4 shows an 

example of a detailed view of the original crack mesh adopted in the calculation of 
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stress intensity factors. 

jx 

Figure 4.4 Detailed view of the ci-ack mesh. 

4.2.2 Stress intensity factors (SIF) 

Sliicc fi-w, in ( 1957) demonstrated the importance of' the stress miciisity factor 

in determining crack-tip stress fields in two-dimensional problems, many different 

methods have been devised for obtaining SIF (Aliabadi 199 1 ). 

In this study, the stress intensity factors are computed using crack opening 

displacement method. When one point formulae are employed, the Mode 1,11 and III 

stress intensity factors are evaluated using the following cqLlatiOIIS (Aliahadi 199 1 ): z: l -III 

K 
r 4(l - 2r 

1, 
=E 

FT 
I 

2r 1) r 4(l - 21, 

E F7r 
ýE- 
2r 4(l - 2- ir 

where the displacement tip is evaluated at point P as shown In figure 4.3-, ul', ' un' and 
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uP are projections of up on the co-ordinate directions of the local crack front co- t 

ordinate system and 0= rr and 0=-, rr denote upper and lower crack surfaces 

respectively. Kip, KjjP' and KIIIP' are approximations of stress intensity factors 

corresponding to the point F along the crack front and on a normal line to the front 

as shown in figure 4.5. 

b 

Figure 4.5 Calculations of SIF using crack opening displacement. 

4.2.3 The propagation direction I 
The crack growth direction is computed by the minimum strain energy 

density criterion. This criterion for three-dimensional problems is proposed by 

Sih and Cha (1974), Sih(1991). The theory is based on the following hypotheses. 

Hypothesis (1): the direction of crack propagation at any point along the 

crack front is toward the region with the minimum value of strain energy 
density factors S as compared with other regions on the same spherical 

surface surrounding the point 

Hypothesis (2): crack extension occurs when the strain energy density factor 

in the region determined by hypothesis (1), S=S,,, i.,, reaches a critical value, 

say S, 
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Hypothesis (3): the length of ro, of the initial crack extension is assumed to 

be proportional to Smin, such that Smin / ro remains constant along the new 

crack front. 

The strain energy density factor S is given by 

S= al 1KI2 + a12 KIKII + a22 Kil 2+ a33 KU12 (4.15) 

where 

all =1 [(3 - 4v- cos 0)(1 + cos 65] 
16; r, u 

a12 ý1 sin 0 (cos 0- 1+2 
8z, u 

(4.17) 

a22' 1 [4(1-v)(1-cosO)+(3cosO-I)(I+cosOI (4.18) 
Ifty 

a33 ": 
I 

4; rlj 
(4.19) 

in whichp stands for the shear modulus of elasticity, v is the Poisson's ratio, and 0 is 

the angle in the crack front co-ordinate system as shown in figure 4.5. 

The crack growth direction (angle Oo) is obtained by minimising the strain 

energy density factor S(O) of equation (4.15) with respect to 0. The minimum strain 

density factor S(Oo) is denoted by S .. j, 
The equivalent stress intensity factor, Keq, can be calculated from the 

minimum strain density factor as: 

V_ -1 
K 

eq = 
4ýv4p 

S 
"i. 

(4.20) 
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4.2.4 The propagation size 
Determination of the incremental size poses two problems: the first is the 

determination of the amount of each increment in terms of a reference size, the 

second is the relationship between the maximum incremental size and other 

incremental sizes along the crack front. The maximum incremental distance that a 

crack would be expected to propagate can be determined using the strain energy 

density criterion or empirical methods. 

For the strain energy density criterion, since the strain energy factor S. j., is 

proportional to the squared power of the equivalent stress intensity factor Keq 

(Hypothesis (3) in Section 4.2.3), the incremental size at the crack front point under 

consideration is given by: 

Aa=Aa (4.21) 

where maxlKeq) is the maximum strain energy factor evaluated at a set of discrete 

points along the front, and Aa. is the incremental size at the point to the max( K. ) 

which is chosen beforehand as being the maximum distance from the crack front to 

the opposite side of the element containing the crack front. 

The empirical method is based on the Paris equation (Paris and Erdogan 

1963), which is expressed as follows: 

daldn = c(AK)' 

where 

(4.22) 

AK = K.,, ý - K,. j. = K. u (I - R,,, ) (4.23) 

K�ü� / K. zý. (4.24) 

The daldn is the rate of change of crack length with respect to the loading cycles, the 

c and m are the material constants. For the mixed-mode problem the stress intensity 
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factor K,,, a,, is replaced by the effective stress intensity factor Keff (Gerstle 1986), 

which is expressed as follows: 

Kw = [(KI + lKml)2 + 2Ku 21 1ý2 (4.25) 

Since linear elasticity is considered, R,, in equation (4.24) can be written as 

(4.26) K, ""/ Ke ax = 0-,, ý,, / 0-. ax 

The o-. i,, is set at zero (when loading moves away from the crack) and O"max is 

considered as the maximum affecting stress resulting from the loading circle. Hence, 

if AK = Keff > AKO,, daldn >0 crack growth, 

if AK = Kýff < AK6 daldn =0 no crack growth. 

The maximum incremental distance (Aamax) is a fixed value based on initial 

crack front element dimensions (Aa... ) taken where AKff is a maximum and is 

equal to the length of the element side oriented perpendicular to the crack front. 

From equation (4.23) 

Aa = c(AKff)'AN (4.27) 

and 

Aa. = c(AK, ax )'AN (4.28) 
, ff 

I 
Therefore, the incremental size at the crack front point is given by 

Aa = Aa. zx (AKeff/AKeffmax)m (4.29) 
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4.3 ANALYSIS OF THE CALCULATED STRESS INTENSITY FACTORS 

4.3.1 SIF with crack geometry 
4.3.1.1 Crack surface shape 

Four types of crack shapes (figure 4.2) are adopted to study the influence of 

the crack surface shape on the stress intensity factors. For the purpose of the 

calculation comparison, assume that these cracks have the same crack angle (a = 
50'), crack length (one-fourth of ring crack circle) and crack depth (I = 0.05 mm). 

The crack location for the calculation is 8= 90', J=0, and x=0. The maximum 

contact stress is assigned a value of 5.58 GPa, and friction coefficientf = -0.05. 
Figures 4.6 to 4.9 show the calculated results of the stress intensity factors. 

As can be seen from the plots, the SIF solutions change as the crack geometry 

changes. Mode I stress intensity K, is always higher than mode H and III stress 
intensities. It is reasonable to assume that the mode I stress intensity will dominate 

the crack growth behaviour. For a certain geometry, the K value is a function of 0. 

For the geometry I, K, value at 0= 0' (lower point) is about 3.5 MPa m 1/2 and 

gradually decreases as 0 changes almost until 0=± 440, and rises quickly to 5.5 

MPa m 1/2 as 0 approaches ± 45* (surface point). K11 and Kul vary slightly with 

except where 0=± 45' (surface point), when the values of Ki, and K11, drop sharply. 
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6.00 
E 
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0 (degree) 

Figure 4.6 Stress intensity factors versus §6 (Geometry I). 
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Figure 4.7 Stress intensity factors versus 0 (Geometry II). 
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Figure 4.8 Stress intensity factors versus 0 (Geometry IR). 
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Figure 4.9 Stress intensity factors versus co (Geometry IV). 

The calculation result for geometry H is shown in figure 4.7. At 0= 0' (lower 

point) the mode I stress intensity K, is about 3.0 MPa in 1/2 and stays at the same 

value almost until 0=± 400, and rises quickly to 5.0 MPa m 1/2 as 0 approaches ± 45' 

(surface point). There are slight variations in the KI, and KH, values. 

The calculation results from geometry III are shown in figure 4.8. The mode I 

stress intensity K, is about 3.0 MPa MI/2 when 0= 0' and hardly changes until almost 

the point where 0=± 30'. It rises gradually to 4.7 MPa m 1/2 as 0 approaches ± 45'. 

The KII and Km vary slightly with 

The SIF value along the crack front is changed when the crack shape changes 

from a ring crack to a semi-ellipse crack (geometry IV). Figure 4.9 shows the 

variations of stress intensity factors for the geometry IV. In contrast with the cone 

shape crack face (geometry I to HI), the mode I stress intensity K, has a maximum 

value of about 3 MPa m 1/2 at co = 00, and decreases gradually to 2.2 MPa m 1/2 at 

about co = 800. After this point, KI returns to a value of about 3 MPa m 1/2 at co = 90' 

(ball surface). Mode H stress intensity Kil decreases gradually in line with co. The 

trend in the KII, variation is similar to that in the K, variation. 
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Figure 4.10 Influence of crack geometry on equivalent stress intensity factor Keq- 

8.00 

6.00 

P 
m CL 4.00 

2.00 

0.00 

geometry I 
geometry 11 
geometry III 

-50 -40 -30 -20 -10 0 10 20 30 40 50 

0 (degree) 

Figure 4.11 Influence of crack geometry on stress intensity factor KI. 

For the mixed-mode problem, the equivalent stress intensitY factor or 

effective intensity factor is often adopted to assess the possibility of crack growth. 

Figure 4.10 shows plots of Keq for the geometry I, Id and 111. The equivalent stress 
intensity for the geometry I is higher than that of geometry R and HI. There is no big 

difference between geometry I and 111. Figure 4.11 shows the plots of KI. As 
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described in figure 4.10, the K, for the geometry I is higher than that of geometry H 

and 111. There is little difference between geometry I and H. The difference between 

Ki and Keq is small. The results indicate that the mode I stress intensity K, plays an 
important role in surface ring crack propagation. Consequently, K, may be a main 

concern in determining crack propagation behaviour. For HIP silicon nitride bearing 

material, the fracture toughness KIc is around 6.0 MPa m 1/2 
. The threshold AKth Of 

crack propagation ranges from 2 to 3 MPa m112. The calculation results indicate that 

there is no possibility of an unstable fracture. However, the crack front will 

propagate in the calculated geometry. The crack growth behaviour will be changed 

slightly due to the crack geometry effect. 

4.3.1.2 Crack angle 
Firstly, let us consider a simple case: a semi-ellipse crack inclining at an 

angle a to the surface (Geometry IV). Assume 8= 90', 3=0, and x=0. The 

maximum contact stress and friction coefficient are assigned to the values of 5.58 

GPa and f= -0.05, respectively. This semi-ellipse crack can be considered to be a 

special case when the ring crack radius R approaches oo. Figures 4.12 to 4.14 show 

the influence of the crack angle on the stress intensity factors (KI, KII, KIII). 
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Figure 4.12 K, versus (o for various crack angles (Geometry IV). 
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Figure 4.13 KI, versus co for various crack angles (Geometry IV). 

3.00 

2.00 

1.00 
E 
w IL 0.00 
m 

-1.00 

-2.00 

a 30 - 40 & 50 - 60 - 70 - 80 - 90 

-3.00 4- 

-90 -60 -30 0 30 

w (degree) 

60 90 

Figure 4.14 KII, versus co for various crack angles (Geometry IV). 

Mode I stress intensity factor, KI, changes slightly from the crack angle 30' to 

50', and after 50', decreases as the crack angle increases. The stress intensity factors 

on the crack front are a function of co. In contrast with KI, the mode H stress 
intensity, KII, increases as the crack angle increases. The K, and K11 values have a 

significant change at o) = 0' and little change at (o = 90'. However, the mode III 
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stress intensity, Kuj, is different from KI and KII. No change occurs at co = 0' and little 

change at co = 90'. 

To compare the KI, KII, and KIII variation clearly, we concentrate on co = 0' 

and co = 900 to investigate the crack angle effect. Figure 4.15 illustrates the 

relationship between K value and crack angle cc when co = 00. As can be seen from 

the plot, the K, value increases very slightly as the crack angle increases, and reaches 

the maximum value of about 3.1 MPa m 1/2 at the crack angle = 40', and decreases 

with the increase of the crack angle. The KII value increases as the crack angle 

increases. There is no change in Klu. Figure 4.15 also reveals that the mode II stress 

intensity, KII, will dominate crack propagation when the crack angle > 70'. 
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Figure 4.15 Stress intensity factors versus crack angle at co = 0' (Geometry IV). 

Figure 4.16 shows the variations of stress intensity factors at (o = 900. Unlike 

at CO = 0", stress intensity factors (KI, KII, and Kul) decrease slightly as the crack angle 
increases. The results indicate that there is no significant effect on the surface and 

the stress intensities at co = 0' may be considered to be the main contributing factors 

in determining whether or not the crack grows. 
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Figure 4.16 Stress intensity factors versus crack angle at co = 90' (Geometry IV). 

The effect of crack angles on the stress intensity factors is now considered as 

the crack geometry changes. For the ring cracks, the crack angle ranges normally 

from 30" to 50' and, as discussed above, the mode I stress intensity K, dominates the 

crack propagation behaviour in this range. Therefore, we concentrate on mode I 

stress intensity factor, KI. 

Figure 4.17 shows plots of K, for the geometry I. It is found that the K, 

decreases as the crack angle increases. The SIF distribution profile is similar for each 

crack angle. Figure 4.18 contains the plots of K, for the geometry H. As with the 

geometry I, the stress intensity Ki decreases slightly as the crack angles increase. The 

K, values are very close if they have the same crack angle. Therefore, the fatigue 

crack propagation will be similar for the geometry I and H. 
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Figure 4.17 Influence of crack angle on K, (Geometry II). 
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Figure 4.18 Influence of crack angle on KI (Geometry III). 

45 

4.3.1.3 Crack length 

Figures 4.19 and 4.20 depict the variation of stress intensity factors when the 

crack length increases to one-third of the ring crack circle (Oo = 60'). The geometry I 

(figure 4.2(a)) is employed for the comparison study. The results for Oo = 45* has 
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been shown previously (see figure 4.6). The results show that the K values vary very 

slightly when the crack length is between one-quarter to one-third of the ring crack 

circle. The K, increases little at 0= 0" and decreases little at 0= --!: 45*. The SIF 

distribution profile is very similar. The results imply that the rolling contact fatigue 

life must be close if the crack length is close. For the surface ring crack defects, the 

length is nonnally between one-quarter and one-third of the ring crack circle. 
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Figure 4.19 Plots of stress intensity factors at Oo = 60' (Geometry I). 
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Figure 4.20 Plots of stress intensity factor K, at different crack lengths (Geometry 1). 
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4.3.1.4 Crack depth 

Figures 4.21 and 4.22 depict the variations of the stress intensity factors for 

geometry III. Figure 4.21 is the calculated results when crack depth = 0.05 mm and 

crack angle = 40', and figure 4.22 is when crack depth = 0.08 mm and crack angle = 
40*. Comparison of figures 4.21 and 4.22 reveals that K, decreases as the crack depth 

increases except when 0=± 45'. There is little increase in K, when 0=± 45'. The Ki 

value is always higher than K], and Kill in all positions along the crack front. The Kii 

and Km also vary with 0 but are less when compared with KI. 

Figure 4.23 illustrates the variations of stress intensity factors when the crack 
depth is assigned to the value of 0.083 mm. for geometry 1. The stress intensity 

factors for the crack depth = 0.05 mm has been shown previously (see figure 4.6). 

The comparison of these plots shows that the SIF distribution profile is very similar. 
The calculated results indicate that K, decreases as the crack depth increases. 
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Figure 4.21 Plots of stress intensity factors at crack depth = 0.05 mm (Geometry 
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Figure 4.22 Plots of stress intensity factors at crack depth = 0.08 mm. (Geometry III). 

10.00 

8.00 

E 6.00 
m 

4.00 

2.00 

0.00 

-2.00 

-4.00 

Kil - Kill 

-50 -40 -30 -20 -10 0 10 20 30 40 50 
0 (degree) 

Figure 4.23 Plots of stress intensity factors at crack depth = 0.083 mm (Geometry I). 
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4.3.2 Influence of Loading conditions 
4.3.2.1 Nonnal pressure 

Figure 4.24 shows plots of the Ki variations caused by normal contact 

pressure. The geometry III is employed. Phenomena of contact radius varying with 

contact pressure bring some difficulties into the calculation. To compare precisely, 

the ring crack is placed at the same distance (0.03 mm) away from the contact circle. 
As can be seen from the plots, K, increases with increasing contact stress, and 

reaches a maximum value at 0=± 45'. The result reveals that there is no possibility 

of unstable fracture due to the calculated K, being less than KIc (6.0 MPa m 1/2 ). 

Crack propagation may happen if contact stress is more than 5.0 GPa due to the 

threshold value AKth =2 to 3 MPa m"2. If contact stress is less than 4.0 GPa, the 

spalling fatigue will not happen. These predictions are consistent with the 

experimental observations. 
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Figure 4.24 Influence of contact stresses on stress intensity factor KI. 

4.3.2.2 Tangential traction 
The influence of tangential traction on stress intensity factors is investigated. 

The magnitude and direction of tangential traction are determined in terms of 
friction coefficients. The results are shown in figures 4.25 and 4.26. As can be seen 
from the plots, the K, and Keq stress intensity factors are influenced by tangential 
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traction. 

Comparison of figure 4.25 and 4.26 reveals that the variations of K, and K. 

are the same when the friction coefficient f<0.05 and the variation profile of Kq 

basically takes the shape of the K, variation profile and has the same variation trend. 

It is concluded that K, stress intensity factors play an important role in crack growth. 
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Figure 4.25 Influence of friction coefficients on stress intensity factor K1. 

6.00 

5.00 

4.00 

3.00 

2.00 

1.00 

0.00 

f= -0.05 f=0.05 
f= -0.005 f=0.005 

.0 e* 

-45 -30 -15 0 15 30 45 

0 (degree) 

Figure 4.26 Influence of friction coefficients on equivalent stress intensity factor. 
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4.3.3 Influence of crack positions 
4.3.3.1 Co-ordinate x 

Figure 4.27 is a plot of K, stress intensity factors as a function of the co- 

ordinate x. K, stress intensity decreases slightly as co-ordinate x increases, and the 

variation is not significant except near the 0=± 45'. The results indicate that the 

contact circle can still cause the crack front to propagate although the distance 

between the contact circle centre and ring circle centre may be significantly 

increased. 
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Figure 4.27 Influence of coordinate x on stress intensity factor Ki. 

4.3.3.2 The parameter, 8 

The influence of the parameter 6 on K. and K, is shown in figure 4.28 and 

4.29. The Kq and K, stress intensity factors are sensitive to the variations of 8 value. 

The Kq and K, for 
j6 = 90' are always higher than those of the 6= 45' and '8 = 0'. 

The results indicate that the fatigue life will be different due to the different stress 

intensity factors, which govern the crack propagation behaviour. The fatigue life for 

,6= 90' must be shorter than others. It can be concluded that rolling contact fatigue 

life performance increases with the increase of 6. This prediction has been verified 

by the experimental results. 
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Figure 4.28 Influence of Pon equivalent stress intensity factor Keq- 
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Figure 4.29 Influence of 8 on stress intensity factor K1. 

4.3.3.3 The parameter J 

Figure 4.30 shows the effect of J on K, stress intensity. The KI values along 

the crack front for 8= 0 are always larger than those of the 8= 0.5a and 8= a. This 

result indicates that the possibility of crack propagation increases as the parameter 
decreases. The present prediction is consistent with the experimental observations. 
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Figure 4.30 Influence of i5on stress intensity factor K1. 

4.4 LIFE PREDICTION OF SPALLING FATIGUE FAILURE 

Figure 4.31 is a plot of the stress intensity factor Ki as a function of crack 

extension which shows that stress intensity factors decrease with crack front 

propagation. There are two lines in figure 4.31. The upper line is the result of crack 

length = one-third of ring crack circle, and the lower line is for the crack length = 

one-fourth of ring crack circle. The results indicate that crack propagation will be 

arrested when a certain extension size is reached. This may explain why the rolling 

contact failure mode of silicon nitride is non-catastrophic. The computations are 
based on an assumed crack path derived from the equations (4.3) to (4.5). The aim is 

to relate the stress intensity factors to crack propagation. The calculation of stress 

intensity factors presented here, while approximately in the plane of 00, may be 

useful in fatigue life prediction. 
To demonstrate what spall size may be expected to be reached in the spalling 

failure, we will use the Paris equation (Paris and Erdogan 1963) 

daldn = c(, &K)m (4.30) 
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by substituting K, = -19.18]x + 4.5475 from figure 4.31 to solve fatigue cycles 

requested for a certain crack size. Fatigue cycles can be obtained by the integrating 

equation (4.30), which is expressed as follows: 

a da a da 
n= 

loc 

c(AK) '= 
10 

c(4.5475 - 1918 1 a) ' 
(4.31) 

Integration of equation (4.3 1), then 

[(4.5475 
-19181a, )-"'l - (4.5475 -1918lao)-"l (4.32) 

19181c(m -1) 

The constants in the Paris law of equation (4.3 1) are obtained from the fatigue crack 

propagation studies. The value for c is 1.01 X 10-21 and the exponent m for HIP 

material is 18 (Bar-On and Beals 1990). 
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Figure 4.31 Plots of K, versus crack increment. 

Fatigue cycles for the different crack extensions are shown in figure 4.32. 

The calculated fatigue cycles indicate that the original ring crack propagation may be 

able to reach the lower boundary of a spall size normally observed (0.3 to 0.4 mm in 
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diameter). It should be emphasised that it is still hard to describe the spall sheet 

separation although the crack may be able to propagate to the spall size. 
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Figure 4.32 Plots of crack growth versus fatigue cycles. 

Inspection of figure 4.32 reveals that the crack front is hard to propagate 

when it grows to 0.09 mm, (5 X 107 fatigue cycles). Experimental observations show 

that the fatigue cycles are between 1.5 XI Cý and 5XIW. The contour radius is on an 

average of 0.2 to 0.25 mm. The predicated spall size is -smaller than the observed 

size. There may exist other crack growth to enlarge the spall size. 
Figure 4.33 depicts the variations in stress intensity factors for different 

stages of crack extensions. Computations are based on a predicted crack growth path 

and the crack is re-meshing again after having propagated. As can be seen from the 

stress intensity factor plots, stress intensities on the crack front are a function of the 

angle 0. K, values at 0= : i-. 45' (ball surface) reach a maximum for the initial crack 

front and decrease as the crack front grows. It is found that the crack front 

propagation will take different increment sizes depending on 0. In the middle plane 

(0 = 0), crack front growth reaches a maximum extension compared with other 

locations. This is why a fatigue spall contour always takes an ellipse shape. The 

corresponding crack propagation contour is shown in figure 4.34 (Section 4.5). 
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For ball bearing elements, crack propagation happens within inhomogeneous 

stress fields. The stress intensity factor calculation shows that K decreases as the 

crack grows. The results indicate that crack growth will be arrested at a certain size. 
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Figure 4.33 Plots of K, variations in crack propagation. 

The spalling surface is now studied in detail. The radius of the spall is 

approximately 0.2 mm (see Chapter 3, figures 3.30 and 3.32). The crack front 

propagates about 0.15 mm to reach the spall size (in the plane of 0= 0') and the 

fatigue cycles are 1.6 to 4.8 x 107 for these two tests. Average cyclic crack growth 

rate (Aa/AM is approximately 0.3 to 0.9 X 10-11 m/ cycle, which is much less than 

the so-called threshold value (10-10 m/ cycle). The result indicates that the crack 

front will not grow if it grows at that crack growth rate. This implies that the fatigue 

life is not simply described by the daldn-AK relation. The fatigue spall life for a 

cracked ball involves two parts: crack propagation life for the formation of a certain 

size crack and fatigue cycles required for the spall sheet separation. There must be a 

period in which the crack stays at the same size. During this period, the crack face is 

suppressed under repeated rolling contact and the crack gap will increase due to the 

wear of the crack surfaces. The secondary surface cracks will be formed if the crack 
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gap reaches a critical size. These surface cracks will then propagate downwards to 

join the main crack propagation path and a spall is eventually generated. Thi Z-- is ýIspect 

will be discussed in Chapter 5. 

4.5 THE PREDICTED CRACK PROPAGATION PATH 

4.5.1 The path in continuous propagation 

The predicted crack growth path is shown in figure 4.34. According' to tills 

contour the crack -rows slightly in width at the initial crack propaoation and then it 

propagates into the inside of the material. Look at the case 0", crack growth is 

almost parallel to the surface in the first crack increment. In the second and third 

extension, the crack grows in the direction of 10" to 15" with the surface, depending 

on the loading condition. Will the crack grow in the sanic way as the predicted 

contour above" The correct answer for crack propagation can only be determined by 

the experimental investigations, and it is found that the present prediction is 

consistent with the experimental observation,,. The experimental observations have 

been described in Chapter 3 (Section 3.3). 
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Figure 4.34 Crack growth contours in continuoLis propagation (Gcometry I). 
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4.5.2 Influence of crack locations 

Figure 4.35 shows the crack, growth direction I'Or the 13 = 90" and (3 It can Z, z: l 
be seen that the crack will grow towards the materials, which is roughly at 30" (in 

the middle section plane) to the surface. At point A and B, the crack extending size 

has a maximurn of about one-third ofcrack depth, and the increment size aloil" (lie 11 
crack front is determined in terms of the stress intensity factors corresponding to 

point locations. 
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Figure 4.35 Views of crack propagation (geometry III, #= 90", (5= 0 and (x = 50") 
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Figure 4.36 Views of crack propagation (geometry III, 13= 45", t5= 0 and (x = 50") 
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Fqgure 4.36 shows the crack growth direction for the 6= 45" and (3 = 0. The tn 
crack growth direction changes with the change of point location along the crack 

front. On the front of B to P,, the crack propagates towards the materials and oil tile 

front of P-, to A, the crack propagates almost parallel to the surl'acc except near tile 

point A. 

Figure 4.37 shows the crack growth direction for the 0= 0", t3 = 0. As in z: l 

Figure 4.36, the crack growth direction changes with the change ofthe point location 

along the crack front. On the crack front of B to P2, the first half will propagate 

towards the materials and the other half grows almost parallel to the surface. On Ilic 

crack front of P, to A, it propagates almost parallel to the SUrface except near (lie 

point A. 

Rolling 
A direction 

13 A 
-x Y.. 

- P, p 
B 

P, - 
Propagated Initial 
crack front crack front 

Figure 4.37 Views of crack propagation (geornetry 111,13 = 0", 6= 0 and (x = 50") 

4.5.3 Influence of traction 

The influence of surface tangential traction on crack growth IS CIlCLIlatCd. 

The different friction coefficients are used to describe the magnitude and direction of" 

the tangential traction. As described in numerical analysis, the incremental size 

along the crack front is determined in terms of the equivalent stress intensity factor 

corresponding to point locations. The calculation result is shown in figurc 4.38. As 

can be seen from the plots, the crack front will grow towards the materials. The 

extending size of the crack front reaches Its maximi-1111 at points A and B. The crack Zý 
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growth direction and incremental size change in line with 0. The comparison of' 
figures 4.38(a) and (b) reveals that the crack growth direction is slightly influenced 
by the change of rolling direction. 
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Figure 4.38 Views of crack propagation (geornetry Ill, [3= 90", (5= 0, ct = 40"). 
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CONTACT ANALYSIS OF CRACK FACES 

AnalYtical models of ball stress fields are presented to increase understanding 

of ring crack fatigue failure processes. Ring crack fatigue failure, as the term is used in 

the present study, means a fatigue spall which results from the pre-existence of surface 

ring cracks. The purpose of the investigation described in this work is to study the way 

in which the ring crack fails, to interpret the failure processes and to accurately predict 

fatigue life. A boundary element method is utilised to perform a numerical calculation. 

Contact analysis without surface cracks is described in Section 5.1. A three- 

dimensional boundary element model of crack face contact is developed and described 

in Section 5.2. The physical considerations and modelling strategy are addressed. 

Based on the model, the analysis of stresses on the ball surface is presented in Section 

5.3. The influence of crack gap and traction direction on the surface stress distribution 

is discussed in Section 5.3.1 and Section 5.3.2 respectively. The influence of crack 

dimension on the surface stress distribution is described in Section 5.3.3. The influence 

of crack face friction coefficients on the surface stress distribution is described in 

Section 5.3.4. Stress distributions on crack faces are discussed in the final section. The 

stress distribution on the lower crack face is described in Section 5.4.1 and the stress 

distribution on the upper crack face is described in Section 5.4.2. 

5.1 CONTACT ANALYSIS WITHOUT SURFACE CRACKS 

5.1.1 Model description 

The boundary element method based computer modelling package BEASY 

(Computational Mechanics BEASY 1998) is employed to perform contact analysis. 

The boundary element method, quite apart from its ease of use and accuracy, is very 

suitable for contact analysis because contact is essentially a boundary phenomenon. 
It is the surface of components which come into contact with each other and, since 
boundary elements make all their computations on the surface, it seems natural that 

they should be useful for this type of analysis. 
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The use of the boundary element method to analyse contact problems was 
first described by Andersson et al. (1980), and has been addressed by numerous 

authors (Niku et al. 1991, Aliabadi and Brebbia 1993, Man 1994) since then. The 

basic problem they address is that the contact area is not known in advance and, 

since the boundary conditions which are used in the solution depend on the condition 

of contact or non/contact for each node, this type of problem cannot be solved in a 
direct way. Instead, we require an iterative solution scheme. 

An iterative scheme is one in which a guess is made for the solution. Using 

this guess we can arrive at a better estimate of the solution, and from that estimate 

the procedure provides an estimate which is better still. After a certain number of 

these iterations the estimate of the solution stays the same as the previous estimate, 

and the iteration has converged. 
The incremental load approach is adopted in the calculation. This approach is 

particularly important for cases involving frictional contact, as the load path 
becomes substantially more important. 

The purpose of contact analysis is to understand completely stress field and 

strain distributions around the contact zone. The results will provide the specific 

contact volume analysis with the boundary conditions. 
The model of a ceramic upper ball contacting with a steel lower ball is shown 

in figure 5.1. The detailed view of the contact zone is shown in figure 5.2. This 

model is axisymmetric, which simplifies the geometric requirements to a plane 

model, rotated about the load axis. The reason for this consideration is that the 

friction coefficient is extremely low in lubricated rolling contact and hence its 

influence on the stress field is limited. Lubrication regime is studied (Appendix 4) 

using elasto-hydrodynamic theory. The results show that a full film exists, which 
implies that a frictionless model is valid. 

Contact is modelled in BEASY using the software's 'initial gap' boundary 

condition. This boundary condition defines a gap between two components. Initial 

gap values can be defined over an entire surface containing elements when the 

contact is conforming, or on an element-by-element/node-by-node basis when the 

contact is non-conforming. 
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Figure 5.1 Axisymmetric boundat-y element model. 

Figure 5.2 Detailed view of contact zone. 
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5.1.2 Result analysis 
The main objective for development by the analytical models of the contact 

problem is to obtain stress fields and displacements around the contact zone. The 

displacements are extracted from a specified area and applied to a three-dimensional 

contact volume model at a later stage. The accuracy of the numerical calculation at 
this stage is very important to eliminate any accumulated effors. First of all, let us 
look at the accuracy based on the boundary element model. 

The influence of contact load on the maximum contact stress and contact 

radius is studied. The results are listed in Table 5.1. Calculations with different load 

are verified using Hertz theory, and the results are used to validate the boundary 

element model. It can be seen from Table 5.1, the numerical calculation results are 
very close to analytical results. For maximum contact stress, the error is about 0.15 

percent and for contact radius, the error is 0.3 percent only. It can be concluded that 

the BEM model can provide highly accurate results. 

Table 5.1 Comparison of theoretical and numerical solutions 

Contact load 
(N) 

Maximum contact stress (GPa) Contact radius (mm) 

Analytical numerical analytical numerical 

179 4.000 3.998 0.146 0.145 

367 5.078 5.081 0.185 0.185 

490 5.589 5.592 0.204 0.205 

816 6.627 6.633 0.242 0.240 

1225 7.586 7.598 0.277 0.280 
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Figure 5.3 Maximum principal stress contours around the contact area. 

Figure 5.4 Axial direct stress contours around the contact area. 
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Figure 5.5 Von Mises stress contours around the contact area. 
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Figure 5.6 Shear stress contours around the contact area. 
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The load case studied presents a contact force of 490 N. Maximum principal 

stress and direct stress are shown in figures 5.3 and 5.4, respectively. The maximum 

tensile stress is positioned on a surface slightly out of the contact circle and it 

reaches a maximum value of 860 MPa. The analytical result with this load is 857 

MPa. Hertz contact radius is 0.205 min for this load; the analytical result is 0.204 

mm. As can be seen, the numerical calculation result is very consistent with the 

analytical result. The maximum compressive stress is at the centre; the value is 5992 

MPa. The analytical result for this load is 5589 MPa. The error is 0.05 percent only. 

Von-Mises (VM) stress contour is shown in figure 5.5. As expected, the VM 

stress maximum is positioned on the subsurface along the load axis; it reaches a 

maximum value of 3.44 GPa at a depth of 0.12 mm. Figure 5.6 shows plane shear 

stresses. The maximum shear stress is expected to be at 45' from the centre of 

contact, which is consistent with the BEM model. 
Surface stresses on the ball surface are plotted graphically in figure 5.7. The 

normal pressure (axial direct stress) distribution on the contact surface is completely 

consistent with the analytical result. The radial stress distribution also agrees well 

with the analytical result. 
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Figure 5.7 Stress distribution on contact surfaces for contact load = 490 N. 
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Figure 5.8 Pressure distribution on contact surfaces with different contact loads. 

Figure 5.8 shows surface pressure on the ball surfaces at different contact 
loads. The results indicate that the pressure distributions on contact surfaces are very 

consistent with the analytical results. 
The influence of contact load on Von Mises stress is plotted graphically in 

figure 5.9. The VM stress maximum is positioned on the subsurface along the load 

axis. The depth for the VM stress maximum increases as the contact load increases. 

The numerical results show a good consistency with the analytical results. 
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Figure 5.9 Von Mises distribution with different contact loads along load axis. 
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5.2 THREE-DIMENSIONAL BEM ANALYSIS OF CRACK FACE CONTACT 

5.2.1 Description of loading system 
Figure 5.10 shows the loading system in the three-dimensional boundary 

element method (BEM) analysis of crack face contact. The influence of parametersjS 

and 8 on the stress intensity factors has been studied in Chapter 4. The present 

analysis will focus on B= 90' and 6=0 to gain an insight into the mechanics 

processes of ring crack fatigue failure. For the purpose of the calculations presented 

here, it is possible to specify the surface loading in terms of an assumed stress 

distribution with the normal pressure and tangential traction as shown in figure 5.10. 

The normal pressure p(xy) and tangential traction &, y) are expressed by the 

following equations: 

P(X, Y)= po(1 -x 
2 la 2_y2 la 2)112 (5.1) 

q(x, y) = fp (x, Y) (5.2) 

where po is maximum normal pressure, a is the radius of the contact circle and f is 

the friction coefficient of Hertzian contact. It is assumed thatf <0 when the contact 

circle passes over the ring crack (arc AB) from right to left and f>0 when passing 

from left to right (see figure 5.10). The co-ordinate x measures the distance from the 

centre of the contact circle to the centre of the ring crack circle. 

As the contact circle passes over the surface (from right to left in figure 5.10) 

the crack front will pass from compressive to tensile stress continuously. Assume 

that the contact radius a equals the ring crack radius R. The maximum crack 

extension will occur at the co-ordinate of x=0 (see Chapter 4), in which stress 

intensity factors are computed. When the crack lies in the compressive region (0 <x 

< 2R), the crack is suppressed (KI < 0). Consequently, the crack front will not 

propagate along the main growth path in the compressive region. However, surface 

breaking may occur due to the pre-existence of the ring cracks and subsurface 

damage may also occur due to the crack face contact. Subsurface damage is affected 

by the change of co-ordinate x and it can be a rather complex process due to Hertzian 

loading in a cyclic fashion. 
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z 

Contact Circle 

Figure 5.10 Loading system of crack face contact analysis. 

5.2.2 Physical considerations 
Fluid lubricant effects are represented by different friction coefficients, 

which are determined in terms of the lubricant properties. For Hertzian contact 
friction coefficient f (contact between steel ball and ceramic ball), assume that f 

ranges from 0.0 1 to 0.05 due to EHL effect. For crack faces friction coefficient f, 

(contact between crack faces), assume that f, ranges from 0.1 to 0.5 to investigate 

lubricant property effects. 
From a physical point of view, a crack means there is a gap between two 

solid surfaces. This gap may increase due to the loss of materials arising from the 

wear of the rough crack surfaces. It is reasonable to assume that the crack gap 

increases with the increase of running time and will reach the maximum gap of 

0.5Rm. To analyse how the gap affects the contact behaviour, different gaps are 

adopted for numerical analysis. 
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I Crack geometry I (see Chapter 4) is selected as this is most frequently found 

on ceramic balls. Based on the experimental study, the position of an element on the 

crack face in figure 5.10 may be written as 

x= (R +1 
fl 

_ (o /00)2 Cos a) Cos 0 (5.3) 

(R +1 , ýfj - 
(0 / 00) 2 

cos a) sin 0 (5.4) 

0.224 (1 cos a (0 / o(ý )2 )112 (5.5) (0 / 00 )2 

where 1 denotes the crack depth, 0<1: 5 maximum crack depth (line PIPA R is the 

radius of the ring crack, a is the angle of line PIP2 to the ball surface, O< a< Td2,0 

represents the angle of an element position on the crack face, - 00 <0< 00 and 00 

denotes a half angle of the ring crack arc AB, 0< Oo < 7d2. 
For the purpose of the calculations in the present study, assume that the 

propagated crack can be described by equations (5.3) to (5.5). The crack face contact 

analysis is performed at various co-ordinates x in which the contact circle lies. The 

understanding of the stresses on both the crack faces and the ball surface is the key 

to revealing the nature of ring crack failure in rolling contact. Two crack sizes are 

adopted to perform the contact analysis of crack faces. Their dimensions are 
described as follows: 

(1) Case 1: R=0.21 mm, I=0.051 mm, Oo = 45', a= 500; and 
(2) Case 2: R=0.21 mm, 1=0.082 mm, 950 = 45', a= 42". 

5.2.3 Modelling strategy 
The BEM based computer modelling package BEASY is employed to 

perform contact analysis of crack faces. The BEM model that is created incorporates 

a vertical symmetry plane through the middle of the ball to reduce the number of 

elements used in the model. Elements do not need to be placed on the symmetry 

plane and this further reduces the size of the model. 
Contact is modelled in the BEM model using the software's 'initial gap' 

boundary condition. This boundary condition defines a gap between two crack faces. 
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Initial gap values are defined over an entire crack surface containing elements. 
The maximum contact pressure po is assigned to a value of 5.58 GPa 

(equivalent to experimental studies) and applied to the numerical calculations 

throughout in this study. Displacements in the specified zone are extracted from the 

axisymmetric boundary element model discussed in Section 5.1. This method leads 

to a significant reduction in the computer time necessary for solution. 

5.3 ANALYSIS OF STRESSES ON THE BALL SURFACES 

5.3.1 Influence of crack gap 
Figure 5.11 and figure 5.12 show the stress distributions on the ball surface at 

various crack gaps. Figure 5.11 illustrates the maximum principal stress variations in 

the plane of 0= 00. Figure 5.12 is a plot of the maximum principal stress as a 

function of 0 (from 0' to 900) along the circle of R=0.21 mm. The crack studied is 

the case I. The directions of principal stresses are displayed by the stress trajectories 

and are determined in terms of the analysis of Eigen vectors. Maximum principal 

trajectories at any points along the circle are approximately orthogonal to that circle 

and parallel to the surface. The results reveal that the tensile stress increases 

significantly with the increase of the crack gap. The calculated results predict that 

surface breaking will happen if the crack gap reaches a certain value (gap > 0.2 gm). 

It is evident that for brittle materials secondary surface ring cracks may control the 

final spall sheet separation. The secondary surface cracks are circular and are of a 

similar radius to the original ring crack circle. These secondary surface cracks grow 
downward as soon as they are formed, join and connect with the trajectory of the 

main crack path. Consequently, a spall is eventually formed. This may explain why 

the spall contours always took the ellipse shape. 
In principle, the ring crack initiation of silicon nitride material can be 

predicted from its tensile strength. However, measurement of the tensile strength of 

ceramic materials is extremely difficult since test results are strongly influenced both 

by the stressed volume and the surface condition of the machined specimens. 
Ceramic tensile specimens are also extremely susceptible to even the smallest 

misalignments. Consequently, there is little reliable information on the tensile 
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strength of silicon nitride materials. Therefore, it is more convenient and effective to 

use the critical Hertzian maximum compressive stress to assess ring crack resistance. 
According to experimental studies (Hadfield 1992 and Cundill 1997), the ring crack 

will occur when the maximum contact pressure reaches about 15 GPa for HIP silicon 

nitride balls with 12.7 mm diameter. This compressive stress corresponds to the 

maximum tensile stress of 2.25 GPa occurring at the edge of the contact circle. 
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Figure 5.11 Stress distribution on the ball surface at the plane of O= 0* 
(Case 1, x=0.047 mm, fe = Oj = -0.05). 

4.00 
(A 

3.00 
m 
CL 

.a iýI 
CL 2.00 

CL 
E 
Z E 1.00 
. iý 
cu 3 

0.00 

gap=l Rm 
gap=0.5 Rm 
gap=0.2 ýtm 
gap=O Pm 
no crack 

0 15 30 45 60 75 90 
0 (degree) 

Figure 5.12 Stress distribution on the ball surface at the circle of radius = 0.21 mm 
(Case 1, x=0.047 mm, f, = 0, f= -0.05). 
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The calculated results are now studied in detail. There are hardly any changes 
in the stress distributions for all the gaps (0,0.2,0.5 and I pm) from 0= 600 to 0= 

90' (non-crack area). Compare the case of no crack with the case of crack gap = 0, 

there is very slight variation from 0= 0' to 0= 60' (crack area). However, the 

surface stresses will increase significantly when the crack gap exceeds 0.2 Pm, which 

approximates 1.8 GPa. When the gap is 0.5 prn the tensile strength will reach 2.7 

GPa. This tensile stress is large enough to initiate new surface cracks. It can be 

concluded that the secondary surface cracks must be formed on the surface if the 

crack gap exceeds 0.2 pin (0.2 at crack mouth decreases linearly to 0 at crack tip). 

The crack, from a physical point of view, means there is a gap between two solid 
faces. Therefore, it is reasonable to assume that the gap (or crack opening) will reach 

0.2 ýirn due to the loss of materials caused by the wear of the rough crack face 

contact. The crack gap increasing with the increase of fatigue cycles has been 

observed experimentally (Chapter 3, Sections 3.3 and 3.4). Figures 5.13 to 5.15 

show some examples of the stress contours. Deformation contours around the 

contact zone are shown in Appendix 6. 
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Figure 5.13 Stress contours on the ball surface for the case of no crack 
(Case 1, x=0.047 mm,. f = -0.05). 
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Figure 5.14 Stress contours on the ball surface for the case of crack gap ý 0.5 [im 
(Case 1, x=0.047 mm, f, = Oj = -0.05). 

Figure 5.15 Stress contours on the ball surface for the case of crack gap -- I Pm. 
(Case 1, x=0.047 mm, fi = Oj = -0.05). 
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5.3.2 Influence of traction direction 
The influence of surface traction direction on the surface stresses is 

investigated and shown in figures 5.16 and 5.17. Figure 5.16 displays the stress 

variations in the plane of 0= 0', and figure 5.17 exhibits the principal stress 

variations along the circle of R=0.21 mm from 0= 0' to 0= 90'. Compared with 
figures 5.11 and 5.12, it is found that the stress distribution significantly changes 

with the change of the traction direction (or rolling direction). Consequently, the 

possibility of forming the secondary surface cracks is different as the traction 
direction changes. The spalling fatigue life will be influenced by the change of 
traction direction. The results also indicate that there still exists the possibility of 

producing the secondary surface cracks if the gap exceeds 0.5 gm. 

4.00 
3.00 

m 2.00 
(a CL 1.00 

m 0.00 CL 
CI-L -1.00 
E -2.00 0 
.9 -3.00 x 

-4.00 
-5.00 

gap = 0.5 Rm 

gap =0 jim 
ýx-x 

0 0.1 0.2 0.3 

radius (mm) 
0.4 

Figure 5.16 Stress distribution on the ball surface at the plane of 0= 0' 

(Case 1, x=0.047 mm, fý = 0, f= +0.05). 
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Figure 5.17 Stress distribution on the ball surface at the circle of radius = 0.21 mm 
(Case 1, x=0.047 mm, fe = O, f = +0.05). 

5.3.3 Influence of crack dimension 
Critical crack size is an important quantity parameter in fracture mechanics 

analysis and for rolling element bearing quality control. The durability of the cracked 

product can be predicted in terms of the crack size. Hence, it is also important to 

understand the influences of crack dimensions on the surface stresses. The crack 

studied here is case 2. Figures 5.18 and 5.19 show how surface stresses vary when 

the crack depth increases. As can be seen from figure 5.19, there are no differences 

in the non-crack area from 0= 600 to 0= 90', but significant changes in the crack 

area from 0= 00 to 0= 60'. Comparison of figures 5.11,5.12 and figures 5.18,5.19 

reveals that the tensile stresses on the surface increase as the crack depth increases. 

The radius of the area affected also increases. The calculated results predict that the 

larger the crack size, the shorter the fatigue life. The reason for this is that a large 

crack has a high potential to form secondary surface cracks. 
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Figure 5.18 Stress distribution on the ball surface at the plane of 0' 

(Case 2, x=0.047 mm, fc = Oj = -0.05). 
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Figure 5.19 Stress distribution on the ball surface at the circle of radius = 0.21 mm 

(Case 2, x=0.047 mm, fc = Oj = -0.05). 
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5.3.4 Influence of crack face friction coefficients 
Figures 5.20 and 5.21 show the influence of the crack face friction coefficient 

on the stresses arising from the crack face contact. As discussed above, there are 
influences in the crack area (from 0= 0' to 0= 600) but no influences in the non- 

crack area (from 0= 60' to 0= 90*). The results indicate that the stress value 
increases as the crack face friction coefficient decreases and approaches the value of 

no crack if the crack face friction coefficient exceeds 0.5. 

It is found that the surface stress distribution is not sensitive to the variation 

of the crack face friction coefficient when the crack gap exceeds 0.2 gm. 
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Figure 5.20 Stress distribution on the ball surface at the plane of 0= 0' 
(Case 2, x=0.047 mm, f = -0.05). 

Figures 5.22 to 5.24 show the contours of the stress distributions at a 
different co-ordinate x. Figure 5.22 shows the stress contour on the surface (Case 2: 

x=0.047 mm, f, = 0.2, f= -0.05, gap = 0). Figure 5.23 shows an example of the 

stress contour in the contact area (Case 2: x=0.347 mm, f, = Oj = -0.05, gap = 0). 

Figure 5.24 is another example of the stress distribution contours (Case 2: x=0.467 

mm, f, = O. Ij = -0.05, gap = 0). It can be seen that the stress distribution contours 

change as the co-ordinate x changes, resulting in changes in subsurface damage. 

Deformation contours around the contact zone are shown in Appendix 6. The stress 
distributions on the subsurface will be discussed in the following sections. 
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Figure 5.21 Stress distribution on the ball surface at the circle of radius = 0.21 mm 

(Case 2, x=0.047 mrnf = -0.05). 
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(Case 2, x=0.347 mm,. f,; = 0, f= -0.05). 
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5.4 STRESS DISTRIBUTION ON CRACK FACES 

5.4.1 On the lower crack face 

Typical stress distributions on the lower crack face are given in figures 5.25 

to 5.28. The directions of principal stresses are determined in terms of the analysis of 
Eigen vectors. Maximum principal trajectories at any points along the crack front are 

approximately orthogonal to the first and second tangential direction at the 

coffesponding point. 
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Figure 5.25 Principal stress variations across the crack tip at the plane 
(Case 2, x=0.347 mm, crack gap = 0). 
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Figure 5.26 Principal stress against 0 along the crack front 
(Case 2, x=0.347 mm, crack gap = 0). 
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Figure 5.27 Principal stress variations across the crack tip at the plane 0' 
(Case 2, x=0.047 mm, crack gap = 0). 
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Figure 5.28 Principal stress against 0 along the crack front 
(Case 2, x=0.047 mm, crack gap = 0). 
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The origin in figures 5.25 and 5.27 represents the crack tip, and negative 

coordinates represent the stresses on the crack face. Figures 5.25 and 5.26 show the 

case of x=0.347 mm. where the crack front is fully beneath the contact circle. 

Figures 5.27 and 5.28 show the case of x=0.047 mm where most of the crack face is 

under the contact circle except the crack front. There is no change in the stress 

distributions when the coordinates >0 (non-crack zone). However, the stresses on 

the crack face are changed significantly when approaching the crack tip from the ball 

surface. Several features emerge in figures 5.25 to 5.28: (1) the maximum principal 

stress is non-negative near the crack tip and exists along the whole crack front; (2) it 

exists whether f>0 or f<0; (3) it decreases with the increase of the crack face 

friction coefficientf, The maximum value occurs at approximately 5 [Lm from the 

crack tip. The results in the present study predict that the tensile stress near the crack 

tip will trigger subsurface branch cracks. If crack propagation is of this 

characteristic, then these subsurface cracks will occur on the fracture surface, and 

will inherit the geometry of the original crack front. On the other hand, the radius of 

the branch crack should be very close to that of the original ring crack. 

If the fatigue spall formation is only due to the original ring crack 

propagation, then the observed spall contour should be the half ellipse only. 

However, an ellipse spall is always found. The possible reason for this is that the 

subsurface branch cracks formed on the lower crack face propagate in a direction 

opposite to the direction of the original crack growth. The branch crack growth is 

driven by mode I stress intensity arising from the stress field where the contact circle 

moves to another side. 

5.4.2 On the upper crack face 

Figures 5.29 and 5.30 show the stress distributions on the upper crack face 

for the contact circle lying in a coordinate of x=0.467 mm, which shows how 

friction coefficientsf, andf influence the stress distributions. Again, the directions of 

principal stresses are determined in terms of the analysis of Eigen vectors. Maximum 

principal trajectories at any points along the crack front are approximately 

orthogonal to the first and second tangential directions at the corresponding point. 
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Figure 5.29 Principal stress variations across the crack tip at the plane ý6 = 0' 
(Case 2, x=0.467 mm, crack gap = 0). 
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Figure 5.30 Principal stress against 0 along the crack front 
(Case 2, x=0.467 mm, crack gap = 0). 
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As in figure 5.25, the origin represents the crack tip, and negative coordinates 

represent the stresses on the crack face. There is practically no change in the stresses 
in the non-crack area. However, the stress distributions on the crack face vary 

significantly when approaching the crack tip from the ball surface to the crack tip. It 

is found that the non-negative stress occurs near the crack tip, and the value is 

sensitive to the change of the crack face friction coefficient and traction direction. 

This stress value decreases with the increase of the crack face friction coefficient (f'). 

When the crack face friction coefficient exceeds 0.5 there is no change (as normal 

with no cracks). It is not difficult to imagine that the crack faces will be interlocked 

when the crack face friction coefficient exceeds a certain value. The results indicate 

that the stresses on the upper crack face are high enough to initiate the subsurface 
branch cracks on the upper crack face. The crack formed on the upper crack surface 

will grow back to the surface to cause the fatigue spall. It is evident how the fatigue 

spall is forined in brittle materials. According to the analysis of stresses (x, y and z 

components), these subsurface branch cracks propagate mainly in perpendicular to 

the tangential direction corresponding to the point at which the crack is generated. 
Consequently, the branch cracks formed on the upper crack face will grow back to 

the surface. It can be concluded that the branch crack growth is one of the causes 

which lead to the final sheet separation. 
Experimental observations show that failure modes in high viscosity oil are 

the same as in low viscosity oil but the fatigue life is different. Fatigue life in high 

viscosity oil is longer than that in low viscosity oil. The calculated results indicate 

that fatigue life increases with the increase of the crack face friction coefficient (f, ) 

in that the more f, decreases the greater the possibility of the formation of both 

secondary surface cracks and subsurface branch cracks. The use of higher viscosity 

oil inhibits the amount of fluid that can enter a crack, and friction forces acting 
between the faces of the crack increase. The experimental results agree well with the 

prediction in terms of the numerical analysis. 
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DISCUSSION AND CONCLUSIONS 

6.1 DISCUSSION 

Ring crack defects are routinely found on finished ceramic ball surfaces. The 

dimension of the ring crack is very close to the in-service contact area and any minor 

variation in geometry attitude of a ring crack on the contact track may result in a 

significant change in rolling contact fatigue (RCF) performance. The modified four- 

ball machine experiments show that the RCF life performance is extremely sensitive 

to the crack location in relation to the contact path and fatigue spall happens only at 

a few crack locations. The possibility of a surface ring crack being in the contact 

region is two percent. If the crack location effect is considered, the failure 

probability resulting from the surface ring crack will be 0.5 percent only. This result 
indicates that the traditional statistics analysis is no longer suitable for the fatigue 

performance assessment of the ceramic balls with surface ring crack defects if using 

the conventional test methods. 

To describe precisely location geometry influences, the geometrical attitude 

of a ring crack on the contact track is presented by two parameters: 8 and B. The 

parameter 8 represents the distance of the centre of the crack circle to the central line 

of the contact track. The parameter 8 is the angle of the chord of ring crack to the 

central line. The experimental results indicate that the RCF life decreases as fl 

increases, and increases as 8 increases no matter what type of lubricants are adopted. 

The locations which may lead to fatigue failure are when P= 90' and 8 <-- 0.5a or 

when B= 45" and 8=0. The worst location in the RCF life performance is when 46 = 

0 and 6= 900. If surface ring cracks are not in easy failure locations, it is difficult to 

cause fatigue failure in limited testing time (108 fatigue cycles) for the maximum 

contact load of 5.58GPa. For the same crack location, the RCF life is dependent 

upon the lubricant type. High viscosity lubrication (gear oil) exhibits long fatigue 

life, compared with the case of low viscosity oil (gas turbine oil). 
A three-dimensional boundary element model associated with crack growth is 

developed to study the driving force of surface ring crack propagation. The calculated 
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results indicate that the K, stress intensity is mainly responsible for ring crack growth. 

Fracture mechanics analysis indicates that the reason for RCF life difference with the 

crack locations is that the different crack locations have different stress intensity factor 

values, which govern the crack propagation behaviour. The stress intensity factors 

along the crack front are very sensitive to the ring crack orientation. In addition, the 

calculated stress intensities are also sensitive to the surface traction direction. The 

influence of crack geometry on the stress intensity factors is studied through four 

typical crack surfaces. The calculated results indicate that the stress intensity factors 

are affected by the geometry. Fracture mechanics analysis quantitatively confirms that 

ring crack propagation is affected markedly by the crack location within the contact 

path. There is a good correlation between numerical analysis and experimental studies. 

As a result, the RCF performance of silicon nitride rolling elements can be predicted 

through fully numerical fracture mechanics analysis. 

Crack front growth depends upon ring crack location due to different crack 

locations corresponding to different SEF values. The calculated result shows that the 

crack propagates towards the material and will not grow along the ring crack circle. 

The prediction based on the numerical calculations has been verified by extensive 

experimental studies, which have been discussed in Chapter 3, Section 3.3. 

Spalling fatigue failure in rolling contact is complex due to Hertzian loading in 

a cyclic fashion. The purpose of the stress intensity analysis is to answer the possibility 

of ring crack propagation under rolling contact. The calculated results show that the 

crack front can be propagated and will be governed by K, stress intensity. The Ki stress 
intensity decreases as the crack depth increases. This result predicts that crack growth 

will be arrested at a certain depth. Experimental observation shows that the original 

ring crack growth is downwards conical. If a fatigue spall that results from rolling 

contacts is due to propagation of the original ring crack, then it seems very difficult to 

explain the final sheet separation. Of course, stress intensities propagating a crack are 

mandatory to a fatigue spall fori-nation. To explain the sheet separation, the lubricant 

hydrostatic pressure was assumed to prise the crack open and to force the crack to 

grow back to the surface (Kaneta and Murakami 1987). It is questionable whether 

enough fluid is available to force the crack open due to the thickness of the film under 
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the contact loading (Bower 1988). It is believed that the nature of a fatigue spall can be 

revealed provided that the stress field arising from the crack face contacts is fully 

understood. 
To interpret the failure processes, a three-dimensional boundary element model 

of crack face contact is developed to study the failure mechanisms of ceramic surface 

ring crack in rolling contacts. The calculated results show that surface ring crack 
fatigue failure involves complex mechanics processes. They are (1) original ring crack 

propagation along the main growth path until arrested (0.15 mm in radius); (2) 

secondary surface crack initiation when the crack gap > 0.2 Rm; and (3) subsurface 
branch crack nucleation and growth. Figure 6.1 illustrates the processes of the spalling 
fatigue failure. Figure 6.2 shows the mechanisms of the fatigue spall formation. 

Comprehensive experiments have been carried out and results agreed well with the 

numerical analysis. 

Ring crack 

Contact circle causes Crack faces contact within contact Crack face wear debris removed. 
ring crack growth circle, high tensile stress triggers new Crack gap increases as time Increases. 

subsurface cracks on lower crack face, Subsurface cracks on upper crack 
perpendicular to original crack path. face occur and grow back to surface. 

Figure 6.1 Processes of ring crack spalling failure. 

The fatigue failure process is not only influenced by the original crack 

propagation behaviour but also strongly influenced by the crack face contact 
behaviour. Consequently, the fatigue life is not simply deten-nined by the propagation 
life of an original crack, e. g. propagation to a critical size to cause the final separation. 
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Secondary surface cracks play a dominant role in spalling failure. The existence of the 

original ring crack is a necessary condition for the formation of the secondary surface 

cracks. The spalling fatigue failure life of silicon nitride rolling elements involves two 

parts: (1) crack growth required for a certain size and (2) fatigue cycles required for the 

spall sheet separation. There exists a period in which the crack stays the same size. 

During this period, the crack experiences a cyclic surface loading and the crack gap 

increases due to the crack face friction. Secondary surface cracks will be formed if the 

crack gap reaches a critical value. 

Top view 

,, 
--' 

_,, 
'\ ellipse pitting Contact track 

S, 
broken lines: 

secondary surface crack 
ýotted line: possible spall contour 

ring crack 

Cross sectional view 

Ball surface 

Crack 
from su b=k 

. ....... Crack growth 

created by crack 
initiated from 

f ---- ------- 

7 

original crack 

Figure 6.2 Mechanisms of the ceramic fatigue spall formation. 

The formation of secondary surface cracks depends mainly on the crack gap, 

crack dimensions and crack face friction coefficient. The formation of secondary 

surface cracks increases with the increase of the crack gap and crack depth and 
decreases with the increase of crack face friction coefficient. The secondary surface 

cracks are formed when the crack gap reaches a certain value. These cracks propagate 
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conically away from the surface and meet the main crack path to lead to the formation 

of a fatigue spall. 
Subsurface branch cracks which are fonned on the upper crack face, are 

another important factor which cause the final spall sheet separation. The formation of 

subsurface branch cracks is sensitive to crack face friction coefficient. The possibility 

of the formation of the branch cracks decreases with the increase of the crack face 

friction coefficient. These branch cracks may be able to propagate towards the surface 

to cause a fatigue spall. Subsurface branch cracks can also be generated on the lower 

crack face, which may propagate in a direction opposite to the direction of the main 

crack growth so that the other half of an ellipse spall is formed. The crack nucleation 

also increases with the decrease of the friction coefficient. 

6.2 CONCLUSIONS 

(1) Rolling contact fatigue (RCF) life perfonnance of silicon nitride bearing 

elements is found to be markedly sensitive to the crack location and fatigue 

spall happens only at a few crack locations. RCF life decreases as B increases, 

and increases as 8 increases. 

(2) A quantitative three-dimensional boundary element model has been developed 

which can be used to determine the geometry of acceptable surface ring cracks. 

(3) Stress intensity factors (SM along the crack front can provide all of the 

necessary information to determine the state of a surface ring crack. RCF life 

performance can be predicted by a simulation analysis through comparing SIF 

on the crack front to KIc and AKh. 

(4) Experimental observations show that there is no significant crack propagation 

along the original ring crack circle on the ball surface. Crack propagation in 

rolling contact is underneath the surface, and is dependent upon the point 
location along the crack front. 
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(5) Fatigue failure processes arising from the surface ring cracks are not only 
influenced by original crack propagation behaviour but also strongly influenced 

by crack face contact behaviour. Crack face friction coefficients significantly 

affect the RCF performance and failure modes. 

(6) Secondary surface cracks play a dominant role in the formation of spalling 
failure. Increasing the crack gap and depth increases the formation of 

secondary surface cracks. 

A spalling non-catastrophic fatigue failure mode is identified in the cases of 

surface ring cracks and line defects. 

6.3 FURTHER WORK 

It is found that the RCF life increases with the increase of crack face friction 

coefficients. Study of the influence of varying the crack penetration properties of the 
lubricant is needed. Experiments using grease lubrication and powerful penetration 
lubricants are required. 

Interaction of the crack faces with the trapped lubricants and the consequent 
influence on the wear properties of the rough crack faces are required. This also has 

important implications for the deten-nination of the formation of secondary surface 

cracks. 
It is suggested that a comprehensive understanding of crack propagation under 

rolling contact is required. This is necessary for the rolling bearing life design and 

prediction. Experimental results based on conventional techniques are not well suited 

to crack propagation behaviour in rolling contact. 
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ROLLING CONTACT FATIGUE TEST MACHINE 

Many test-rig types are used to study rolling contact fatigue performance of 

ceramics. Typically, in such tests, a detector coupled with a shutdown device is used 

to monitor the vibration of the assembly. When a pre-set vibration level is exceeded, 
indicating the formation of a spall or excessive uneven wear, the test is automatically 

stopped and the lifetime of the test is recorded. Or, tests are suspended at different 

times to study the wear rate. Failure modes could be changed according to contact 

geometry (Hadfield and Stolarski 1995). The experimental evaluation of silicon 

nitride should be conducted on a number of model tests before predicting its 

performance for rolling element applications. The characteristics of various types of 

rolling contact fatigue test methods are summarised below. 

A1.1 The modified four-ball machine 
A model contact consisting of three lower balls driven by a fourth contacting 

upper ball simulates conditions within a standard deep-groove ball bearing. The 

upper ball models the bearing race, while the cup simulates the bearing outer race 

and the three planetary balls represent the balls within a ball bearing. The loading 

geometry is shown in figure Al. 1. The machine has a proven history as being useful 

to investigate the rolling contact fatigue resistance of materials under various 

tribological. conditions. Previously, this machine has been mainly used as an 

accelerated method to measure the rolling contact fatigue of bearing steels by 

various research staff. Barwell and Scott (1956), Krivoshein (1960) and Scott (1963) 

used the machine to evaluate the influence of lubrication type on steel ball rolling 

contact fatigue. The Institute of Petroleum gathered various papers (Tourret and 
Wright 1977), which describes various test results, ball dynamics and kinematics 

using the modified four-ball machine. 
The RCF performance of hot-pressing silicon nitride bearing materials has 

been studied in the past by Scott et al. (1971) and Scott and Blackwell (1973), using 
this machine. Recently, Hadfield et al. (1993a), Hadfield et al. (1993b), Hadfield 
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(1998) have used the modified four-ball machine to simulate the rolling contact in 

hybrid ball bearings. 

Load 

Figure AM Loading configuration offOur-ball machine 

The upper-ball stress cycle factor 'L' may be calculated I'l-0111 CLILiation (A 1.1 ) 

(Tourret and Wright 1977). This parameter is used to assess the total number of Z: ) 
upper-ball stress cycles per machine spindle revolution. 

Stress cycles per rev (L) 
R, j + 2RI, 

(A 1.1 
2(R, j + Rl, ) 

ý 

Hence L= 3ý 
6.35 + 2(6.35) ý 

2(6.35 + 6.35) 

Therefore L=2.25 
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Hence, for example, two million stress cycles applied to the upper-hall, 

require 0.889 million machine spindle revolutions. 

A1.2 Five-ball machine 

Figure AI. 2 shows the contact geometry and the rotating, mechanisms oftlic 

test rig. The test assernbly consists of a driven test ball on top of' four lower balls 

positioned by a separator, in the form of a pyramid. The four lower balls ro(ate in a 

race driven by the upper ball, thus simulating the rolling and sliding produced in 

angular contact ball bearings. Carter and Zaretsky (1960), Parker and Zaretsky 

(1975) used a five-ball machine to investigate the fatigue lif*e of' high-speed baII 

bearings with hot pressed silicon nitride balls 

Load 

Contact angle 

Figure Al. 2 Loading configui-ation offive-ball machine 

A1.3 Ball-on-plate machine 

The ball-on-plate machine was used by Fujiwara ct al. (1989) and Kik-Lichi et 

al. ( 1984), to investioate the rollin- contact fatigue performance of silicon nitride. I L, 
Figure Al. 3 shows a cross section view of the test rig. The test unit hit,,, it 0 
unidirectional thrust bearin(, confl-uration, which consists of' three balls or rollers 

equally spaced at 120" by a retainer and loaded between a stationary flat washer and 
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a rotating grooved washer. The rotating washer produces ball motion and serves to 

transmit load to the balls (or rollers) and the flat washer. 

Figure Al. 3 Loading configuration of ball-on-plate machine 

Loa( 

Illell 

Figure AIA Loading configuration ol'ball-on-i-od machine 

A1.4 Ball-on-rod machine 
Figure A1.4 shows the loading ocometry of' the hall oil rod type testill(I 

11 Z- I- 
machine. Three steel balls, 12.7 min in diameter, orbit a rotating 9.53 nim diameter 

cylinder test specimen. The thrust load on the hearing cups is applied mechanically Z-1 
by forcing the upper cup towards the lower cup with three precalibrated coil sprin-s 
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in the assembly. The rod specimen is rotated by a direct-drive electric motor 

mounted in line with the specimen below the table. The three balls are, in turn, 

driven by the rod and rotate around the rod. Lubricant is supplied by drip feeding 

onto the top of the rod. The machine has been employed to study rolling contact 

wear performance ( Lucek 1990, Allen 1994, Burrier 1996, Chao et al. 1998). 

Steel Disc 

Test Drip Lubrication Nozzle 

Figure A1.5 Loading configuration of disc-on-rod machine 

A1.5 Disc-on-rod machine 

A disc-on-rod machine is shown in figure Al-5. Two steel disks, 177.7 mm 
in diameter and 12.7 mm. thick, are pressed against the test specimen which is held 

in a spindle and driven at 10000 rpm. The test specimen is a 76 mrn long, straight 

cylinder with a 9.52 mm. diameter. With the known geometry, the contact stresses as 

a function of load can be calculated. The machine provides a means of rapid testing 

in nearly pure rolling contact. The specimen receives 1,200,000 stress cycles per 
hour when driven at 10,000 rpm. Earlier work using this machine was performed by 

Baumgartner (1974), Lucek and Cowley (1978). 
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A1.6 Contacting ring machine 
The contact ring machine has been used by Akazawa and Kato (1988), Braza 

et al. (1989) and Akazawa et al. (1986). Figure Al. 6 shows a diagram of the test rig, 

which uses two disk-shaped specimens rotating against each other on their outer 

surfaces. Geometry of the test specimen can be disks or rings which can be mounted 

on shafts. The contacting outer surface of the specimens can be both flat or, one 

specimen may have a flat surface while the other has a toroidal surface. The 

rotational speeds of the two disks (ring) can be controlled individually with separate 

motors or using the gear mechanism; thus, rolling contact with differing amount of 

sliding (slippage) at the interface can be generated. Typically the load is applied 

using a compressed coil spring or dead weight loading systems. Tests can be 

conducted in either dry or lubricated conditions. Profiles of the wear scars on the 

contact surfaces can be used to estimate the wear volume. 

Cerami 

ving roller 

Figure Al. 6 Loading configuration of contacting ring machine. 
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MECHANICAL PROPERTIES 

Table A2.1 Mechanical properties of silicon nitride with different processing routes 

Processing route Density Flexural Fracture Elastic Poisson's Hardness 
(gIcm, ) strength toughness modulus ratio (GPa) 

(MPa) (mpa MI/2) (GPa) 

Sintered. 3.2 600 4.5 276 0.24 14 

Hot-pressed 3.2 800 5.0 317 0.28 20 

Reaction-bound 2.5 210 3.6 165 0.22 10 
Sintered 

reaction-bound 3.3 825 1_297___ 1 0.28 19 
Hot isostatic 

pressing 3.2 1000 6.0 310 0.28 20 

Table A2.2 Typical properties of engineering ceramics and bearing steel 

Material 
I 

Density 
(c 1) 

Elastic modulus 
(GPa) 

Hardness 
(kg/ in 2) 

Toughness 

_(MPa 
m"2) 

Failure 
mode 

_ Silicon 
nitride 

3.2 315 1400-1800 4-7 Spalling 

Silicon 
carbide 

3.1 420 2000-2400 2-4 Fracture 

Alumina 3.9 390 1800-2000 3-5 Fracture 

Zironia 5.8 210 1100-1400 8-12 Spalling 

Steel* 7.8 200 1000 > 16 Spalling 

* Standard bearing steel AISI 52100, or aircraft bearing steel- M50 high speed steel 
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THE MANIPULATOR FOR LOCATING BALL SURFACES 

U 

Figure All MampLilator foi- locating ball swfaccs 

r. 
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THEORETICAL LUBRICATION REGIME 

During lubricated testing the upper ball is separated from the three planetary 
balls by a thin film of oil. It is important to calculate this film thickness as it affects 

the wear, fatigue, friction, and pressure distribution. Calculations of film thickness 

are based on a combination of fluid mechanics and materials science. Much work 

has been produced on elasto-hydrodynamic lubrication, notably by Hirst and 

Richmond (1988), Archard (1973), Tallian (1972), Hirano et al. (1971), Dowson and 

Higginson (1966), and Archard and Kirk (1960). The magnitude of separation 
between the surfaces and the lubrication regime is calculated using the classical 

Elasto-Hydrodynamic Lubrication (EHL) equation (A4.1) developed by Hamrock 

and Dowson. 

H�, i. = 3.63U OAG 0.49W -0.073 (1 -e -0.68k) (A4.1) 

H,,, i,, is dimensionless minimum film thickness, and U, G, W and k are dimensionless 

parameters for speed, materials, load and ellipticity respectively, ie. 

G=ýE' 

k 
(Ly )2/x 

RX 

U 17, ou 
E R., 

2 
PT W 

(TRx 

where i1o = viscosity (Ns/m2) 

U= mean surface velocity in x (motion) direction (m/s) 

E= effective elastic modulus (N/M2) 

4= pressure viscosity (rn2N) 
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Total load (N) 

Rx = effective radius in x (motion) direction (m) 

Ry = effective radius in y (motion) direction (m) 

The minimum film thickness (h .. i,, ) is found from the product of the dimensionless 

minimum film thickness parameter (H. i,, ) and effective ball radius. 

h,,, i. =H.. j. R. ý 
(A4.2) 

The minimum lubricant film thickness, together with the surface roughness, 
determines when the full fluid lubrication begins to break down. It is useful to define 

the ratio 

X=h., i. lc* (A4.3) 

where c* is the composite r. m. s. roughness of the two surfaces, defined by 

1 R22 
ql + Rq2 (A4.4) 

Rqj and Rq2 are the r. m. s. roughness values for each surface. 

The value of X provides a measure of how likely, and how severe, asperity 
interactions will be in lubricated sliding. For X>3, a full film will separate the two 

surfaces, asperity contact will be negligible and both friction and wear should be 

low. However, in the range of l< X <3, then some contact of asperities will occur 

and this lubrication condition is called partial or mixed EHL. In this lubrication 

regime the friction forces start to rise quite rapidly, especially if the sliding speed 
falls or the normal load increases. At extremely high loads or low sliding speeds, 

when X<I severe surface damage occurs on sliding and the damage can only be 

mitigated by the use or presence of boundary lubricants. 
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The film thickness may be evaluated using the following physical properties: 

4=2.3 E-8 m2 IN 

Tjo = 0.027 NS/M2 

u=1.92 ni/s 

Rx = 3.175 E-3 m 

E' = 331 GPa 

P=490N 

k=1.0 

Then using the equation (A4.1) 

H, 
nin = 3.63 (4.93 E-1 1) 0.68 (7613) 0.49 (1.4685E-4) -0.073 (I-e -0.68) = 2.667 E-5 

Using (A4.2), actual minimum film thickness is: 

h, ý, j,, = (2.667 E-5) (3.175E-3) = 8.468 E-8 

The lambda ratio may then be calculated using a surface r. m. s roughness value of 

0.0 1 gm for both contacting balls. Then using equations (A4.3) and (A4.4) 

A= 
hnin 

8.468 E-8 / ((I OE_9)2 + (IOE-9)2)0*5 
= 5.98 

2 

NFRq2l + Rq2 

This result implies that the experiment under the conditions described is operating 

with a full-film lubrication. 
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THE DUAL BOUNDARY ELEMENT METHOD 

The dual boundary element method (Portela et a]. 1992) is based on dual 

equations, which are the displacement and traction boundary integral equations. 
Application of the dual boundary element method to three-dimensional crack growth 

analysis was presented by Mi and Aliabadi (1992), Mi and Aliabadi (1994) and Mi 

(1996). The formulation of the displacement and stress integral equations reported 

here, follow Cruse (1977). The Somigliana's identity relating the displacements ul at 

an internal point X' to the displacement uj and traction tj on the surface IF is given by 

Ui (X')= f Uij (X', x)tj(x)dr(x)-f Tij (X', x)uj(x)dr(x) (A5.1) 
rr 

where i, j=1,2,3; Uij(X', x) and Tij(X', x) are the Kelvin displacement and traction 

fundamental solution respectively. Differentiating (AM) with respect to Xk' and 

using the Hooke's law yields the Somigliana's identity for stresses at an interior 

point X': 

crii (X 1) = 
fUkij 

Wv X)tk (x)aI(x) -f Tkij (V, X)Uk (x)aT(x) (A5.2) 

rr 

where Ukij(X', x) and Tkij(X', x) contain derivatives of Uij(X', x) and Tij(X', x) 

respectively. 

Figure A5.1 Source point x' located on the surface surrounded by a sphere. 
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The direct boundary element formulation relating the boundary 

displacements to boundary tractions can be obtained from (A5.1) by considering the 

limiting process as an internal point goes to the boundary, (i. e. X'--> x). For a body 

represented as shown in figure A5.1, the integral equation (A5.1) can be written as 

uj (x') = lim Uj(x', x)tj(x)aT(x)-lim 
fTij(x', 

x)uj(x)dr(x) (A5.3) 
c-+O f £-+0 

r-r, +r, * r-r, +r, * 

where F*represents the surface of a spherical inclusion of radius E. E -4 As 0, re 

tends to F,. In (A5.3), the first integral contains the singular integrand of the order 

0(11R) and is integrable as an improper integral. The second integral in (A5.3) 

contains a strongly singular integral of the order O(IIR 2) and is regularised with the 

first term of a Taylor's expansion of the displacements, about the source point, to 

give 

lim fTij(x', 
x)uj(x)dr(x) 

C-+O 

lim f Tij (x', x)uj (x)aT(x) 
c-+O 

r-r, 

+ lim Tij (x', x)[u, (x) - uj (x')]dr(x) 
E--+O 

f 

r. * 

+uj (x') lim f Tj w, x)dr(x) (A5.4) 
£-*0 

r, 

where the first integral on the right hand side of (A5.4) is an improper integral which 
is treated in a Cauchy principal sense; the second integral vanishes to zero because 

of the requirement of displacement continuity, (i. e. H61der-continuous) and the last 

integral results in a jump in displacement given by aij(x)uj(x'). Finally the 

displacement boundary equation can be written as 
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c, j (x')uj(x') +jTij (x', x)uj (x)dr(x) =f Uij W, x)tj (x)aT(x) (A5.5) 
rr 

where j denotes Cauchy principal value integral and cij(x') = by + aij(x'), (3 is the 

Kronecker delta). 

The traction boundary integral equation is obtained by taking the limiting 

form of the interior stress equation (A5.2), as an internal point goes to the boundary, 

in a same way as the displacement formulation. In absence of body force and 

assuming continuity of both strains and traction at x' on a smooth boundary, the 

stress boundary integral equation can be given by 

I 
aij(x, )+4Ukii(X'tX)tk(X)dr(X) - Ukij (X II X)t, (X)dr(X) (A5.6) 

2 =4 rr 
and, the traction boundary integral equation is given by 

I 
tj(x')+ni(x' Tkij(X"X)"k(X)aT(X)=ni(x' Ukii(X'9X)tk(x)aT(x) (A5.7) 

rr 
where nj (x', x) denotes the component of outward unit normal to the boundary at x'. 

The symbol j stands for the Hadamard principal value integral. Equations (A5.5) 

and (A5.7) constitute the basis of the dual boundary element method. 
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DEFORMATION CONTOURS OF THE CONTACT ZONE 

Figure A6.1 Deformation contours (crack gap = Oj' = 0.1,. /'= -0.05, x=0.047 min), L, C 

Figure A6.2 Deformation contours (crack gap = 0,. Ic = 0,, f'= -0.05, x=0.047 mm). 
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Figure A6.3 Deformation contours (crack gap = 0.5ýLrn, f = 0,. /'= -0.05-v = 0,047 min). 

Figure AL6.4 Deformation contours (crack gap = 0,. /' = 0.1, J'= -0.05, -v = 0.347 inin). C 
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Figure A6.5 Deformation contours (crack gap = 0,. Ic = 0,. /'= -0.05, x=0.347 inni). 

Figure A6.6 Deformation contours (crack gap = 0,. IC = 0,. /'= +0.05, x=0.347 min). 
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Figure A6.7 Deformation contours (crack, gap = 0,. /' = O,. /'= -O. ()5�x 
tý c=0. -167 min). 

Figure A6.8 Deformation contours (crack gap = 0,. /C = 0. i,. /'= -0.05,. v = 0.467 nim). 
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Figure A6.9 Deformation contours (crack gap = O, J, = 0.5,. I'= -0.05,. v = 0.467 min). 
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