
The design and evaluation of a specification framework

for user interface design

SIMON CROWLE

A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the degree of

Doctor of Philosophy

APRIL 2003

Page
Numbering

as
Bound

Abstract

This thesis presents the design and evaluation of an interface specification meta-language (ISML) that has

been developed to explicitly support metaphor abstractions in a model-based, user interface design

framework. The application of metaphor to user interface design is widely accepted within the HCI

community, yet despite this, there exists relatively little formal support for user interface design

practitioners. With the increasing range and power of user interface technologies made widely available

comes the opportunity for the design of sophisticated, new forms of interactive environments.

The inter-disciplinary nature of HCI offers many approaches to user interface design that include views

on tasks, presentation and dialogue architectures and various domain models. Notations and tools that

support these views vary equally, ranging from craft-based approaches through to computational or tool-

based support and formal methods. Work in these areas depicts gradual cohesion of a number of these

design views, but do not currently explicitly specify the application of metaphorical concepts in graphical

user interface design.

Towards addressing this omission, ISML was developed based on (and extending) some existing model-
based user interface design concepts. Abstractions of metaphor and other interface design views are

captured in the ISML framework using the extensible mark-up language (XML). A six-month case study,

developing the `Urban Shout Cast' application is used to evaluate ISML. Two groups of four software

engineers developed a networked, multi-user, virtual radio-broadcasting environment. A qualitative

analysis examines both how each group developed metaphor designs within the ISML framework and

also their perceptions of its utility and practicality. Subsequent analysis on the specification data from

both groups reveals aspects of the project's design that ISML captured and those that were missed.
Finally, the extent to which ISML can currently abstract the metaphors used in the case study is assessed

through the development of a unified `meta-object' model.

The results of the case study show that ISML is capable of expressing many of the features of each

group's metaphor design, as well as highlighting important design considerations during development.

Furthermore, it has been shown, in principle, how an underlying metaphor abstraction can be mapped to

two different implementations. Evaluation of the case study also includes important design lessons:

ISML metaphor models can be both very large and difficult to separate from other design views, some of

which are either weakly expressed or unsupported. This suggests that the appropriate mappings between

design abstractions cannot always be easily anticipated, and that understanding the use of model-based

specifications in user interface design projects remains a challenge to the HCI community.

Contents

CHAPTER 1 Introduction ... 1
1. SCOPE AND LIMITATIONS OF RESEARCH

3
2. RESEARCH AIM AND OBJECTIVES

3
3. THESIS OUTLINE

5

3.1 Chapter 2: Introduction to model-based user interface design 5
3.2 Chapter 3: Architectures and tools in MB-UID 5
3.3 Chapter 4: The Interface Specification Meta-Language 6
3.4 Chapter 5: Urban Shout Cast case study 6
3.5 Chapter 6: Evaluation of the USC specification 6
3.6 Chapter 7: Conclusions 6

CHAPTER 2 Introduction to model-based user interface design .. 7
1. INTRODUCTION

.. ..
7

2. THEORETICAL FRAMEWORKS IN HCI
... ..

7
3. TASK MODELS ..

10
4. MODEL-BASED USER INTERFACE DESIGN ..

14
5. DISCUSSION

..
18

6. CONCLUSION
..

20

CHAPTER 3 User Interface Design Architectures, notations and tools ... 21
1. INTRODUCTION

..
21

2. SUPPORTING TECHNOLOGIES FOR USER INTERFACE MODELLING ..
21

2.1 Storyboarding ... 22
2.2 Rapid prototyping tools .. 23
2.3 Graphics APIs/GUI builders ... 24

3. FORMAL METHODS ...
25

4. COMPUTABLE MODELS ..
28

4.1 Context free grammars ... 29
4.2 State models .. 30
4.3 Petri nets 31

5. COMPUTABLE OBJECTS AND PROTOTYPING TOOLS ...
32

5.1 User interface abstractions .. 32
5.2 Device modelling .. 33
5.3 Display component and dialogue modelling .. 36
5.4 Domain and task modelling .. 40

6. DISCUSSION .. 43
7. MANDATE FOR A NEW FRAMEWORK .. 46
8. CONCLUSION

..
47

CHAPTER 4 The Interface Specification Meta-Language ... 49
1. INTRODUCTION

.. 49
2. ISML RATIONALE ..

49
3. FRAMEWORK OVERVIEW ...

50

4. NOTATIONS
..

52

5. ISML BASICS ... 54

... 5.1 Attributes ...
54

5.2 State models .. 54
5.3 Procedural code ..

55
6. ISML PARTS ..

56

.. 6.1 Devices part ..
56

6.2 Components part ...
57

6.3 ISML Meta-objects part ...
61

6.3.1 Mappings and constraints ..
62

6.3.2 Action-Events ..
65

6.3.3 Meta-Objects ...
68

5

6.3.4 Handler ..
70

6.3.5 MC Set operators ...
70

6.3.6 MC Test expressions ...
71

6.3.7 The generic desktop object ..
76

6.3.8 The pointing object ..
76

6.4 Meta-Interactor definition ...
78

6.4.1 Display and controller parts ...
79

6.4.2 Meta-interactor definition ..
80

6.5 Interactors ...
80

6.5.1 Display and attribute binding ...
81

6.5.2 Handlers ...
83

6.5.3 System set-up ...
84

6.6 Tasks ...
85

6.1 Task hierarchy ...
86

6.2 Metaphor map ...
88

7. DISCUSSION
..

89

8. CONCLUSIONS
..

91

CHAPTER 5 Urban Shout Cast case study ..
93

1. INTRODUCTION
...

93

2. RESEARCH METHOD ...
93

3. QUALITATIVE RESEARCH METHOD ...
94

3.1 Brief introduction to qualitative research .. 94
3.2 ISML qualitative research questions ...

96
4. USC CASE STUDY BACKGROUND ...

97
4.1 USC design problem ... 97
4.2 USC project life cycle ... 98

4.2.1 Requirements ... 98
4.2.2 Introduction to ISML ... 99
4.2.3 ISML elicitation ... 99

5. POST-PROJECT QUALITATIVE ANALYSIS .. 102
5.1 Open coding ..

102
5.2 Axial coding ...

104
5.2.1 The DJ ..

105
5.2.1.1 Group 1 data ... 105
5.2.1.2 Group 4 data ... 105
5.2.1.3 Discussion ... 106

5.2.2 The producer ..
106

5.2.2.1 Group 1 data ...
106

5.2.2.2 Group 4 data ...
107

5.2.2.3 Discussion ...
107

5.2.3 Media objects ...
108

5.2.3.1 Group 1 data ...
108

5.2.3.2 Group 4 data ...
108

5.2.3.3 Discussion ...
109

5.2.4 The play list ...
109

5.2.4.1 Group 1 data
...

109
5.2.4.2 Group 4 data

...
110

5.2.4.3 Discussion ...
110

5.2.5 Player devices ..
111

5.2.5.1 Group 1 data
...

111
5.2.5.2 Group 4 data

...
111

5.2.5.3 Discussion ...
111

5.2.6 The track ..
112

5.2.6.1 Group 1 data
...

112

6

5.2.6.2 Group 4 data
... 112

5.2.6.3 Discussion ... 113
5.2.7 The mixer object .. 113

5.2.7.1 Group I data ... 113
5.2.7.2 Group 4 data ... 114
5.2.7.3 Discussion ... 114

5.2.8 The microphone and air ... 115
5.2.8.1 Group 1 data ... 115
5.2.8.2 Group 4 data ... 115
5.2.8.3 Discussion ... 115

5.2.9 The advert .. 116
5.2.9.1 Discussion ... 116

5.2.10 The show ... 117
5.2.10.1 Discussion ... 117

5.2.11 The room ... 117
5.2.11.1 Discussion ... 118

5.3 Model summary .. 118
5.3.1 Design reduction ... 118
5.3.2 Non-concrete concepts .. 119
5.3.3 Implementation bias .. 119
5.3.4 Metaphor mangling ... 119
5.3.5 Common models and re-use .. 119

5.4 Summary of design behaviours .. 120
5.5 Group reflections .. 121

5.5.1 Q 1. Verification or generation .. 121
5.5.2 Q2. Analytical or creative ... 122
5.5.3 Q3. Design modification ... 123
5.5.4 Q4. Practicality .. 124
5.5.5 Q5. Elicitation difficulty ... 125

6. DISCUSSION
..

126
7. SUMMARY AND CONCLUSIONS ..

128

CIUIPTER 6 Evaluation of the USC specification .. 131
1. INTRODUCTION

.. 131
2. COMPARISON OF USC MODELS ...

131
2.1 Task .. 132

2.1.1 Playing media .. 134 .. 2.1.2 Mixing ... 136
2.1.3 Play list .. 138
2.1.4 DJ communication ... 140

2.2 Meta-object ... 142
2.2.1 Track ... 142
2.2.2 Media player .. 144
2.2.3 Mixer ... 148
2.2.4 Play list

.. 151
2.2.5 Outstanding objects ... 155

2.2.5.1 Group 1 outstanding objects ...
155

2.2.5.2 Group 4 outstanding objects ...
158

2.3 Devices and components ..
159

2.4 Interactor ...
161

2.5 Summary ...
166

3. THE UNIFIED USC META-OBJECT MODEL ..
167

3.1 Unified task model ...
168

3.2 Unified Core Meta-Objects ..
171

3.2.1 Unified media model ...
174

7

3.2.2 Unified play list model 176 3.2.3 Unified mixer model .. 178 ... 3 2 4 Unified air d l .
. . mo e ... 180

3.2.5 Unified room model 182 3.3 Interactor layers for the unified model .. 183 3.3.1 Media player implementation .. .
. 183 3.3.2 Play list implementation ... 184 3.3.3 Mixer implementation 186 3.3.5 Room implementation ..
. 189 3.3.6 Semantic determination problem .. 189 4 Summary 3 . 1 90

4. DISCUSSION
... .

190
4.1 Analysis question 2, part 1 .. 190 4 2 Analysis question 2 part 2 . 19 . , 1

5. SUMMARY AND CONCLUSIONS
.... 192

CHAPTER 7 Conclusions .. 193
1. INTRODUCTION

.. 193
................ 2 SUMMARY O

.
. F RESEARCH

193
3. SUMMARY OF FINDINGS .. 195

.................. 3 1 Objective 1 .
1 . .. 95

3 2 Objective 2 1 . .. 96
3 2 Objective 3 196 . .. 3.2.1 Question 1: What are the reactions of developers to the use of ISML? 197

3.2.1.1 The development of user interface metaphors within the ISML framework
............... 197

3.2.1.2 The perceived utility and practicality of the application of ISML to design
............... 198

3.2.2 Question 2: To what extent does ISML capture a design? ... 200
3.2.2.1 Aspects of USC design captured and missed .. 200
3.2.2.2 The extent that ISML abstracts the USC metaphor ... 201

4. EVALUATION OF RESEARCH PROCESS .. 203
5. FURTHER WORK .. 205
6. CONTRIBUTION TO KNOWLEDGE .. 206

Appendix A- The USC project proposal 209 ...
Appendix B- ISML elicitation programme 211
Appendix C- Open coding frequency chart 215
Appendix D- Axial coding charts 217
Appendix E- USC Analysis data .. 221
References .. 233

CD-ROM

Appendix F- The XML expression of ISML

Appendix G-A small ISML specification
Appendix Ii - Unified USC specification
Appendix I- Basic meta-object kernel
Appendix J- Sample XSLT transformation
Appendix K- USC Transcripts
Appendix L- USC model summaries
Appendix M- Group 1 USC Prototype
Appendix N- Group 4 USC Prototype
Appendix 0- Early ISML grammar
Appendix P- Atlas. ti data files

List of figures
Figure 1 The meta-task model Limbourg et al. (2001) ...

14
Figure 2 Methods and tools in user interface design phases ...

22
Figure 3 The RED-PiE model Dearden and Harrison (1997) ...

26
Figure 4 Sample BNF grammar ..

29
Figure 5A simple state model Horrocks (1999) ..

30
Figure 6A simple mouse model Accot et al. (1996) ..

31
Figure 7 UAN example Hartson et al. (1990) ...

33
Figure 8 Device and interaction-level event modelling Accot et al. (1996) ...

34
Figure 9 Mouse and scroll bar interaction Jacob et al. (1999) ..

35
Figure 10 Interactor overview Markopoulos (200 1) ...

38
Figure 11 Interactor abstractions ..

39

... Figure 12 Forbrig's model ..
41

Figure 13 Button example ..
44

Figure 14 Abstraction summary ...
46

Figure 15 ISML overview ..
50

Figure 16 XML Example 1 ...
52

Figure 17 XML Example 2 ...
52

Figure 18 XML Example 3 ...
53

Figure 19 XML Example 4 ...
53

Figure 20 ISML attributes ..
54

Figure 21 ISML state model ...
54

Figure 22 ISML procedural statements ..
55

Figure 23 ISML Devices part ...
56

Figure 24 ISML Components part ..
Figure 25 ISML Meta-objects part ...

62
Figure 26 ISML Mapping and components ..
Figure 27 Direct manipulation scenario ...

63
Figure 28 ISML Action-events ...

65
Figure 29 Direct manipulation Action-Event sequence ..

67

Figure 30 ISML Meta-object ..
68

Figure 31 ISML Handler ..
70

Figure 32 ISML Mapping-constraint operations ..
70

Figure 33 ISML Mapping-constraint test expressions ..
71

Figure 34 Pointing object state model ..
76

Figure 35 ISML Meta-Interactor definition
..

79

Figure 36 ISML Interactor FIGURE ISML14 ..
80

9

Figure 37 ISML System set up ..
84

Figure 38 ISML Task world ...
85

Figure 39 ISML Task hierarchy ..
87

Figure 40 Simple task tree ..
87

Figure 41 ISML Metaphor map ..
88

Figure 42 Interviewer activities ..
98

Figure 43 USC top level tasks ...
132

Figure 44 USC Playing media tasks ...
135

Figure 45 USC Mixing tasks ...
137

Figure 46 USC Play list tasks ...
139

Figure 47 USC DJ communication tasks ..
141

Figure 48 USC Track model ...
143

Figure 49 USC Group 1 Media device model ...
145

Figure 50 USC Group 4 Media player model ..
147

Figure 51 USC Group I Mixer model ...
149

Figure 52 USC Group 4 Mixer model ...
150

Figure 53 USC Group May list model ..
152

Figure 54 USC Group 4 play list model ...
154

Figure 55 Group 1 Advertisement model ...
156

Figure 56 USC Group 4 producer model ...
158

Figure 57 USC Prototype system screenshots ...
160

Figure 58 USC Play list and mixer interactors ...
162

Figure 59 USC Media player and jingle interactors ...
162

Figure 60 USC Producer environments ..
163

Figure 61 USC Group 1 Advertisement book interactor .. 164
Figure 62 USC unified task meta-object model ...

169
Figure 63 USC unified task model ...

170
Figure 64 USC Unified mapping-constraint summary .. 172
Figure 65 USC unified action-event summary ...

173
Figure 66 USC unified media model ..

174
Figure 67 USC unified play list model ...

176
Figure 68 USC unified mixer model ..

178
Figure 69 USC Unified Air model ...

180
Figure 70 USC Unified room model ...

182
Figure 71 Media player implementations ..

184
Figure 72 Play list implementations ...

185
Figure 73 Mixer implementatiations ...

186
Figure 74 Group 1 Air implementation ...

187
Figure 75 Group 4 air implementation ..

188

List of tables
Table 1 Design approaches and abstractions ..

32
Table 2 Open coding examples ...

103
Table 3 DJ evidence ..

105
Table 4 Producer evidence ..

106
Table 5 Media objects evidence ..

108
Table 6 Play list evidence ...

109

Table 7 Player devices evidence ...
111

Table 8 Track evidence ...
112

Table 9 Mixer object evidence ..
113

Table 10 Microphone and air evidence ...
115

Table 11 Advert evidence ...
116

Table 12 Show evidence ...
117

10

Table 13 Room evidence ..
117

Table 14 USC design behaviour summary ...
120

Table 15 USC common task groups ...
133

Table 16 USC Outstanding objects ..
155

Table 17 USC Interactor summary ..
165

Table 18 ISML Design capture summary ..
166

Table 19 USC unified meta-object features
..

168

Acknowledgements

I would like to thank Linda, Martin and Dan for their friendship, guidance and support. Additional thanks

also go to the software engineering management undergraduate degree cohort, who so enthusiastically

took part in the USC case study. Finally, I would like to thank my family and friends for all their

encouragement, reassurance and love.

Author's declaration

The following publications are based on work presented in this thesis:

CROWLE, S. AND HOLE, L., 2001. Seeing the wood for the trees: A framework for the specification of

metaphor in interface design. In: Workshop on Integrating Multimedia, Metaphors and Multimodality, in

PC-HC12001: Human Computer Interaction 2001, Patras, Greece, Typorama Publishers, 19-24.

CROWLE, S. AND HOLE, L., 2003. An Interface Specification Meta-Language. Accepted for

publication in Proceedings of the 10th International Eurographics Workshop of Design, Specification

and Verification of Interactive Systems '03, Funchal, Madeira Island, Portugal, Springer, (in press).

13

CHAPTER 1 Introduction

The graphical user interface (GUI) introduced by the Xerox's Star system (Smith et al. (1982), strongly
influences user interface design today. Unlike other user interfaces of the time, the Star GUI exploited

new graphical technologies to present the user with an interactive environment that mimicked their world

of work, coupled with novel input devices that allowed users to affect actions using gestures, rather than

through commands issued via a keyboard. This system of interactive entities that assume some of the

appearance and behaviour of familiar objects allows users to apply their knowledge of the real world to

the interpretation and manipulation of the computer's state. The Xerox Star system is perhaps the most
famous early example of this, employing what is frequently referred to as a user interface metaphor
(Preece et al. (1994) that supports the direct manipulation interaction paradigm (Shneiderman (1983).

Many reproductions of this 20 year old design can be found in modern personal computer systems today,

including Microsoft's Windows, Apple's Aqua and the Linux window manager, Gnome.

A variety of interactive environments that employ novel metaphors to support specific task domains can
be found in the literature, see Hole et al. (1998), Dieberger and Frank (1998), van Dantzich et al. (1999),

Small (1996). Most, if not all, of the HCI research community is likely to be aware of the basic principle
behind the application of metaphor to user interface design. Of the Xerox Star interface, Preece et al.
(1994) explain:

"The core aspect of the interface metaphor was to create electronic counterparts to the physical objects in an
office ... The effect is users will develop mental models of the system that are more like the metaphor rather than
how the underlying system works".

Alty and Knott (1999) use Richards' nomenclature (Richards (1936) of `tenor' and `vehicle' to explain
this same metaphor:

"The real-world desktop acts as a vehicle in order to transform the tenor, in this case the operating system. Thus,
a metaphor requires three concepts; the Tenor, the Vehicle and the transformation between them. "

Quantitative and qualitative evaluations of the use of metaphor in design can also be found in Zajicek and

Windsor (1995), Maglio and Matlock (1998), Golovchinsky and Chignell (1997) and Ark et al. (1998).

Whilst these case-studies illustrate the potential application of new forms of interaction, very little work

currently exists that formalises metaphor in user interface design. Presently, HCI research may turn to

psychological theories of metaphor Lakoff and Johnson (1980), Lakoff (1992), Gentner et al. (2001),

Gillan and Bias (1994) that provide an abstract account of the use of metaphor in design. A mathematical

model describing the transference of the properties of the vehicle to the tenor can be found in Indurkhya

(1986) whilst Kuhn and Frank (1991) formally compare the properties of a real desktop to that found in a
typical user interface.

With the advent of cheap and powerful interface technologies, a far wider range of interactions between

the user and graphical environments can be represented at the user interface. Initial research with high

performance 2D and 3D graphics fell within the remit of information visualisation and a substantial

corpus of research can been found in the literature regarding its application (Card et al. (1999), (Spence

(2001). This research area provides valuable insights into the application of advanced graphical
technologies to the understanding of large or complex data sets, but has much less to say regarding the
design and presentation of interactive environments that might support conventional application domains.

Indeed, despite the widespread use of the desktop metaphor and the availability of high performance

graphics technology, it is surprising to find relatively little guidance to support the development,

specification and implementation of metaphors for modem GUIs (Alty et al. (2000). Work by Alty and
Knott (1999) provides a high level model for applying the features of a metaphor to user interface design

and a handful of guidelines are reported in the literature, see Lovgren (1994), Marcus (1994),

Akoumianakis and Stephanidis (2000). To exacerbate the problem, others in the community argue

against the use of metaphor altogether (Halasz and Moran (1982); (Nardi and Zarmer (1993). For

interface designers and software engineers, the utility of these accounts of metaphor is limited since:

0 The benefits and problems of applying metaphors to GUI design are not well understood

0 Contemporary metaphor abstractions are not in a form easily accessible to support design

In the near future, it is likely that this problem will appear with increasing frequency as personal

computer users demand increasingly sophisticated interactions with computing devices that are capable of
delivering high fidelity, graphically complex interfaces. A number of design issues arise from the

availability of these technologies, including:

" Choosing from a potentially large array of graphically and interactively ̀rich' design solutions

" Implementing the design for an increasing number of hardware and software platforms

0 Specifying the mapping between a user's task, the metaphorical environment, and the underlying
functionality of the system.

2

Arguably, the gap between what is technically deliverable at the user interface and the principles, design

abstractions and tools available to address such designs continues to widen. This thesis does not attempt

to address all these problems. Instead, the work that follows seeks to develop support for the design and

evaluation of an abstract metaphor model for user interface design.

1. Scope and limitations of research

A few words regarding the scope and ambition of this research is needed here. A number of tacit and

theoretical accounts of metaphor and its application to user interface design have already been identified

(see above). Despite this, no coherent, all-encompassing theory exists that maps a firm, psychological

account of metaphor with a rigorous interface design methodology and expected usability outcomes.
Such an account would be remarkably complex and is beyond our grasp, and indeed the scope of this

thesis, at present. It is not the intention of this research to support a psychological account of metaphor.

Instead, a `proof of concept' mapping between a tenor and a vehicle (as expressed by Alty and Knott

(1999), see above) within a user interface design framework is sought.

In addition to this, and as is discussed later, the model-based ̀ technology set' within which a metaphor

abstraction may be set is substantial. It is therefore necessary to limit the scope and development of such

a framework to within a tolerance that will allow meaningful evaluation within a tractable time scale (this

is discussed further in chapter 3, section 7, chapter 5, section 2 and chapter 7).

2. Research aim and objectives

It is the aim of this research to develop a user interface specification framework that explicitly supports a

metaphor model that can be integrated with extant user interface design views (since to not do so would

run the risk of introducing just another inaccessible formalism). The determination of the nature of such
framework must be guided by user interface design methods found within the literature. Research in the

HCI community is characterised by collaborations between individuals working in a variety of disciplines

including cognitive psychology, the social sciences and software engineering (Carroll (1997). Proposals

for a scientific framework and principled application of HCI knowledge to design can be found in Dowell

and Long (1989), Long (1997) and Sutcliffe (2000). Numerous design tools that support some HCI

modelling techniques can also be found in the literature (see Bastide and Palanque (1999), Griffiths et al.

(2001) and Paterno' (2000) for examples).

Integrating the wide range of design views and technologies used within the model-based community is

considered a hard mapping problem (Puerta and Eisenstein 1999) and reports on the application of these

methods in case studies are relatively few (Markopoulos et al. 1999). This research identifies the need for

3

a model-based abstraction of metaphorical design concepts as well as the important contribution of

understanding how such an abstraction might actually be used in a real user interface project. It is

therefore important to pitch the development and investigation of the user interface specification

framework at a level that is most likely to generate useful insights into its application to design. To

contrast possible alternative approaches: a craft-based approach to developing metaphors sheds little light

on the problem of integrating metaphors with other model-based design views, whilst on the other hand, a
'sand-box' or laboratory oriented investigation is likely to yield little real-world validity'. For these

reasons, this research seeks to develop an explicit metaphor abstraction and subsequently to validate its

actual use with other design views in a software engineering case study.

To this end, this work pursues the following research objectives:

1. Identify extant HCI design models that might be extended to support metaphor abstractions

2. Develop a language that supports metaphor abstractions and integrates with models found in (1)

3. Evaluate the language developed by (2) with user interface designers/software engineers to assess

the application of an abstracted metaphor layer on the design of a GUI prototype

Objective one is to identify appropriate HCI design models so as to delimit the views on user interface

design (of which there are many) such that the problem becomes tractable. As outlined in section 1,

constraining the number of views that are considered in this research is necessary in order to ensure the

feasibility of the work. This is particularly important with respect to the case study since the software

engineering participants' time and effort is at a premium. Chapters two and three set out the primary

research and results concluded for this objective, identifying specific levels and types of abstraction

considered potentially fruitful for a specification framework that explicitly supports metaphor
descriptions.

Having identified model-based concepts to support the research goal, objective two is to synthesise a
formal specification framework. It is important at this point to make a distinction between the conceptual

objects and relationships that the framework embodies and its encapsulation within a formal language

(the 'interface specification meta-language' or `ISML' is described in detail in chapter 4). The former is

the arrangement of existing and new model-based abstractions that will be used to cohesively describe the

1 This is discussed further in chapter 5

4

design of a metaphor-oriented user interface. In itself, the framework is independent of any particular
language but instead serves to capture and relate a variety of design concepts such as presentation,
interactor and task views. An analogy might be drawn here with the MVC (Krasner and Pope, 1988)

paradigm (as an abstraction) and its expression in the SmallTalk (Adams, 1988) programming language.

In the latter case, expressing the framework in machine parsable format is desirable for a number of

reasons. Firstly, it is an ideal of the model-based user interface design community that the concepts

utilised are machine processable and as such, many of the developments found within the literature have

some degree of formalism. A formal language would also provide specific boundaries for the scope of

the framework since the properties and mappings between the concepts would be explicit. Finally, the

wide availability of tools for the creation and verification of models expressed in symbolic form offers the

writer of a specification valuable assistance in documenting a design.

Whilst the creation of formal language is useful for the reasons described above, the primary focus of the

evaluation is the use of the interface specification meta-language framework in a case study, not its

implementation. Objective three therefore seeks to examine how the constituent concepts found within

the framework are utilised by software engineers in their attempts to specify the design of a metaphor

rich, graphical user interface. A number of approaches for the evaluation of the ISML framework are

considered in chapter 5 and the case made for a qualitative, `in vivo' methodology similar to recent
`action research' work reported in the software engineering community (Avison et al., 1999). In

executing and analysing the results of the case study, insights will hopefully be gained into the actual use

of a formalised metaphor abstraction and its integration with other model-based design views.

3. Thesis outline

3.1 Chapter 2: Introduction to model-based user interface design

This chapter provides an introduction to the evolution of model-based design in HCI. An overview of
HCI as an engineering discipline is given, followed by an examination of a variety of models that exist to

support the various views on interface design. An examination of the varying model-based approaches

and their theoretical underpinnings provides a basis for identifying the appropriate model-based design

methods for the development of a metaphor abstraction (objective 1).

3.2 Chapter 3: Architectures and tools in MB-UID

Formal user interface architectures and tool-based support for a number of model-based design

approaches are examined here. The continuum from system functionality to user interaction is discussed,

5

outlining tool based support for input/output devices, presentation/component dialogue control, domain

abstractions and tasks models. Mathematical and computational approaches to these abstractions are

evaluated and used as a basis for the development of the ISML specification language (objective 1).

3.3 Chapter 4: The Interface Specification Meta-Language

In this chapter, the interface specification meta-language (ISML) is discussed in detail using a small-scale

example to illustrate a complete construction (objective 2). The chapter concludes by summarising some
of the lexical features and limitations of the language.

3.4 Chapter 5: Urban Shout Cast case study

Having demonstrated the specification of a simple interface on a small scale, a more realistic case study
involving two teams of four software engineers each (and an interviewer) is documented. Each team had

six months to develop a user interface prototype called `Urban Shout Cast' (USC) -a `proof of concept'
system that allows remotely connected DJs to host a radio show for clients listening via an Internet

connection. This chapter outlines methodology decisions and provides a qualitative analysis of the USC

case study, using grounded theory (Glaser and Strauss, 1967). In the analysis, each team's reactions to
the specification language are examined with respect to a) their use of ISML concepts to develop a
metaphor model and b) their post-project perceptions of the usability of ISML in design.

3.5 Chapter 6: Evaluation of the USC specification

This chapter examines the specification data produced by both USC design teams during the case study
with a view to a) identifying those aspects of design that the ISML framework captured and missed, and
b) evaluating the extent to which ISML is capable of abstracting a metaphor independently of
implementation (objective 3). ISML data generated by each group are compared by task, meta-object and
interactor layers. Following this, a unified meta-object model is proposed and potential mappings to each
group's implementation (interactor) solutions are examined and criticised.

3.6 Chapter 7: Conclusions

To conclude, a commentary on the over-all contribution that the ISML research has made to the model-
based user interface design community is presented. The successes and failures of ISML are summarised

and these findings are related to current research in this area. Changes to the specification process using
ISML based on the case study experiences are discussed and proposals for further work are given.
Finally, the contribution this work gives to the user interface design research community is presented.

6

CHAPTER 2 Introduction to model-based user interface design

1. Introduction

In this chapter, the evolution of theoretical frameworks and model-based user interface design is

introduced, followed by an examination of what will be referred to as the 'products' of the methodologies
described in the literature. These products are formal or informal descriptions of specific views of the

user interface design problem (and in some cases used as part of a particular'solutioni2). The relative size

and multidisciplinary nature of the HCI community means that an in-depth review of all the

methodologies and their philosophical backgrounds is beyond the scope of this thesis. Instead, the focus

of this chapter will rest on those design views that currently enjoy some degree of tool support (a

technical review of these tools can be found in chapter 3). A broad introduction to the emergence of

theoretical frameworks in HCI is provided as a backdrop to the subsequent review of task-oriented and

model-based user interface design. The strengths and weaknesses of existing tools are critically appraised

and considered in the context of the direction of model-based design as a whole and the challenges that

face HCI design in the future.

2. Theoretical frameworks in HCI

The HCI research community struggles to find a unified framework and method with which it can apply
theory to deliver specifications for designers (Sutcliffe (2000). From its inception, a number of
frameworks and disciplines have been proposed to guide progression towards this goal. Moran's work
identified the early coalescence of design methodologies, model generation and notations in HCI research

and proposed the Command Language Grammar (CLG) framework to relate these concepts to design

(Moran (1980). Nearly a decade later, Dowell and Long (1989) argued that HCI practice is a

predominantly craft-based approach and that formal discipline knowledge is required to ensure the design

of effective, interactive human-computer systems. Specifically, three deficiencies were identified: 1) a
lack of integrated development practice, 2) uncertain measures of effectiveness and efficiency and 3) a
lack of systematic programme to address these problems. In an attempt to put HCI research ̀ back on

track', a concept of the general HCI design problem was proposed as a set of relationships between an

interactive work system and its domain of application. The interactive work system (IWS) was described

as a set of objects with attributes of varying complexity, the states of which are transformed by the

2 Of course, it is arguably impossible to design a perfect interface since the solution for one user will almost certainly be sub-
optimal for many others.

7

execution of actions determined by goals (Dowell and Long (1989). Work systems are said to transform

such objects (which may belong to different domains) through the execution of tasks. It is principally the

quality of the objects, their associated transformations (and incurred costs) that characterise the general

problem of designing effective and efficient interactive systems. The IWS framework was extended by

Long (1997) by specifying the relationships between research, discipline knowledge and its application to
design.

The development of a broader philosophical framework for HCI knowledge described above has helped

to shepherd attempts to define the relationships between practitioners from many different backgrounds

who contribute to the discipline as a whole. Preece and Rombach (1994) modify and extend experimental

approaches to design from the software engineering community to provide a framework for collaborating
HCI practitioners and software engineers. A synthesis of methods from both design camps, the
framework puts flesh on the bones of HCI philosophical structures by specifying four key dimensions,

namely goals, plans, methods and techniques. Each of these dimensions encompass the ameliorating

effects that a particular discipline has on HCI understanding, including a) quantitative and qualitative

methods and data collection, b) objectives and focuses of the study and c) stakeholders and participators.
Whilst it is still open for debate as to whether HCI can coherently be declared a science, there is now at
least some informal agreement as to the methods and types of knowledge generation that each discipline

contributes within the community (Carroll (1997). The emergence of these frameworks allows us to

examine how laboratory based methods (an early influence that cognitive psychology has had on the HCI

community) compare with the qualitative approaches of ethnography and participatory design. Whilst

these attempts at normalisation improve the general description of relationships between contributors,
they also highlight the hard problem of effectively communicating and integrating multidisciplinary
theories and models in design at a practical level. Sutcliffe (2000) points out the apparent paradox faced

by the effective delivery of HCI knowledge: that of hiding the complexity of a theory whilst at the same
time providing comprehensible, theoretically sound and generalisable advice to designers. The evidence
for this position lies in the landscape of HCI research communities; a brief examination of some of the

major landmarks and their relationship to current design methods follows.

Since its inception, HCI has sought to apply the science of cognitive psychology to describe, explain and

predict user behaviour. Early examples of this can be found in accounts of computer programmers'

understanding of software algorithms (Shneiderman and Mayer (1979), (Kahney and Eisenstadt (1982).

Later, Norman's theory of action (Norman and Draper (1986) provided a broad and high level account of
human-computer interaction based on a process of the interpretation of symbols and the execution of

actions through a mapping of syntactic and semantic structures. The prediction of human performance

with an interactive system was led by the `GOMS' (Card et al. (1983) framework, which provided

8

estimations of task execution time during error-free interaction through the quantification of goals,

operators, methods and selection rules. Operators (defined as externally observable, simple actions or

internal perceptual operations, such as scanning for a visual target on the screen) are used in the definition

of methods (a potential set of operators used in a strategy for achieving some goal). Selection rules (IF-

THEN conditions that test cognitive resources and external operations) are then used to choose methods
in order to achieve the goal at hand (see Kieras (1988) for a more detailed account of this model). Other

work extends this approach to simple graphics, see Lohse (1991) who reports on the prediction of

performance in the readership of graphs. Despite the availability of toolkits supporting the GOMS

method (see Beard et al. (1997), Khalifa and Kira (1992), and Baumeister et al. (2000) for examples) it

suffers from practicality issues in deployment (Kieras (1988) and has only enjoyed success in a relatively

narrow band of interaction paradigms (Carroll (1997).

More recently, a collaboration between HCI formalists and cognitive scientists (Butterworth et al. (1999)

resulted in a formalised model of a display device (in this case a simplified web browser) combined with

a cognitive model. A prediction of the preconditions under which user actions take place was then

demonstrated, with the qualification that the assumptions underlying the cognitive model were both

difficult to validate and also hard to delimit within the scope of the model. Problems and limitations like

these, Sutcliffe (2000) argues, typify the problems facing cognitive psychology and HCI at present.
Models such as EPIC (Kieras and Meyer (1997) and ICS (Barnard and May (1999) Sutcliffe suggests, do

not easily scale to complex, multimedia systems and no effective method yet exists to translate this expert
knowledge into a communicable and specific design for user interface developers. A consequence of the

perceived failure of cognitive psychology to wholly underpin HCI was that other disciplines including

anthropology and sociology found opportunities to address some of the problems that were found wanting
by methods applied at the time. Critically, these views on design were contextual and emphasise the

importance of design artefacts working within an environment of many interacting people and devices

(Carroll (1997). Contextual approaches to design are frequently a mixture of qualitative and quantitative

theory; Sutcliffe (2000) outlines a `claims' framework that combines contextual descriptions of artefacts
in use with theoretically informed design solutions.

Currently, there is no evidence from the literature that any large-scale, formal unification of scientific

theory to inform and specify user interface design is within our reach. The implication of this is that

effective design of interactive systems requires a development team that reflects expertise from many

different fields. Additionally, many development projects will be faced with the prospect of having to

employ `craft experts' - those individuals who have a great deal of skill and experience in interface

design. Wroblewski (1991) argues that theory applied in isolation can fail a design in context; the craft

expert however, is able to use theories and apply them appropriately using his/her much deeper

9

understanding of the problem in its context. It seems unlikely that HCI will be entirely `craft free' for the

foreseeable future, but its eventual characterisation as a pure engineering discipline is highly desirable.

To this end, a movement toward the synthesis of commonly used concepts and models that are shared by

HCI sub disciplines and the software engineering community is in progress. Early adoptions of this

approach, referred to as the `enhanced software engineering' method, are identified by Wallace and
Anderson (1993). In Benyon's introduction to model based design (Benyon (1996), simple interactors,

task descriptions, object and data views are proposed as the foundations for design. Frequently, the

synthesis of disciplines through models only affects a relatively narrow binding of features, such as input

device and application integration (Accot et al. (1998). However, other work in the synthesis of models
demonstrates composition of domain, task and presentation models (Griffiths et al. (2001). Not

surprisingly, there are variations in the choices of model that are used in integration studies found in the
literature as well as the technologies used to specify and implement them. A high level review of 14

model-based user interface development environments by da Silva (2001) examines a number of
interactive system design abstractions found in the literature. These include application, task-dialogue,

abstract and `concrete' presentation components; in the following sections a variation of this framework

is used to review contemporary model based design in HCI.

3. Task models

One of the main criticisms levelled at traditional software engineering methods is that insufficient

attention is paid to how users will interact with the system to achieve their goals, and rather more on the

underlying technical functionality of the system (Forbrig (1999). For many years, the concept of `task'

has played a major role in user centred system design (Storrs (1995). The analysis of people and their

execution of tasks originate from industrial and military programmes engaged in enhancing work

performance through the codification of the perceptual, motor and cognitive skills (Stammers et al.
(1990). Since then, task analysis and its application in HCI design has diversified, attracting a variety of

methods, notations and tools. Task models are generated from different sources and methods including

cognitive psychology, formal task allocation plans from within a work context, software engineering

documentation and ethnographic studies (Limbourg et al. (2001). A review of the methodologies for

generating these models is beyond the scope of this work (readers should see Diaper (1989); Diaper and

Stanton (2003 - in press) for details). Examples of the application of task models used throughout the

design process can be found in the literature and include requirements elicitation (Richardson et al.

(1998), specification and design (Navarre et al. (2001) and evaluation (Jambon et al. (1999).

In much the same way that HCI is a theoretically fragmented discipline, the task analysis community too

strives for an agreement as to the constituent concepts that should make up a complete description of

humans performing tasks with interactive systems (Limbourg et al. (2001). Much of the contemporary

10

work in this area deals with declarative and procedural models of the world of users, objects, actions and

events. However, early task models, influenced by cognitive psychology, placed more emphasis on the

interaction between a user's internal, cognitive knowledge of tasks and the interactive system.

Comparatively `fine grained' models such as GOMS (see above), TAG (Payne (1984) and ETIT (Moran

(1983) use production rules to translate encapsulated user task knowledge into potential system
interactions. More recently, the formalisation of such rule-based descriptions of task has allowed some

researchers to implement machine learning techniques to develop task models from examples (Garland et

al. (2001).

Whilst these models can provide some analytical power to the description of task, they offer little else to

guide a designer (who is not an expert in cognitive psychology) towards a specific solution to a problem.
The ADEPT toolkit (Johnson et al. (1995), alleviates this problem to a certain degree by de-coupling the

task elicitation method, in this case Knowledge Analysis of Tasks (KAT) from the product of the

analysis, the Task Knowledge Structures (TKS). Their toolkit allows the declarative representation of

organisational, domain, problem solving and planning knowledge structures derived from the KAT

analysis. Whilst it is suggested that any member of the design team may work with the toolkit during the

design life cycle, the authors acknowledge the importance of the appropriate underpinning of task

analysis conducted by experts. Clearly the value of any toolkit that supports task-based design will be

influenced by the degree of knowledge and skill that is brought to it by the analyst. This should not

prevent, however, the development of tools that allow the input and manipulation of common task

concepts, and this is exactly what has happened.

Initially, tools for the development of task descriptions were tailored to just one or a very narrow range of

task analysis methods (see Khalifa and Kira (1992); Bass et al. (1995); Beard et al. (1997) for examples).
As the momentum for integration within the broader model-based design community has grown,

variations of ontological views on the generic nature of task models have emerged. The historical build

up to this position is littered with disagreements (Storrs (1995) regarding the definition of concepts core

to almost all descriptions: the hierarchical decomposition of tasks. Arguably, the hierarchical task model,

a product of the hierarchical task analysis method introduced by Annett and Duncan (1967), is

encapsulated in some form or other in many contemporary task specifications. Terms such as ̀ goal', `sub

goal', `task', `sub task' and `action' or `unit action' have slightly different meanings, depending on the

particular paper one might choose to read. However, the basic underlying principle remains more or less

constant. The hierarchical task analysis (HTA) decomposes goals (desirable states of the interactive work

system) into tasks (which may themselves be decomposed into lower order tasks) which eventually refine

to a set of ordered or directed simple actions. Of course, the HTA depicts a highly simplistic view of

human tasks and the shortfalls of this model (including problems associated with monolithic, inflexible,

11

idealised, error-free descriptions of task) are well known (Diaper (1989). Whitefield and Hill (1994)

evaluate the components of HTA, TKS, GOMS and ICS models within the IWS framework (Dowell and
Long (1989) to highlight the differences in task descriptions and their application to design. The

comparison reveals important disparities between cognitively driven, predictive models (GOMS, ICS, and
in an weak sense, TKS) and the design oriented, prescriptive descriptions (HTA and TKS). Cognitive

models are psychologically informed and expressed by a vocabulary of fixed behaviours. However,

argue Whitefield and Hill (1994), they suffer from either weak or no explicit definition of task

decomposition and have little or no reference to domain objects. Conversely, design oriented descriptions

provide an explicit `blue print' for goals, domain objects, tasks decomposition and sequences. The

prescriptive nature of these models does not consider the effect of human behaviour on the execution of

tasks however, thus reducing its analytical power. Despite its potential to offer analytical methods for,

analysis, the emphasis on modelling cognitive structures in task analysis products has waned in recent

years. On the other hand, the domain oriented description of task has become increasingly more popular,

modifying the hierarchical model and extending it with contextual components to enhance its prescriptive

power.

In van Welie's ontology for task world models van Welie et al. (1998), a review of extended concepts in

task models included temporal structures, user interface components, enhanced task units (allowing

information passing and pre/post conditions for tasks) and organisation, agent and role definitions. In

addition to the enhanced domain modelling, the `Groupware Task Analysis' model van der Veer and van
Welie (1999) encapsulates new semantics, including relationships between objects, tasks and users,

events and triggers, and task constraints through definition of roles and responsibilities. The scope of the

task model has also been extended to include the allocation of the roles of `protagonists' (both users and

system components) in an interactive scenario Filho and Liesenberg (1999). This high-level abstraction

of task roles has been proposed to support unexpected changes in task context; a directed graph of nodes
depicts protagonists' changes in intention between sets of tasks that make up the work scenario as a

whole. Explicit inclusion of the concepts discussed above marks the clear strengthening of both

contextual views of task analysis and also a significant step towards a unified model-based approach to

user interface design. Indeed, Pribeanu et al. (2001) argue that an explicit contextual framework within

such task models is essential for the design of the new wave of interactive systems. They suggest that the

wide array of personal computing devices available to users means that a task will be situated within both

the environment in which it is performed and the hardware/software solution used in its execution.

The inclusion of wider contexts found in contemporary task models suggest that the end of a task

specification and the beginning of a domain or dialogue model is somewhat blurred. Forbrig (1999)

suggests that, historically, the role of the task model was primarily to support the design process whilst

12

domain modelling supported actual design. He argues however, that the relationship between tasks, the

user, the problem domain and the interactive system inevitably interact and co-evolve as the extant

system is transformed into a new design. The impact that technology has on the task and domain model

also impacts on design, and vice versa, making it difficult to understand one without the other. It seems
likely that task and domain modelling will eventually merge, but Limbourg et al. (2001) identify a

number of problems that must be resolved before such a synthesis can be addressed, summarised here:

0 Lack of heterogeneity and understanding of task concepts

" Mapping of concepts between models and between toolkit software formats

" Reduced communication between project stakeholders through lack of development software
integration

" Needless reproduction of research and development efforts

In their meta-task model, Limbourg et al. redefine ten task models as entity relationship diagrams and
from this, a generalised model is created (see Figure 1) and used as a part of the DOLPHIN user interface
design assistant.

13

OPERATOR Temporal constraint
Operator-name Constrains

-N Operator-symbol Constrained by
0-N

Accomplishing
Accomplishes

Accomplished by 1-1

1-N

GOAL

Goal-name

Goal-description

Parent of Child of
0-N 0-1

GoalDecompositio
HierarchicLevel

TASK Responsibility 1-N ROLE

Task-Id Role-kl

Task-Name Rgspions ibilfryof Role-Name

Task-Type 1-N

Initial-State Using OBJECT
Final-State Important-level

Object-name Frequency-level Used by
Pre-Condition 1-N Object-type
Post-Condition Object-class Uses
Task-Iteration I-N
Task-frenquency

Manipulated
Task-Duration by 1-N
Task-Description

Parent of Child o
ACTION

Manipulating
aN 0.1 Action-name

Action-type Manipulates
1-N

Task Decompositioo
Hýerarchiclcvel

Figure 1 The meta-task model Limbourg et al. (2001)

The role of task analysis in user centred system design has become well established over the years and the

application of cognitive modelling in the analysis of human-computer interaction and the prediction of

work performance continues to inform the research community Diaper and Stanton (2003 - in press).
Complex cognitive theories are not easily shared amongst all the stakeholders of an interface design

project however. Recent discussions within the HCI research community, Carroll (2002); Diaper (2002),

highlight the problems associated with the application of this approach to design. In an attempt to

ameliorate this impasse, various notations and toolkits are being developed to partially integrate task-

orientated views of design with other components of the envisaged solution. In the succeeding section on

model-based user interface design, complementary design views and tools that have helped enhance user
interface development are reviewed and their recent synthesis with task views discussed.

4. Model-based user interface design

The underlying design and functionality of a system are, at least in part, an expression of some model of
the problem that the system has been designed to solve. Typically, this model (or parts of it) can be found

in a number of different sources including a) the structures and functions in the language used to
implement the program, b) software design documentation, c) user manuals and d) the user interface

design. According to the design methodology and the types of notation used, this model may range from

highly implicit (distributed within the source code) to highly explicit (expressed as data-flow diagrams;

entity relationship models; object oriented models and so on). However, the problem of linking the

underlying domain model and functionality of a system with the user interface is considered difficult

14

since the complexities of an interactive system become immediately apparent Patern and Mancini (1999).

For this reason, system designers have sought means of abstraction that will allow them to proceed with

resolving relatively high-level design issues without having to commit to a large number of low-level

implementation details.

For such abstractions to be possible, frameworks were conceived that would allow the separation of the

various activities of an interactive system managed during the course of interacting with the user and
information processing. The Seehiem model Green (1983) proposes three high-level abstract

components, in turn responsible for the device-level input and graphical presentation of output, a dialogue

controller and an application model. Due to its inflexibility and lack of guidance on the integration of

these levels within an application framework or design methodology, the Arch/Slinky Gram and Cockton

(1996) model superseded the Seehiem model. In this framework, the relative bindings between each of

the levels are more flexible, allowing for varying emphasis on the importance of each layer according to

the context of the application being designed. Many of the model-based approaches use architectures that

reflect and extend this basic separation between the graphical presentation and the application layers in an

attempt to break down the design problem into partially de-coupled parts. According to da Silva (2000),

such approaches provide three main advantages over traditional design models:

" They can provide a more abstract description of the UI than UI descriptions provided by other UI

development tools

" They facilitate the creation of methods to design and implement the UI in a systematic way since
they offer capabilities: (1) to model user interfaces using different levels of abstraction; (2) to
incrementally refine the models; and (3) to re-use UI specifications

" They provide the infrastructure required to automate tasks related to the UI design and
implementation processes

However, successful de-coupling of design abstractions necessarily implies the successful means of
integrating them into a coherent whole, and it is this `mapping problem' that has been the focus for the

proponents of model based design Puerta and Eisenstein (1999).

Early model-based tools were designed primarily to automate the mapping between common user

interface components or `widgets' (such as buttons, lists, menus and so on) with the underlying

application model. In these cases, the application model provides abstractions of the data that are

15

available for use by the user and a rule-based system infers design choices based on: a) the operations that

can be made on the data; and b) the availability of appropriate GUI components. An early example of
this is found in the `DON' interface design assistant Kim and Foley (1990). Rules encapsulating the

application domain (referred to as ̀ conceptual knowledge'), organisational and style templates, graphical

theory and `design knowledge' (mappings between the application abstract and widget presentation) are

automatically combined to generate a user interface. A slightly different approach to this mapping is

taken by HUMANOID Luo et al. (1993). In HUMANOID, the approach to reducing complexity is

supported by machine management of `design goals'; solutions to each goal are modelled as interactions

between the user and the system. Similar to some task modelling approaches, goals can be broken into

sub-goals; unlike task models however these goals focus on the mapping of only simple interactions to

pre-defined application abstractions. Binding of task descriptions to application functionality is also
featured in the BOSS environment Schreiber (1994); here, tasks are described as sets of hierarchic

interaction graph templates or HITs. Each HIT encapsulates links to attributes, data flow structures,
function calls and presentation components. BOSS extends traditional automatic generation of the

presentation of the user interface by using a run-time engine capable of generating interfaces from data

created by users. Rule-based generation of non-WIMP interfaces has also been developed, where there is

a requirement for domain-specific graphical representations. The ADDI tool ElSaid et al. (1997) allows

users to select aspects of the domain model they wish to examine; a presentation manager then selects
from a number of knowledge bases to transform the data into an interactive, graphical display.

It became apparent that designers often prefer to `get their hands dirty' with the mappings between the
domain model and the interface which led to a shift in design support that model-based design

environments might provide. The Interactive VIDE Frank and Foley (1993) is an early example of the

change in perspective, providing both automatic support as well as an editable mapping notation,

allowing expert designers to specify their own links between domain and widget models. At the same
time, the gathering acceptance of, on the one hand, user-centred system design and on the other, object

orientated design techniques, led to new opportunities for the synthesises of design views. Scenario-

based design techniques Carroll (2002) and use-case descriptions Jacobson et al. (1992) are combined in

an object-oriented support tool called the `Point of View' (POV) Browser Rosson (1999). The POV tool

allows the analyst to create objects that have functional responsibilities and `point of view' that relates to

the context of a specific scenario. Bound to each object is a set of textual descriptions of usability claims

that can highlight positive and negative consequences of the use of an object within the context of the

scenario. As such, this tool combines, in a very weak sense, user centred system design considerations.

An analytical approach to scenario-based design is outlined by Benyon and Macaulay (2002) in their

description of the PACT framework in which data from scenarios is refined into a model of objects and

16

user actions. Other expansions of scenario-like descriptions include the extension of UML Fowler and

Scott (2000) to provide facilities for user interface design, renamed UMLi da Silva and Paton (2000). In

this extension, the user interface notation encapsulates high-level GUI concepts such as containers,

input/output points, display parts and editing parts; these are subsequently mapped to a generic widget

template called the Abstract Presentation Pattern. In addition, task descriptions are expressed using an

extended version of activity diagrams; activities identified in use cases are linked using modified state

chart notation and high level user interface abstractions.

The model-based approaches discussed so far represent strong system-orientated views of development;

with the exception of UMLi, their task descriptions are constrained within the specific scope of the

system's expected functionality rather than within the task domain of the user. However, use-case

approaches in interaction design have also been criticised on the grounds that they combine both system

and user variances, which may confound design decisions Markopoulos and Marijnissen (2000). The

conceptual separation of task, presentation and dialogue from domain models helps to isolate user-

orientated issues; a number of toolkits provide such distinctions. Currently, the model-based approach to

design enjoys the inclusion of a number of additional user-centred constructs, although there is still no

general consensus as to exactly which are appropriate or how they can be coherently integrated da Silva

(2000). The synthesis of hierarchical task specifications and an extended entity relationship model

(ERM) in the TRIDENT environment Bodart et al. (1994), is graphically integrated in an activity

chaining graph to provide a dialogue model. Presentation units (PU) are defined for each task and

encapsulate any number of entities from the ERM; six different contexts in which a PU is implemented

are provided, depending on input and output requirements. In keeping with the automation maxim, a

heuristic engine is also provided to offer automatic selection of interface components based on the PU

interaction type.

Recent research has advanced the scope of model-based design, offering explicit structures and mappings

that reflect high-level abstractions of interactive software such as the Slinky/Arch framework as well as

binding task oriented models. The Model-Based Interface Designer or MOBI-D Puerta (1997; Puerta and

Eisenstein (1999) is a development environment comprising a number of tools that support the

specification of tasks, domains, user profiles and presentation and dialogue models. Similarly scoped

work can be found in the Teallach environment Griffiths et al. (2001) which supports domain, task and

presentation models with particular focus on the integration of object-oriented databases. In a review of

the model-based paradigm, de Silva (2000) provides an overview of the primitive components of 14 tools,

organised into application, task-dialogue, and abstract presentation and concrete presentation categories.

A more detailed account of the underlying methods and technologies that support the abstraction of tasks,

17

dialogue and problem domains is given in chapter 3. A brief account of the emergence of the `abstract'

and ̀concrete' specification of the user interface is now given for completeness.

In an attempt to reduce complexity and to reduce premature commitment to specific implementation

decisions, the presentation component of the user interface is father refined by the introduction of

abstract descriptions of interaction components. It is common parlance to use the word `interactor' to

refer to any component of the user interface that either displays graphics or receives user input or both. In

fact, the term `interactor' has a much stricter definition within formalist circles Duke and Harrison (1993)

-a review of the variations on its formal structure and application is found in chapter 3. Formal

definitions withstanding, the `abstract interactor object' is frequently used in model-based design to

encapsulate the basic characteristics of WIMP components without committing to a particular
implementation, see Schreiber (1994); Bodart et al. (1994); Puerta (1996); da Silva et al. (2000) for

examples. Concrete instances of the abstract are dependent on the technology that the tool supports:

platform independent Java Swing conversions are becoming popular, see Luyten and Coninx (2001);

Griffiths et al. (2001). However other platform specific conversions for Microsoft Windows Puerta et al.
(1999) and Apple Macintosh Schneider and Cordy (2001) have also been developed.

In contrast to the task-oriented view, traditional model-based design has a much stronger emphasis on the

mapping of system side abstractions to interface component technologies, rather than descriptions of the

world of users and work environments. Its power lies in its ability to join high-level software engineering
design concepts with user interface components; uncoupled descriptions of user tasks give no guidance
for programmers in this matter. Recent work connecting task and domain oriented models has improved

communication between HCI analysts and software engineers still further by incorporating task and
domain modelling into one design environment.

5. Discussion

It is clear from the even limited range of methodological viewpoints in IICI surveyed here that the design

of effective and efficient interactive systems is a non-trivial problem. Blandford and Duke (1997) argue

that design models must make a trade off between the general applicability of their concepts and their

power to explain how and why a particular design improves usability. In this chapter, the notations and

tools are for the most part devoid of cognitive user models (excepting the GOMS tools); this is a

significant trade-off for model-based design practitioners since user perception and behaviour is critical in

the determination of task execution. As discussed above, the integration of cognitive models into the

broader engineering of interactive systems is a formidable problem indeed and unlikely to be formally.

resolved soon.

18

Not unexpectedly then, current trends in tool-based support for task and model-based design have had to

delimit the scope and complexity of user interface design concerns they address, in order to ensure that

the realisation of these tools is tenable. In addition to the onerous academic endeavour of trying to

transform and accommodate the multitude of methods into a rigorous engineering method, the HCI

community is also faced with the problem that computing technology will not wait until some sort of

order is finally resolved. Personal computing technology now offers graphical processing power capable

of rendering interactive, cinematic quality virtual environments for a variety of problem domains Kirk

(2003). Although not technologically of the same order of power, mobile computing devices also

represent a major challenge to the HCI community since these devices demand new contextual

considerations and implementation constraints Mueller et al. (2001).

With the prospect of increasingly `rich' interactive systems becoming available to the public, the

opportunities for novel user interface designs deployed across multiple hardware platforms grow. At

present, the mappings between task or domain models to WIMP components can be guided by heuristics

that have emerged as a result of many years of research (and industrial development) working with the

ubiquitous desktop paradigm. The progression toward unity in this regard is threatened by technological

change because MB-UID (model-based user-interface design) tools do not provide mappings to concrete

solutions outside of a (often implementation specific) `WIMP' environment. Notations such as UAN

Hartson et al. (1990); Hix and Hanson (1993) map classic ̀ desktop metaphor' objects and actions to task

structures. However, the fundamental concepts of this metaphor are implicit in the lexicon. Metaphors

are important conceptual devices since they communicate the state of the system in meaningful and often

creative ways to the user. Through metaphors, users are offered a means of translating their task

intentions formulated in terms of operations in the real world into actions they can perform at the user
interface Dix et al. (1998). The limited and implicit treatment of metaphor in MB-UID research

therefore:

" Inhibits innovation and development with new user interface technologies

" Lacks the intermediate mapping that metaphors provide to aid users in the execution of their

tasks.

In addressing this problem, it would be desirable to utilise the considerable progress the MB-UID

community has made in unifying design views. A more detailed examination of the abstractions

employed to this end must therefore be conducted in an attempt to identify mechanisms already in use

that might be modified or extended in order to support metaphor modelling - see chapter 3.

19

6. Conclusion

In this chapter, model-based approaches to interface design have been introduced against the background

of a broader, generalised HCI knowledge framework and task analysis. Model-based user interface

design research within the HCI community continues to generate toolkits that support notations

combining core user-centred system design concepts. For contemporary ̀ WIMP' based design solutions,

these toolkits support the appropriate level of abstraction and may soon become standard parts of
industrially accepted software development packages. However, personal computing technology is

delivering entirely new forms of interaction that extend far beyond traditional WIMP solutions. The

potential for innovation in design would be more effectively catalysed with an explicit user interface

metaphor model.

20

CHAPTER 3 User Interface Design Architectures, notations and tools

1. Introduction

This chapter continues the review of model-based design by examining the architectures that support the

expression of the principal abstractions of model-based user interface design: input/output devices,

presentation component/dialogue control, domain abstractions and task models. For the most part, these

architectures can be regarded as `implementation independent' - i. e., they are levels of abstractions that

have been realised using a variety of technologies from computer science, software engineering and

computer graphics disciplines. To begin, an outline of these underlying technologies is given and put into

the context of the development phases of an interface design project. This is followed by a review of

model-based abstractions, observing their variations in conception and application within a broader,

interactive system framework. In conclusion, the relative merits of these approaches are considered and

an extended framework proposed for the inclusion of metaphor-oriented user interface design.

2. Supporting technologies for user interface modelling

During the development lifetime of an interactive system, numerous tools and formalisms are employed
to support the various design stages including the elicitation of requirements, design, specification,

prototyping, development and evaluation. The scope of this thesis is delimited to the consideration of

only the specification and prototyping phases of the life cycle, although it is recognised that user interface

design considerations proliferate throughout Faulkner and Culwin (2000). Even within this narrow
development window however, a wide range of tools exists ranging from informal, craft-based support to
highly abstract, formal methods and notations. The nature of these tools also reflects their application
during the specification and requirements phases.

21

Formal methods

Requirements

Specification

Prototyp
Design

Storyboarding

Rapid Prototyping tools

Graphics APIs GUI Builders

Figure 2 Methods and tools in user interface design phases

In figure Figure 2a summary of these methods and technologies and their application to the life cycle is

provided; in the following sections, each are discussed with respect to the life cycle and their support for

model-based design, contrasting prototyping and implementation tools with formal methods and models.

2.1 Storyboarding

One of the simplest and most immediate ways of conveying some of the features of a user interface is

through storyboarding. The use of storyboards allows collaborating end users of the system to quickly

understand some of the designer's intentions for the interactive system and to contribute to the design

process at a level that is comprehensible to them Preece et al. (1994). Like those used in film production,

storyboards convey the appearance and some simple behaviours (of the system, in this case) through the

use of a sequence of annotated drawings. An electronic extension of the storyboarding technique is

found in the SILK prototyping tool Landay and Myers (2001); designers are able to sketch common user
interface components (such as buttons and sliders) using a graphics tablet or mouse and SILK will

convert them into executable prototypes. Simple dialogue control is supported through the depiction of

arcs, drawn by the user, connecting buttons to the display of new windows. In themselves, storyboards

provide little guidance to the software engineer with respect to design and implementation issues proper

and so are unlikely to be of any great use after the early prototyping stages. With respect to user interfäce

models, arguably storyboards only really support the `abstract' specification of interface components and
little else.

22

2.2 Rapid prototyping tools

The relative simplicity of the storyboarding technique means that expressing dynamic aspects of the user
interface is very difficult. In addition, the user is unable to interact with the design (with the exception of
SILK) and so will not have much of an idea as to how the final system will actually behave. To rectify

this and at the same time maintain the desirable rapid production of prototypes, high-level prototyping

tools have been developed including Hypercard Atkinson (1987), ICON Chung and Shih (1997) and

Director Canter (1988). Tools such as Director have been used in the rapid production of interactive,

multimedia prototypes Millard et al. (1998) but have also been used, in their own right, to develop

commercial applications (particularly in the gaming and web-based markets). Prototyping tools such as

these provide a graphical, direct manipulation toolkit to create, place and animate interactive elements at

the user interface. User interactions via the keyboard and mouse can also be captured and a scripting
language allows the simulation of system responses at run-time. As a result, designers can quickly mock

up the appearance and to a limited extent, the behaviour of the system. An alternative to the procedural

scripting approach can be found in the Penguims system Hudson (1994), in which a spreadsheet model is

used to declaratively define and express the relationships (through equations) of the graphical components

of the system.

The limitation of the behavioural modelling in prototyping tools typically appears at the point where the

system requires semantic operations from the underlying domain model or functional core (static,

`dummy' data are often used in its place). To this extent, prototyping tools fall short of the capabilities of

a fully-fledged development environment on the basis that:

" These tools primarily support only high level presentation and interaction characteristics

" Programming support is rather less powerful than traditional languages (ie., C/C++)

" Prototyping tools are ̀ closed' development environments

Due to these limitations, the products of rapid prototyping tools rarely extend into the design phase of a

project. From a model-based point of view, prototyping tools such as Director provide support for

`concrete' component specification and a proprietary, high-level, input event-hierarchy. It could be

argued that since a programming language is provided in Director, in a very weak sense, dialogue and

domain abstractions are also supported. However, since these models would have to be explicitly coded

it is argued here that this provision is negligible.

23

23 Graphics APIs/GUI builders

In contrast to the limitations discussed above, graphics application programmer's interfaces (APIs) and
GUI builders are often integrated into `industrial strength' software development tools such as Visual

C++ Microsoft (2001), C++ Builder Borland (2001), UIMIX VisualEdge (1997) and Code Warrior

Metrowerks (2003) . User interface builders provide the developer with a palette of standard WIMP

components such as buttons, menus and windows. The apparent ease with which it is possible to `draw'

user interfaces with these tools is comparable with the prototyping tools already discussed. However, this

apparent simplicity belies the underlying complexity and necessary computer programming skills

required to implement non-trivial designs. In addition to the increased syntactic and semantic complexity

that a more powerful and general purpose programming language (such as C/C++ or Java) entails, the
developer must now concern him/herself with the particular details of retrieving input from and output to

the user. Broadly speaking, the software engineer is presented with two possible options: a low-level,

device rendering development path or an operating system dependent WIMP component management

course. 3 Low-level device rendering means working with computer graphics APIs such as OpenGL,

DirectX or PHIGS - these APIs provide low-level or `direct' access to the user interface devices and

rendering methods. The advantage of this approach is that the developer is not constrained to a limited

range of interaction components; payment for this advantage is made through the extended effort required

to implement a user interface environment from scratch. Some reduction in the work required for

graphics rendering can be found through the use of functional graphics languages. `Pictures' Finne and
Jones (1995) is a device independent graphics language that supports the composition and translation of

vector-based graphics primitives. The Haggis graphical framework Sage and Johnson (1997a) extends

this by allowing many virtual, concurrent input/output devices to be managed simultaneously.

Alternatively, the developer may chose to use an existing, proprietary WIMP framework such as
Microsoft Foundation Classes Petzold (1999) or Motif Brain (1992). To his/her advantage, the engineer

can re-use previously built components and delegate much of their maintenance at run-time to the

operating system. On the other hand, developers must be familiar with and work within the framework

and constraints of the component set; this makes moving out of the prescribed rendering and event-

capturing framework very difficult or impossible. In an attempt to reduce the programming complexity

of such frameworks, Rajagopala et al. (1997) specify a higher level object oriented API for X/Motif

programmers. Savidis et al. (1998) extend this idea using the `PIM' meta-programming layer, allowing

the specification of a variety of different interface APIs within a single framework. Despite this, the

considerable increase in complexity and programming effort places these technologies firmly in the

24

design phase of a project cycle in all but trivial prototypes since it is undesirable to devote considerable

software engineering resources to implement a trial interface that is likely to be discarded later on.

It is difficult to quantify to what extent modern programming environments support model-based design

abstractions. The reasons are two-fold; a) the environment can potentially express all abstractions
implicitly (similar to the prototyping argument above) and b) the modular nature of modern programming

environments allows the inclusion of specialised abstractions. An example of the latter argument can be

seen in Borland's `TAction' component - an object that abstracts an action (irrespective of how the action
is physically performed) that has some effect on the functional core. The Borland GUI framework allows

any number of concrete interface components to point to this abstract action on receipt of user input; in

this sense it could be said that some support for the mapping between task and domain models exists.
The extensive use of object-oriented programming concepts Yourdon (1994) allows the encapsulation,

aggregation and specialisation of interface components, the effect of which is that dialogues are managed

through method calling between `super components'. Critically, whilst these abstractions are possible

they are not (excepting a few rare cases) an explicit part of the user interface development environment in

these tools. To put it another way, tools like Visual C++ or C++ Builder demand that the programmer
translate UI models into a concrete framework of programmable objects that can be compiled.

3. Formal methods

So far, the technologies presented have broadly fallen under the remit of `implementation oriented' tools:

software developed for the generation of user interfaces within a specific user interface technology (for a

review of these conventional tools, see Myers (1995). In contrast to this approach, the models and

notations used in formal methods are of a higher level of abstraction. They do not consider the
`mechanical' details of the system, instead the `what' is being specified, rather than `how' it will be

implemented; formal methods are synonymous with the specification phase of the project life cycle Hall

(1990). It is not the intention of this thesis to construct or extend a detailed account of the mechanics

underpinning formal methods. Rather, a brief and high level description of these approaches is given so

that the relationship between model-based abstractions and the mechanics that are used to reason about

them can be demonstrated.

The languages available to formal methods practitioners include mathematical notations such as Z Spivey

(1989), VDM Jones (1986), CSP Hoare (1985) and LOTOS Bolognesi and Brinksma (1987). In addition,

a number of computational tools also exist to electronically model system behaviours, including parsers

3 In fact, the engineer may not have a choice, depending on the requirements of the software project.

25

for context free grammars Levine et al. (1992), State Charts Harel (1987) and Petri nets Peterson (1981).

Disposed with these languages and tools, formalists are able to rigorously describe abstract entities, their

properties and operations. A popular distinction between the `design, build and test' prototyping cycle

and formal specification is that whilst testing can reveal the existence of `bugs' within a system, only
formal specification can demonstrate the absence of them Hall (1990). The application of these tools is

desirable since it provides a mechanism for unambiguously specifying and reasoning about potential
designs before committing resources to implementing them in code.

Formal mathematical languages are used to specify interactive systems at different levels of abstraction

according to the domain of interest (see Brun and Beaudouin-Lafon (1995) and Campos and Harrison

(1997) for overviews). At a relatively high level of abstraction, informal usability properties of a system

such as ̀ what you see is what you get' (WYSIWYG) can be expressed in a rigorous manner: Dearden and
Harrison (1997) demonstrate this formally using the RED-PiE model Dix (1991). Here, an interactive

system is modelled as a set of user commands, C. Sequences of these commands input to the system is

termed as a program, P, and a set of effects that represent output to the user, as E. Programs are mapped

to effects via an interpretation function i. The effects E are mapped to a set of results R, reflecting the,

states of the objects being manipulated by the user, and a set of displays D, representing the information

presented to the user at any point in the interaction.

R

PE

. o,

Figure 3 The RED-PIE model Dearden and Harrison (1997)

In their example, Dearden and Harrison use an example of a word processor in which result reR

specifies the current state of the document if it were printed and dED represents a whole or partial

representation of the document displayed to the user on the screen.

26

From this, the notion of WYSIWYG as a principle of observability such that what the user sees accurately

reflects the states of the objects being modelled by the system is given by reasoning about two input

sequences p and q to the system:

bp, q : PI display(i(p)) = display(i(q)) " result(i(p)) = result(i(q))

Dearden and Harrison (1997)

Informally, this specification reads: for all programs p and q whose displays after interpretations are

equivalent, by implication, the states of the modelled objects are also the same. The authors note,
however, that it requires a skilled designer to apply the appropriate levels of abstraction; for example, the

above formalism only holds for documents that can fit within the display capacity of the screen and so
further extensions to the equation are required for the realistic modelling of a word processor. Extensions

of display-oriented formal reasoning can be found in Doherty and Harrison (1997) on the transformation

of logical operations required to perform a task into their perceptual equivalents.

Finer grained formal abstractions of the interactive system emerged with the concept of `interaction

objects' Duke and Harrison (1993), sometimes referred to as `agents' Coutaz et al. (1995) or simply
'interactors' Hussey and Carrington (1999). The concept of an interactor is not itself an explicit part of
the formal specification languages outlined here (indeed, a number of variations of interactor

architectures exist, see section 5.3). Informally and at a high level, interactors can be considered as

objects that privately hold state information (referred to as the abstract or model part) and maintain

communications with de-coupled display (or presentation) and controller parts. Whilst the exact roles of
the display and controller parts vary according to interactor architecture, it can be argued that between

them they manage the communications between the user, other connected interactors, and the functional

core.

Formal models of interactor architectures have been expressed in logic-based specification languages

such as Z to reason about interactor data, relations and functions, see Hussey (2000). Other formal

approaches include algebraic specifications such as LOTOS Palanque et al. (1996) and GRALPLA Torres

et al. (1996) which have been used to specify communications and event passing between interactors.

Two well established interactor variants, the MVC Krasner and Pope (1988) and PAC Coutaz et al.

(1995) frameworks are contrasted by Hussey and Carrington (1997) using the Object-Z language Duke et

al. (1995), an object-oriented extension of Z. Similar work by Hussey and Carrington (1998) extends

27

formal reasoning using Object-Z to the platform independent specification of common WIMP

components such as buttons and menus; the specific behaviours of a particular widget class (such as the

Tk component classes) are derived from the abstract classes.

The temporal ordering of operations within interactor models is refined by Markopoulos (1997) in the

specification of the ADC framework using LOTOS -a communicating process algebra that incorporates

a data typing language, ACT-ONE. The application of LOTOS to interactor specification allows a
distinction to be made between abstract and display part operations of the interactor and the temporal

ordering over their execution. By specifying the temporal sequencing of operations, LOTOS allows
formalists to reason about `when' behaviours occur either synchronously or asynchronously within a

system and so model the dialogue between the user and the interactive system. The translation from a
LOTOS specification to a prototype has been demonstrated by Sage and Johnson (1997b). In this

demonstration, the Haggis tool Finne and Jones (1995) was used to implement a simple interactive game;

a larger scale case study by Sage and Johnson (1998), an interactor-based prototype of a multi-user

system created using the Clockworks tool Graham and Urnes (1996) was converted to LOTOS for formal

model checking.

Whilst formal methods of specifying interactive systems are attractive because they may lead to the proof

of specific behaviours in a system, they do not in themselves generate system designs but must instead be

incrementally converted, in small steps, toward a final system Hall (1990). Formal specifications have

also been criticised for being difficult to use, requiring substantial training on the part of the writer Carr

(1996), Jambon et al. (1999). These drawbacks reduce the communicability of potential system solutions
between designer and user, so some compromise is desirable in which the high-level, low commitment

abstractions of formal models combine with the enhanced immediacy and accessibility of prototyping

tools.

4. Computable models

Rather than adopting a purely analytical approach to formal specification, some model-based approaches

make use of existing computer science technologies to specify, compile and run simulations of the

prototype user interface. Although this approach does not wield the same analytical power as those used
in formal methods, the underlying concepts used to specify the interface are at a similar level of

abstraction such that they can be converted for formal analysis, as in Sage and Johnson (1998). Three

computable models commonly used in model-based interface design are examined here: context free

grammars, state models and Petri nets.

28

4.1 Context free grammars

Originally used to specify programming language syntax for compilers, context-free grammars (and

associated parsers) have been re-used to cover a wide range of user interface design structures including

task models Payne (1984), VR systems Jacob et al. (1999) and multiple hardware target specifications

Mueller et al. (2001). The Backus-Naur Form or BNF Naur (1984) system for expressing formal

grammars characterises the general mechanism for describing an arbitrary, but well-formed grammar.

Picnic SandwichSelection
I SandwichSelection Drinks

SandwichSelection :: = SandwichSelection Sandwiches
Sandwiches ;

Sandwiches :: = CheeseAndPickle I BeefAndMustard

Drinks :: = Cola I Orange (Tea ;

Figure 4 Sample BNF grammar

Well-formed grammars specified using BNF4 describe a grammatical tree in which `leaf nodes' are

rewritten as higher order branch nodes, and so on, until the root node is reached. In Figure 4, a simple

selection of sandwiches and drinks are legal components of a picnic; whilst drinks remain optional,

sandwiches are a mandatory element. Tools such as Lex and Yacc Levine et al. (1992) automatically

generate code based on a lexical specification that identifies legal alpha-numeric symbol sequences which

are then passed as tokens for the parser to assemble as a well formed grammatical tree.

Jambon et al. (1999) use a formal grammar to specify both task structures based on the MAD formalism

Scapin and Pierret-Golbreich (1989) as well as dialogue sequences to describe interactions with a CAD

system. The syntax for a functional language supporting the generation of WIMP components described

by Schneider and Cordy (2001) is also expressed as a formal grammar (similar work using XML can be

found in Mueller et al. (2001); Luyten and Coninx (2001). The highly structured nature of formal

grammars makes them attractive candidates for specifying conventional WIMP interfaces since

components such as menus or forms have a hierarchical or aggregate composition.

4 Newer formalisms include SGML and XML

29

4.2 State models

The use of state models to simulate computer system behaviour is widely practised Sommerville (2001).

Within the user interface community, the same formalism can be found in early work describing menu-
based interactions Wasserman (1985), direct manipulation systems Jacob (1985) and has latterly been

applied to more contemporary GUI design Horrocks (1999); Carr (1997) as well as ̀ virtual reality' (VR)

environments Jacob et al. (1999).

X/p, q X/s

Ylr, p -ý 2

Z/ Ylp, s

3

Figure 5A simple state model Horrocks (1999)

State modelling plays an important role in the description of semantics in many aspects of model-based
design (this is particularly obvious in specification of the behaviour of input devices and abstract

components, see section 5.2). The mechanics employed for describing the `state' of a user interface (or

part of it) are varied, however the most commonly methods are by attribute or Statechart or Petri Net.

Informally, the state of a particular part of a system is marked by the value of some attribute; in the UAN

notation for example, the states have an informal representation such as `selected = file' Hartson et al.
(1990). Object-oriented methods extend the attribute-based marking of states by encapsulating one or

many of such markings in a single object. The Teallach task model Griffiths et al. (2001) uses just such a

mechanism in its task model.

Explicit markings of states and transitions between them are found in the form of statecharts Harel (1987)

and, in a more sophisticated form, petri nets Peterson (1981). For the sake of brevity both are described

informally here. Basic state models are directed graphs of nodes (representing individual states)

connected by arcs (representing transitions between states), see Figure S. When a state is entered, some

operation on data internal to the system may occur. Transitions connected to the state contain conditions

or rules (such as `value > 10') relating to the internal system, such that when satisfied, the transition's

action is said to `fire' (possibly some modification of the internal system) and a new state is entered. In

Figure 5, three states are depicted connected by transitions X, Y and Z that fire zero or more actions r, p, q

and s. This basic mechanism serves as the basis for many variations applied to suit the domain being

modelled. Harel (1987) extends this by providing a graphical formalism for embedded states (states

30

within states) and concurrent state modelling. In Trxtteberg's direct manipulation model Trxtteberg

(1998), transition rules include rules that relate to UI component events and conditions. Jacob et al.

(1999) use discrete transitions between states to control continuous (but transitory) transitions that

describe relationships between input devices and VR components.

4.3 Petri nets

A more expressive form of state modelling is found in Petri nets, which are capable of describing

concurrent states of a system through the `marking' of tokens within a network. The Petri net consists of

one or more `places' (similar to nodes, described above) which may hold zero or more tokens (these may

carry values that are specific to the domain being modelled). Transitions represent controlled pathways

through which tokens may be consumed and generated between one place to another; places and

transitions are connected via arcs. Each arc may specify a `weight' - in the case of input arcs this means

that a transition cannot fire until the number of tokens from an input place matches the weight across the

arc. The number of tokens output from a transition to a place is determined by the weight of the arc

connecting it, by default this is one. Finally, an arc may also be inhibitory, inverting the logic of a normal

arc such that an empty place connected to a transition via an inhibitor causes it to fire.

Down

Move Move

Up

Figure 6A simple mouse model Accot et al. (1996)

Further refinements to this basic model have been applied to suit model-based user interface abstractions

as required. For example, the ICO formalism Bastide et al. (1998) adds a precondition on transition firing

in the form of a logical expression operating on the passed tokens - the Boolean result determines the

execution of transition. In addition, tokens may represent input from the user originating in special ̀ event

places' (on the other hand, any place in the ICO Petri net may use tokens to render information to the

display). Other refinements of the transition model can be found in Accot et al. (1996) in their mapping

of physical device actions to `interaction level' operations (for example `mouse button down' to `click'

actions) by adding device events to transition rules; in Figure 6a petri-net describes basic mouse

behaviour. Massink et al. (1999) refine both place and transition concepts by quantifying and typing

valid tokens for each place and specialising discrete and continuous transition types. Discrete transitions

have a fire condition, a delay time, a firing action (a function that produces the output token type and

31

value). Continuous transitions accept only tokens of type real, the firing action of the transition specifies
differential equations linking the values of both input and output tokens on a continuous basis.

5. Computable objects and prototyping tools

Formally modelling states and message passing allows designers to simulate and reason about the high-

level abstractions of a user interface solution without either having to a) `mould' their design ideas into a

particular GUI framework, or b) commit substantial software engineering resources in the process of
doing so. For these reasons, these computational tools represent a `half way house' between the
implementation specific prototyping techniques and formal methods; when used to underpin model-based

user interface design tools they inherit both the advantages of formal abstractions and the

communicability of prototyping strategies. Few of the computable objects discussed here are used alone

and in their original form; instead they are extended and integrated into a larger toolkit to provide support
for a range of model-based user interface abstractions.

5.1 User interface abstractions

Having examined the different approaches to the engineering of user interfaces, some explicitly built on

models (some not), a review of the specification of the five high-level models supported by these methods
follows. In each of the abstractions, the specification strategies are inspected with regard to the particular
interaction paradigm they support and the tools used to model them.

Abstraction level

Ü
O

E
Q

e

Devices Components Dialogue Domain lasks

toryar in rototypuig too is

ng tools

Computational models/tools

Formal methods

Table 1 Design approaches and abstractions

A summary of the model categories and their support is illustrated in table Table 1. Computational

models and formal methods span furthest across the abstractions, with computational models providing
the most support since formal methods tend to `hide' the structural and procedural elements in a design.

It is important to stress here that these categories have been chosen as a general outline for discussion and

should not be considered as rigid delineation between model-based technologies since there are often

cases where abstractions over-lap.

32

5.2 Device modelling

It is not surprising to find that the granularity at which physical input and output devices are modelled in

the literature varies in accordance with the impact that these devices have on the overall interaction

design. The range extends from highly detailed simulations of input device data transformations Massink

et al. (1999); Jacob et al. (1999) to ostensibly defer them in favour of a higher level of application

abstraction Markopoulos et al. (1999). This thesis only considers a limited range of input and output

models (the mouse, keyboard and graphical display) although it is recognised that many other modes of
interaction including audio, haptics and gesture based interfaces exist Pentland (2000).

Sub-component specification of graphical output to the user is expressed in a language that can be

translated to the particular function calls of the target API. An example of this can be found in the

conversion of the `display part' of the abstract user interface (AUI) in Schneider and Cordy (2001) in

which a generic library of graphical functions provides an abstraction for the specific API calls used in

the `concrete' implementation. An informal specification of abstract graphics functions can also be found

in Du and England (2001), an extension of the UAN language.

The handling of input data from physical devices such as the mouse and keyboard falls into two

categories: discrete, event-based and continuous, data-flow models. This division highlights the demands

that new interface technologies, such as virtual reality systems, make on the interface designer. Such

environments often require the interpretation of parallel and continuous modes of interaction Jacob et al.

(1999). In both discrete and continuous models, the data ̀ piped' from the device into the logical system

are transformed into a format that is compatible with the interaction model. For example, a stream of

delta values x and y are transformed into a parameterised ̀ mouse move' event on a virtual pointer

displayed on the screen. Whilst continuous interaction models make explicit how these transformations

occur, the discrete models most frequently use a direct and automatic translation, assumed to be provided
by the services of the underlying operating system.

Discrete event notations, such as those used by the UAN Hartson et al. (1990) specify generic `desktop'

interactions:

(1) - [file_icon] M

(2) - [x, v] *-[', y ']

(3) M

Figure 7 UAN example Hartson et al. (1990)

33

Here, the -- symbol specifies movement of the mouse pointer into the context of an object, in this case a

file icon [file_icon], see Figure 7. A button down action (v) on the mouse (M) initiates, in this example,

a drag sequence. This sequence is described as zero or many (*) arbitrary changes in the x and y position

of the mouse, ending in new positions x' and i". The `move file icon' action concludes with the mouse

button being released (MA). A statechart-based specification at this level of abstraction can be found in

Trxtteberg (1998); the direct mapping of device inputs to an interaction model using Petri nets is

demonstrated in Bastide and Palanque (1999). There is no clear distinction between physical actions

enacted upon the input device and events represented at the user interface in this type of event model. To

illustrate this point, consider a direct manipulation system that uses input from a mouse device to direct

the motion of a graphical pointer on the screen. The pushing and releasing actions on a mouse button can

be considered a `device level event'. A double-click action is a symbolic, device-independent or 'logical

interaction level' event focused at the position of the pointer object on the screen. Accot et al. (1996) use

an extended Petri net notation to express the transformation of device events into interaction level events:

m
Drc: ß r

En

d. iareei=this u Swr; Tiner

Idle
m0e CiIii IT., -b. -,

u

Figure 8 Device and interaction-level event modelling Accot el a!. (1990)

In this example (see Figure 8), a `pointer drag' event can be described as two routes through the network

depending on the timing that distinguishes a drag operation from a `wobbly' double-click. Places in the

network depict the state of the device whilst transitions are labelled with the device-level tokens that are

consumed and the high-level interaction events are produced as a result. Device level events are

expressed in lower case (d = mouse down, u= mouse up, m= mouse move, and a special system service,

t= timeout). Logical level interaction events are specified in upper case, C= `click', M= 'pointer

movement', B= `begin drag', D= `drag', E= `end drag' and DC = `double click'. This work is

continued in the modelling of the keyboard actions in Accot et al. (1998).

34

The notion of an input device `stream' is expressed as processes in Sage and Johnson (1997a) LOTOS

simulation of a simple game. Similarly, `queues' are used to post device data polled from the system by

the CUI services in Schneider and Cordy (2001) to the higher level AUI model. For virtual environment

modellers, it is useful to regard input devices (even the keyboard) as a temporary source of continuous

data` Jacob et al. (1999). This allows relationships between continuous values, such as the velocity of the

mouse movement and the motion of an object in virtual space, to be expressed. In-coming device data in

Jacob's model flow through a state chart in which transitions contain mathematical functions that relate

the mouse movement to interaction objects displayed on the screen.

Jnouse,
T--I value va It 6icrn hrný2epoe

IWPUT DRAGGING SEM ALWAYS OUTPU2

'ý- NOUSEON
ins idwiýousw I;. ndI. pos)

7t

NOUSCUP

9Udert �ia

Figure 9 Mouse and scroll bar interaction Jacob et al. (1999)

Figure 9 Jacob et al. (1999) shows a simple relationship between mouse movement data, the position of

the pointer and a scroll bar. Similar approaches can be found in the HvvNet system Massink et al. (1999).

Here, a modified Petri Net model is applied to map mouse movement to relative movement in a virtual

environment based on the continuous relationship between the pointer position and a `zero motion' target

(a two dimensional square) centred in the middle of the display.

In comparison with other model-based dimensions (such as component presentation or task specification),

low-level user input and output models receive relatively little attention. With the exception of the

treatment given to virtual reality interactions, it would seem that much of the details at this level are

deferred to either the prototyping tool or programmer.

Although it is recognised that in implementation, this is of course digitised into discrete packets of data

35

5.3 Display component and dialogue modelling

In this section, a review of the architectures that describe the domain adapter, dialogue and logical

interaction components of the Slinky model is given. The dialogue control is the intermediary that

connects parts of the task or domain model with the presentation of GUI components. In some cases, this

communication is a direct mapping, in others it is actualised via some abstracted proxy.

Direct styles of mapping between dialogue and component presentation are described in the UAN
.

notation Hartson et al. (1990) and its derivatives Gray et al. (1994); Du and England (2001). Here, user

actions are mapped with feedback from the interface, the states of interface objects and remarks regarding

functional core operation within a task-based framework. Temporal operators qualify relationships within

the task and action specifications (this is discussed further in section 5.4). Other direct mappings between

task and dialogue include the IOG graphical notation Carr (1997) in which pictorial representations of

GUI components are combined with UAN-like event notation and statechart structures. Petri nets are

used to describe the dynamic behaviour of an interface with respect to user actions on presentation

components in the ICO system Bastide and Palanque (1999); Bastide et al. (1998). Tokens travelling

around the network carry information regarding user input, objects that transmit and receive data from the
functional core and data to be rendered to the user. Work is currently in progress to combine task

descriptions with the ICO environment Navarre et al. (2001).

A special exception to this type of mapping between the domain and the presentation via a dialogue

model can be found in CAD and VR environments. Such environments typically circumvent any
dialogue intermediary with a direct call to the system core based primitive gestures using the mouse and
keyboard. Jambon et al. (1999) present a modified version of the Arch model (called 114) that allows the

domain adapter to directly render 2D/3D data structures modelled in the functional core to the user
interface. A similar approach is taken in Jacob et al. (1999) in which input received from the mouse is

transformed along a data path to provide appropriate data for 3D transformation matrices.

36

The use of a proxy as an intermediate step between the domain model and the user interface is used both

at design-time where implementation details are deferred da Silva and Paton (2000); Markopoulos et al.
(1999); Bodart et al. (1994)) as well as within run-time systems da Silva et al. (2000); Schneider and
Cordy (2001); Schreiber (1994). These proxies provide potential solutions to the problem of mapping
domain models to GUI components Puerta and Eisenstein (1999) by:

0 Differentiating the `abstract user interface' (AUI) from the `concrete user interface' (CUI)

0 Exposing some of the domain model at the interaction level

By inserting an abstract user interface specification that provides only basic descriptions of typical GUI

components, high level design-time support for mapping either software object models Jaaksi (1995) or

task models Johnson et al. (1995) is possible. Mapping parts of the task or domain model to properties of

the abstract interaction layer allows designers to explicitly flag how, and where, changes in the system

state affected by the user take place. The complexity of the AUI varies; relatively simple and narrowly

defined abstractions such as can be found in the UMLi model da Silva and Paton (2000) and Teallach

Griffiths et al. (2001) only specify container, input, display, editor and chooser generic interactions.

Other tools go further - the AUI Schneider and Cordy (2001) provides a lexicon of generic WIMP

components, graphic rendering and input capture methods (these are subsequently translated into C++

code). The MIM interface model Puerta (1996) allows abstract component definition based on declaring

attributes for each object.

Proxy-based mapping discussed so far has adopted a `layered' view in which relations between the

domain or task model are progressively transformed between independent, but interacting layers

(mirroring to a greater or lesser extent the Arch model). However, the object-oriented paradigm offers an

alternate framework in which interactors (introduced in chapter 2) capture these principles but within a

network of communicating objects. Edmonds (1992) gives an account of the early evolution from the

linear Seeheim abstraction to an ̀ interactor' based framework. Precursory models such as those proposed

by Williams' `communicating objects with surfaces' Williams (1992) and Took (1992) LIMA model are

some of the early examples of object-oriented architectures that separate the user interface from the

function core. Contemporary interactor architectures reflect both this general trend towards separation

and also the adoption of object-orientated software engineering concepts. Duke and Harrison (1993) give

a broad definition of an interactor object:

37

-

"The notion of an interaction object is one of an independent entity with a local state that can
engage in events within its environment, possibly resulting in changes to the state. In this respect
an interactor is much like a state-based process ... or the notion of object that underpins the
object-oriented metaphor. "
(page 2)

Hussey and Carrington (1997) introduce the notion of interactor as a mediator between the user and the

system

"An interactor has a presentation (lexical) aspect which reflects the internal state of the
application (syntax and semantics), and which mediates between the underlying application and
the user. " (page 2)

Interactors are arranged in communicating networks that move user input toward the functional core and

return the state of the application in the opposite direction to be displayed to the user; an overview is

provided by Markopoulos (2001), see Figure 10.

4 +aa, anl, ºc{famlmxr
i\ iicIim CcrUTx 1

If 41 Iamm Oi r xs

b tmiior lmxr 1r/

Hirracxcr II incra is

A, iicr LaTer
JT II \'tjna SC7"... SI C11L^S

Lnpm] h; xt Cx! vices I 11: xl . cin- hiraý

T

trmw III Uiu1xn I)n=-,

Figure 10Interactor overview Markopoulos (2001)

Whilst these general properties hold for all interactor architectures, variations in their conception can be

found in the literature. To illustrate this point, four models are briefly examined here: MVC Adams

(1988), PAC Coutaz et al. (1995), ADV/ADO Alencar et al. (1995) and Al)(' Markopoulos (1995), see

Figure 11.

--4
38

Effectual

YUpIG

Controller (IV.) Viewer

sal 2'' ;ý Effectual
ýn Vertical A bn

onsistencie %% Causal
V11C

Acton

cývner ----- n
Output t Output Horizontal

qpV Consistency ADV

ADV/ADO model (Alencar, 1995)

Application side (level n+1)

application data ab result
JL suspenc

Abstraction abort
Display unit

0 start

display status Input from user side

user side (level n)

ADC model (Markopoulos, 1995) PAC model (Hussey and Carrington, 1996)

Figure 11 Interactor abstractions

Common to all formats is the central abstraction that maintains a description of some part of the system's

state. In the MVC, this is referred to as the `model', the `abstract data object' makes up this part in the

ADV/ADO framework whilst PAC and ADC simply refer to this as the `abstraction'. Within the MVC

and ADV/ADO frameworks, abstractions may contain child abstractions or aggregates, whilst PAC and

ADC maintain a hierarchical organisation. The management of input and output local to an interactor is

the responsibility of the controller in the case of MVC, PAC and ADC and `morphisms' in ADV/ADO.

The primary role of the controller in MVC is to manage input (which may include data translation

appropriate for the abstraction). PAC controllers facilitate both input and output data from the

presentation to the abstraction as well as communicating changes to other, connected interactors.

Morphisms or `mappings' and temporal rules embedded in ADV/ADO interactors express constraints and

6 Although ADC interactors can be combined, see Markopoulos (1997).

C
ýM,

Model

MVC model (Hussey and Carrington, 1996)

39

relationships between states and actions made accessible by each interactor. The ADC abstraction

continuously processes input and output, mediated by its associated controller that can enable, suspend,

resume or disable gates.

User input enters the abstraction via the controller parts in MVC, whilst it is combined with the

presentation (or view) part in PAC (although this must be passed through the controller before changes in

the abstraction may take place). `Causal actions' are the equivalent in ADV/ADO7 in which an explicit
distinction between user and system input (referred to as ̀ effectual actions') is made. Similarly, the ADC

model provides user input `gates' on its display side whilst other interactor or system related input is

channelled through gates on the abstraction side. System-side input affecting the state of the interactor in

both the MVC and PAC models are assumed as method calls from within the abstraction.

Changes of the system's state are made visible to the user via mappings between the abstraction and the

view parts. Output to the user is displayed in the view part of the MVC, PAC, ADV/ADO and ADC

architectures described as view, presentation, AD V and dout respectively. In MVC, each view (and its

associated controller) is dependent on an abstraction that broadcasts changes of its internal state to all

associated views and controllers. Similar changes are effected in the PAC model through the controller

which maps abstraction to presentation as well as propagating appropriate events to its parent controller
(if it has one) and any dependent children. Mappings between the viewable ADV object and an

associated ADO object, expressed in the interconnection section of the ADV specification, provide a

similar service in the ADV/ADO model.

There are, in fact, many other variations to be found in the literature which are either based on existing
frameworks (such as MVC) or declare an interactor-like basis for design. These include the formal

specification of widgets Hussey and Carrington (1998) and framework modifications, such as ̀ PAC-star'

for networks Calvary et al. (1997). A number of windowing environments and GUI toolkits have also
been developed based on interactor frameworks including SmallTalk Adams (1988), Teallach da Silva et

al. (2000), GRALPLA Cabrera et al. (1999), Vista Brown et al. (1998), Clockworks Graham et al. (1996),

and SIRIUS Windsor (1990).

5.4 Domain and task modelling

Two regularly modelled entities that `drive' the observable performance at the human-computer interface

are: 1) domain models representing some aspect of the functional core and; 2) some description of human

40

behaviour, such as a task model expressing actions that the user takes to achieve some goal. The scope of

this discussion must be limited in both areas since a review of all software engineering methods and

psychological models that could potentially contribute to this area is far beyond the remit of this work.

For this reason, the literature reviewed here concentrates on the predominant works conducted within the

model-based user interface design community: data-oriented domains and task modelling. It is worth

noting that the level of abstraction found in `domain models' varies within the literature, the continuum of

which ranges from simple, high-level entity enumeration to complex software engineering data models

Griffiths et al. (2001). Both task and domain models may be usefully considered side by side since they

can be viewed as two co-operating systems engaged in a shared activity.

Forbrig (1999) describes the relationship between tasks, the problem domain and an interaction model in

Figure 12. These models, in Forbrig's view, have considerable overlap, sharing common concepts

(particularly artefacts or objects, which are commonly referred to by each). Here, the transformation

from an extant interactive work model to an envisaged new system is a process in which task objects are

reassigned with new tools and agents (either human or computer) engaging in roles that manipulate the

state of the shared problem space.

task model

is based on / is based on \ is represented by

user model

is based on is based on

allows interaction
problem domain interaction

model model
is represented by

Figure 12 Forbrig's model

The user model supplies an axis of refinement to the task, problem domain and interaction model in that it

qualifies a user's engagement with the tasks relating to the problem domain, their access to data and

particular interaction styles and modalities. This view is useful when considering the work of

organisations in which problems are solved within groups, where individuals have particular roles and

must work co-operatively. Tools such as Euterpe van der Veer and van Welie (1999) make this

7 The ADV object is an extension of the basic ADO in the ADV/ADO model

41

distinction explicit by declaring agents who play roles that are responsible for tasks. Similar effects are

achieved in Teallach Griffiths et al. (2001) and MOBI-D Puerta and Eisenstein (1999) by assigning users

to 'user types' which can then be associated with particular tasks. This style of user modelling is

relatively simple -a more sophisticated research community exists in its own right, see Kay (1999). -

Whilst the simple types of user model found in the MB-UID certainly enhance the expressiveness of these

tools, the attention given to them is frequently subordinate to the focus on the problem and task domains

and so are not considered further here.

The hierarchical structuring of tasks is evident in some form in many of the model-based toolkits,

including ADEPT Johnson et al. (1995), EUTERPE van der Veer and van Welie (1999) and CITE

Breedvelt-Schouten et al. (1997). A number of task models include state conditions of both the task

nodes themselves and also those of associated problem domain objects. The utility of this is the means of

determining whether a task can be executed as well as its expected state after task completion, see IMAD-,

star Rodriguez and Scapin (1997) and Teallach, Griffiths et al. (2001). Temporal relationships between

task units include serialisation, concurrency and iteration, examples can be found in UAN Hartson et al.

(1990) and CITE Breedvelt-Schouten et al. (1997).

Mappings between the task and problem domains have been demonstrated using various relational

models. TADEUS Stary et al. (1997) uses Object Relation Diagrams (ORDs) to describe relationships

between task hierarchies and data classes. An ORD relationship may be an informal descriptor such as

"request a ticket", a temporal constraint, or the specialisation and aggregation of classes. The MIMIC

modelling language which underlies the MECANO and MOBI-D toolkits Puerta et al. (1994) Puerta

(1996) allows the specification of arbitrary relations (such as an is-a relation), attributes and conditions (a

tuple of initial, pre and post-conditional states) for each domain object. The BOSS tool Schreiber (1994)

uses conventional software engineering constructs (such as records, trees, tables and lists) to specify the

application programmer's interface to the functional core. Functions within the API are defined in terms

of predefined data types for input and output and may include optional pre-conditional constraints on the

input types before execution can occur. Tasks are described through the recursive instantiation of HIT

objects, which can occur in parallel, by selection, or in sequence. Each HIT can potentially act as an

input/output portal for the user and contain domain data and functional calls pertinent to the task.

The TRIDENT tool Bodart et al. (1994) uses an entity relationship attribute model (ERA) to specify

database schemas and an activity chaining graph (ACG) to describe the functional data processing

requirements for terminal nodes of a task model. Data input (from the user) flows to functional calls to

the system, which may result in either error messages, or the retrieval of the appropriate ERA schema

entities for further processing. Considerable support for application and data oriented domain modelling

42

is provided by Teallach Griffiths et at. (2001) in which standard database data types and functionality and
Java API classes are modelled using the ODMG database standard Cattell et al. (1997). The task model
in Teallach includes the specification of task state objects containing attributes derived from queries made

to the database schema in the domain model or auxiliary method calls to a specified Java object.

6. Discussion

In contrast to traditional storyboarding and prototyping tools, the expanding range of model-based

notations and toolkits explicitly expresses significantly more detail regarding not just the appearance and

visible behaviour of an interactive system but also other, related design views that must be integrated in

the development of the software product. Formal methods practitioners have rigorously defined and

reasoned about the behaviour of widely used interactive components such as buttons, lists and scrollbars.

Computational objects allow designers to simulate, or with the appropriate tools, rapidly prototype user

interfaces without recourse to committing to any particular implementation.

Model-based software support in these areas potentially enhances interface design through combining

(some) aspects of formal abstraction and computational simulation into an integrated model building,

simulation and prototype generation environment. As this field of research matures, an agreement on the

interrelationships between the five components of the Arch model is beginning to emerge. Arguably,

some of the most integrated and broadly based toolkits in this respect are MOBI-D and Teallach. In both

cases, an underlying meta-language (MIMIC and ODMG respectively) provides a uniform means of

integrating task, user, problem domain and interaction models within their respective scopes. These

substantial achievements are not unqualified, universal solutions to all possible interactive system designs

however; both are restricted to the ubiquitous desktop based interaction style and Teallach is

predominantly designed for database applications. Narrowly focused frameworks are inevitable in this

endeavour since integrating the Arch model alone is a non-trivial problem without adding the additional

complexity of user and task modelling.

In addition to the existing complexity of this problem, the model-based interface design community must

also face up to new interface technologies. The impact of new forms of computational devices, interfaces

and human-computer contexts extends beyond the need to formally reason and simulate the behaviour of

the technology itself. At present, it is useful to be able to map tasks x, y and z to button a, text field b and

window c since it appears to describe (in a superficial way) a mapping between the user's formulation of

her world of work and the computer's internal model of the objects that are used to achieve her goals.

However, it is important to recognise that windows, icons, menus and pointers are not of themselves

43

directly a part of the user's or the computer's representation of the problem domain. To illustrate this

point, consider the following arrangement of buttons:

III __

(a

I

H (h)

Figure 13 Button example

Considering (a) we have no clue as to what function these buttons represent, but the affordance of

pushing to indicate some required action is universally understood. Adding symbols (familiar to at least

those living in western society) to the buttons enhances the understanding of their function. There are

two things to be noted here: firstly, buttons in Figure 13 are images of buttons rather than actual buttons

and secondly, the symbols in (b) engage in the viewer a conceptual model that may he applied to

understanding of multiple problem domains. Buttons may take on many different appearances both at the

human-computer interface and on other machines; their physical operation and feedback to the user vary

as well - some may be physically depressed whilst others light up or generate a sound to indicate

operation. So in this respect, the concept of a button is not entirely dependent on its appearance and

operation. In addition, the composition and symbolism used in (b) indicates a conceptual model that goes

beyond the idea of four buttons arranged horizontally. A shared cultural understanding employed by both

the designers of the device and its end user suggests that the functional operation of this device includes

starting a process, stopping it, and jumping backwards or forwardti accc, rdinL t(, fire-defined units of

measurement.

Of course, controls like those in Figure 13 are frequently used on a variety of' media players including

cassette, CD, DVD and MP3 players. In each of these cases, the underlying principle of moving through

a process (a serialised stream of media) by 'playing' it or navigating between sections of' it remains

constant whilst the task and the domain models may change. Users may wish to skip through 'tracks' on

a cassette, CD or MP3 list whilst the nature of DVI) denotes chapters in a story. A 'track' is an entirely

abstract entity for the user since a 'track' has no meaningful, physically discernible characteristics on

modern media objects such as a CD or computer hard disk. From a device designer's point of view

however, a `track' ultimately translates to a logical address space on the ('1) media or a file pointer.

44

_ý

In this sense then, the design of a user interface is more than simply the sum of its components - it

includes a shared model that serves to partially describe the characteristics of the problem domain and the

user's understanding of the world -a metaphor. At present, the model-based community has largely

ignored this mediating mapping because of its reliance on the `implicitly' understood and well-established
desktop GUI Crowle and Hole (2001). Vanderdonckt and Berquin (1999) present a `metaphorical

structurer' that parameterises the presentation of familiar graphical objects such that they can be mapped

to system data. This mapping allows data to be rendered in a variety of ways (in one of their examples,

various presentations of a clock is shown). Whilst useful, this approach is limited since it only describes

one kind of mapping: domain to presentation and does not consider other aspects of a metaphor such as

object actions and behaviours. The modelling of virtual actions, such as the `double click' found in

Bastide and Palanque (1999) and Traetteberg (1998) referent model are two of the few that make explicit

distinctions between the underlying concepts of the desktop metaphor and the execution of device actions.

However, these are views limited to existing, WIMP-based components descriptions of interaction.

8 This is true for the vast majority of users familiar with modern computers.

45

7. Mandate for a new framework

Five abstractions for model-based user interface design have been identified in this chapter along with

examples of the application of a variety of tools and notations to each layer. A summary of the fmdings

of this chapter is provided below:

Advantages Dis-advantages Abstraction support

Storyboarding " UI designs communicated "? row-avay, product -has CP DG
PtOtO tools m t

easilytoendusers little use beyond very early
YP g design stages

" Parts d prototype testable by
users

SWEngAPI Development with targetUl -High development costs CP DG DM
GUI tools

" Some rapidGtJ bols "Eadycommimentb
available technology

O

v
Computational " Abstract and concrete design " Many design views; net all 10 CP DG

models v ws integrate

and tools " Solutions Communcable and " Tools limited to WIMP
DM TK

testable with users solutions

Formal methods " High level d Difficult b use CP DG DM
abstractiDNieasoning for
solutions "Low communicability d TK design ideas to other project
" No technology commitment stakeholders

10 " nputlOutput devices CP " UI Components DG " Dialogue control

DM " Doman modal TK " Task model

Figure 14 Abstraction summary

Whilst all the methods summarised above (see Figure 14) have at least one merit that is desirable as a

potential feature for a UI design framework that includes a metaphor model, it is the undesirable elements

that lead to a conclusion regarding the approach to adopt. The commitment to both significant
development time and a particular platform also makes the software API approach undesirable and, in a

sense, adopting this approach more or less ignores the MB-UID argument altogether. At opposite ends of

the scale, storyboarding/prototyping and formal methods will be for the most part not considered further,

for similar reasons: the former lacks engineering `power' whilst the latter's expressive medium
(mathematics) has low communicability to non-formalists. Some qualification is required here however:

the interactor abstractions discussed in section 5 are echoed in other approaches (such as Teallach,

Clockworks and UMLI - see section 3) and so influences from the formalists cannot and should not be

totally disregarded. Computational models and tools have been shown to support a number of different

design views, although at present this is still an emerging method that lacks coherency. This not

46

withstanding, computational models reviewed here provide the richest set of solutions across a range of

abstractions. In the proceeding chapter, a synthesis of ideas from this approach is used to support an

explicit metaphor model and is presented in the introduction of the `Interface Specification Meta-

Language' (ISML).

8. Conclusion

In this chapter, contemporary model-based design abstractions and the technologies used to support them

have been examined. Models for input/output devices, presentation, dialogue, task and domain models

were presented and the various mappings between each described. Current tools allow a limited degree of

integration between the usability engineering and software design community through the mapping of

task and problem domain models via the abstraction of common GUI objects. However, little work has

been done in explicitly specifying the underlying conceptual metaphors these objects are frequently used

to represent. An examination of current model-based user interface design methods suggests that

computational models offer potential `building blocks' with which to address this problem.

47

BLANK IN ORIGINAL

CHAPTER 4 The Interface Specification Meta-Language

1. Introduction

In this chapter the ISML framework and specification language is presented. A rationale for the ISML

design is followed by a more detailed discussion of its constituent parts using a small-scale example for

illustration. Specification issues arising from the example are then discussed.

2. ISML rationale

The concept underpinning the application of metaphor to user interface design in an attempt to aid

understanding and interaction with the underlying system has already been outlined in chapter 1. ISML

has been designed on the basis that the metaphor is an independent and partial mapping between a model

of tasks understood by the user and the computational operations on the application domain by the

underlying system. Arguably, the metaphor mechanism that acts as a bridge between the system and the

user's world of work has only partial correspondences with each domain. Further, this mechanism in

itself has no absolute manifestation with respect to its implemented appearance and operation at the user

interface - the wide variation of the ubiquitous user interface desktop illustrates this point. The principal

advantage of this `de-coupling' of metaphor from other design concerns is that designers can consider the

metaphor view explicitly and without the potential constraints imposed by implementation details.

An explicit metaphor model alone has limited benefits for the usability specialists and is of almost no use

to other stakeholders of the interface design project. For such a model to become useful, a framework

must be developed that provides a developmental pathway connecting both user-oriented models (such as

task descriptions) and software architecture (interactor definitions) concerns. Additionally, it is desirable

to maintain a level of abstraction that does not commit the metaphor model, or interactor design based on
it, to a specific interface technology. The computational models reviewed in chapter 3 already suggest a

number of useful modelling strategies including:

" Communicating objects

" State and constraint modelling

" Abstract-to-concrete mappings

" Event modelling

49

In developing the ISML framework it would be desirable to re-use these techniques since their application

to various UI abstractions has already been demonstrated, see chapter 3. It has been argued above that

the' metaphor mechanism in a user interface may exist independently of implementation. For these

reasons, a reasonable approach to introducing a metaphor model would be to create an additional

abstraction of objects, behaviours and interactions that can then be mapped to extant MB-UID design

views.

Importantly, to insure against untenable complexity, a limited range (and depth) of such design views

must also be set. With this rationale in mind, the ISML framework was developed to integrate some of
the existing model-based concepts discussed in chapters 2 and 3 and explicitly specify a user interface

metaphor.

3. Framework overview

The ISML framework is composed of five parts, Figure 15 depicts the high-level relationships between

each.

MetaObjects

Object
semantics

Meta Objects

:.. I Interactor
definitions

Devices

Pipes

Bitmaps

Geometry

Components

I Devices I

Attributes

Statecharts

Render lists

Interactors
CD

Interactor
declarations 2

System
inventory

Tasks

F Key ---P- Derives -- -º Implements

Figure 151SML overview

Task
models

50

Many of the parts of the ISML framework can be found in other model-based specifications, but their

particular abstraction and arrangement is unique to ISML. Notably, a common basis for specifying

objects, their properties, actions and rules regarding behaviour is supported using the `meta-object' layer

(see Figure 15 ISML overview) and exploited in both the description of interactive solutions and task

models. Since both the interactive solution and task model are derived from this base, it is possible to

associate the execution of tasks with the manipulation of metaphorical objects, enacted using a specific
interactor design. Below, a brief high-level overview of the five parts of ISML framework is explained; a
high-level overview of the ISML framework is given by Crowle and Hole (2003).

Devices are simple abstractions of user interface input/output hardware used to model entities such as the

mouse, keyboard and graphics adapter (see section 6.1). Logical abstractions of user input and output

objects are specified as components (see section 6.2) which refer to previously declared devices for

implementing their function (for example, a desktop mouse pointer is likely to refer to at least two

devices for its change in position and display).

Meta-objects play a pivotal role in the definition of both interaction and task domains - objects declared

here have attributes, states, constraints and communication mechanisms that serve both domains (see

section 6.3). The definition of `meta-object layer' forms the basis for the specification of the metaphor

abstraction layer, its implementation (as ̀ interactors', see below) at the user interface, and the task model.

Interactor definitions use meta-objects as a basis for a specific design solution whilst tasks refer to them

to describe how goals are achieved. Further refinement of interactors from their basic meta-object

description is accomplished through a) the mapping of components to interactor abstractions and b)

communication with the functional core. The intersection of meta-objects in use in both interactor and

task models is described in the metaphor mapping sub-section. Finally, the system inventory specifies the

starting state of the system in terms of instantiated interactors.

The following sections in this chapter deal with the five parts in turn, but begin with a general

introduction to the technical nature of the ISML language. The graphical notation developed by Altova's

XML Spy toolkit is used to specify the structure and grammar of ISML (specified in XML) for ease of

reading.

51

4. Notations

ISML uses a Backus-Naur Form based grammar to specify the user interface, presented here in XML

Bradley (1998). Briefly, the eXtensible Mark-up Language is a mark-up language" that specifies the

well-formed description of data structures and their relationship with each other. Abstract data types may

be declared which may contain attributes (of basic data types such as integers or strings) and other data

types. These type definitions, along with the expected structure of the document defined using these

types (which may be arbitrary) are held in a schema"'. XML documents using this schema are said to be

valid if the data within obey the syntactic rules of the schema.

An extension of the example provided in chapter 3 is provided here for simple illustration, but is not

intended to serve as a complete tutorial to XML; interested readers should see Bradley (1998).

Food r

Picnic E]--(-? 3-- Dr ink

Music [i

Figure 16 £%IL Example 1

In Figure 16, a Picnic (a group element type) must contain all (represented by the wmhol) of its

expected elements Food, Drink and Music which are of types SandisichSclcction, Drink-, election and

MusicSelection respectively.

Sandwich Selection - ;}- Round ,

1 au

DrinkSelection J; } Beverage

1

Figure 17 AM. Example 2

') A subset of SGML (ISO, 1986.8879: 1986 Intimnation Processing -- Text and Office Systems -- Standard (Jencraliicd Markup
Language (SGML). International Organisation for Standardization)
10 In fact there are a number of schema formats used in XML, here the X. ML Schema Definition (XS1)) r., use(]

52

Figure 17 describes complex types SandwiehSelection and DrinkSelection - both of which may have a

choice" of 1 or more elements (rounds and beverages) of types Sandwich and Drink respectively.

Trackl

MusicSelection Track2

Track3

Figure 18 XML Example 3

Complex type MusicSelection, see Figure 18, must have one sequence of track elements track 1, track-1

and track3, which are of type track. The sandwich, drink and track types each contain attributes (not

shown graphically here).

Food - J; } - Round

1
. so

Drink - ý; } - Beverage
Picnic - ý; } - 1

.. oo

Track1

Music -- Track2

Track3

Figure 19 XML Example 4

The overall structure of this example is graphically represented in Figure 19, elements enclosed by a

dashed border indicate complex types. In the following sections, ISML is described in more detail and

for the sake of brevity, sections of the language once covered but which reappear in other parts of the

framework will be omitted.

This is graphically depicted by the connecting symbol betHween the boxed elements

53

5. ISML Basics

Within ISML a number of basic types are used throughout the framework - these include attribute, state

model and procedural code sections.

5.1 Attributes

Type

Attribute - ---ý -
Access

Figure 20 ISML attributes

Attributes have a required name, type and access. Basic types'2 of ISMI. attribute include common

programming data types of bool, integer, float, string; attributes may also be of type set, referring to a

special form of array (see section 6.3.5). The access qualifier determines its visibility to other objects in

the environment and may be either readable (RO), writeable (WO) or both (RW).

5.2 State models

uu .

. -.
" CAM

ý IK Wir wrerý ;;.

"
ýMrW

riýw

01

CMrN

ý MMi

ý Y[tM
o.

ýtosa.

Figure 21 ISML slate model

A basic, non-recursive state model is supported in ISMI. in which nodes and transitions are connected

together by the topology. Each state may have one or many fire statements, executed when the model

54

II

_ Aii

enters the state and may be either procedural code, a render focus statement (see section 6.2), a `mapping-

constraint' operation (see section 6.3.5), a re-targeting expression (see section 6.5.2), a controller

expression (see section 6.4.1) or a render function (sec section 6.5.1). Every transition may have zero or

more rules or MC tests (see section 6.3.6) which, when specified, must be satisfied for the transition to

occur. In the case where a node has more than one satistied transition available, priority is implicitly

implied in the order in which they occur in the topology section for that node. The topology is simply a

list of named start and end nodes connected by an arc.

5.3 Procedural code

ProcCode - ý'; } - -Statement

Ficnrrc'? ' ISAIL p/OCc(I ral statements

Procedural expressions may be inserted at various points within an ISML specification; it is important to

stress that ISML is not a programming language, but may contain programming language fragments for

the expression of mathematical formulae, conditional logic tests and the execution of Action-Events (see

section 6.3.2).

11 At present, complex type support does not exist

55

6. ISML Parts

6.1 Devices part

Input and output devices in ISML are specified as an abstraction of their basic attributes and low-level

software related functions. Devices are not abstractions of computer hardware, but instead provide hooks

for low-level APIs such as Microsoft's DirectX and encapsulate I/O operations such as polling for input

or the direct rendering of graphical primitives.

Pgefu Cps _} - Fn Csp

DEP4eDedusbon - -: }1m

B11maq*uncCaps _} fuxCsp

ISMLDeýn: es - ý; } DfB mapDeclx riven - -' ?}m

1m0 &l map Ant C mps AN Cap

1m

cýon, evrFVýtc+o+ - -'£} - ru. Kc, pý

im

Figure 23 ISML Devices part

The framework for devices includes DEPipes, DEBitmaps, and DEGeometry which abstract device input

streams, generic bitmap and geometry support" respectively. Presently, these definitions only provide a

rudimentary lexicon for input/output devices but in principle could he extended in the future. Each

device's definition is an expression of capability in terms of either the data it provides or the functions it

exposes to the interactive system (similar to Microsoft's DirectX I IAL). Available functional capabilities

of each type of device (FuncCap) are chosen from those provided by the ISMI. lexicon and given a name:

for example, the ability of a device to render a bitmap might be expressed as:

<BitmapFuncCaps>
<FuncCap Caps="COPY_FROM_BITMAP" FuncName="Copy"/>

</BitmapFuncCaps>

In the above example, the generic function capable of copying bitmap data from a source bitmap object to

a target (COPY_FROM_BITMAP from the ISMI, lexicon, see appendix F) is defined as Copy, although

it could be a reference to a target API call, such as the Microsoft I)irectX8 call

`IDirect3DDevice8:: CopyRects(...)'. Attributes declared in a device are used as data holders for in-

Such as the rendering of triangles in three dimensional space

56

coming and out-going data required by the functions and are used in the rendering of components (see

section 6.2).

In the specification segment below, a simple mouse and bitmapped display device is defined:
<ISMLDevices>

<DEPipeDeclaration Name="mouse">

<PipeAttrCaps>
<AttrCap Name""button">

<Type Type-"INTEGER"/>
<Access Type="RO"/>

</AttrCap>
<AttrCap Name="xChange">

<Type Type="INTEGER"/>
<Access Type="RO"/>

</AttrCap>
cAttrCap Name-"yChange">

<Type Type-"INTEGER"/>

<Access Type="RO"/>

</AttrCap>
</PipeAttrCaps>
<PipeFuncCaps>

<FuncCap Caps="PIPE MOUSE" FuncName="GetMouselnfo"/>

</PipeFuncCaps>
</DEPipeDeclaration>

<DEBitmapDeclaration Name="displayDevice">
<BitmapAttrCaps>

cAttrCap Name="width" Caps="WIDTH">

<Type Type="INTEGER"/>
<Access Type="RO"/>

</AttrCap>
<AttrCap Name="height" Caps="HEIGHT">

<Type Type="INTEGER"/>

<Access Type="RO"/>
</AttrCap>

</BitmapAttrCaps>
<BitmapFuncCaps>

<FuncCap Caps="LOAD_BITMAP" FuncName="Load"/>
<FuncCap Caps="COPY_FROM BITMAP" FuncName="Copy"/>
<FuncCap Caps="RENDER_TEXT" FuncName="Text"/>

</BitmapFuncCaps>
</DEBitmapDeclaration>

</ISMLDevices>

The `mouse' pipe defines an input stream that has three integer attributes describing the state of the

buttons as an integer `buttoni14 and the last known relative change in `x' and `y' directions (these

attributes are updated using the `GetMouselnfo' function, see section 6.1). A `displayDevice' provides

output for the system, having `width' and `height' attributes and the capability of loading bitmap data

from a file and rendering bitmap and rasterised text to a target.

6.2 Components part

Once supporting devices have been defined, components may then be specified that use one or more

device classes as means of communicating with the user. A component definition shares some of the

14 Here, the integer value (a 32-bit value) describes the on/off state of up to 32 switches

57

features of a `concrete' interface widget (discussed in chapter 3) - it may contain attributes such as

`height' or `width' or `font name' or any arbitrarily defined property that is in some way meaningful to its

design. Zero or many state models may also be declared within a component, each model operating

independently". State models in components may only refer to locally scoped attributes and render lists.

Input or output are continuously updated through the execution of previously defined device functions

within a render list. Any number of render lists may be declared, but only one list has 'focus' at any one

time - this may be changed from within the state model, using the 'render focus' declaration. In this way,

the appearance of a component or the manner in which it handles device input can be modified according

to its state.

ALribulee ý(} AtirlCUe

0m

ISMLComponefns ['3- EH compone dDeclarstlon -{H}- -'-

1

StaleMOdeM - -: ý[} - Chrt
7J,

00

neeae. ts. 1. nenaatw - -i} - cew

oý m

Figure 24 ISML Components part

I' At present, synchronicity between models is not supported operatiom, and transitirr,, arc es iluatcr1 in the rlrdcr that the state
models are specified.

58

In the following example, a `desktop mouse' is defined:

<ComponentDeclaration Name="desktopMouse">

<Devices>
<Device Name="deskMouse" Implements: "mouse"/>

</Devices>

In the `devices' section, the abstracted mouse device defined earlier is instantiated as ̀ deskMouse'.

<Attributes>
<Attribute Name="xChange">

<Type Type="INTEGER"/>

<Access Type="RO"/>
</Attribute>
<Attribute Name="yChange">

<Type Type="INTEGER"/>
<Access Type="RO"/>

</Attribute>
<Attribute Name="dmButton">

<Type Type="INTEGER"/>
<Access Type="RO"/>

</Attribute>
</Attributes>

The attributes of the desktop mouse are very similar to the shared device, but in this logical abstraction of

the mouse, only one `virtual button' is modelled - in this case it may be `unarmed' or `armed', see the

state model below:

<StateModels>
<Chart Name="dmButtonStates">

<States>
<Node Name="dmUnArmed"/>
<Node Name="dmAxmed"/>

</States>
<Transitions>

<Arc Name="dmMouseDown">
<RuleStatement>

<Rule>
<Statement>(dmButton == 1)</Statement>

</Rule>
</RuleStatement>

</Arc>
<Arc Name="dmMouseUp">

<RuleStatement>
<Rule>

<Statement>(dmButton == 0)</Statement>
</Rule>

</RuleStatement>
</Arc>

</Transitions>
<Topology>

<Network>
<Start>dmUnArmed</Start>
<Arc>dmMouseDown</Arc>
<End>dmArmed</End>

</Network>
<Network>

<Start>dmArmed</Start>
<Arc>dmMouseUp</Arc>
<End>dmUnArmed</End>

</Network>
</Topology>

</Chart>
</StateModels>

59

Rules enabling transitions between the unarmed and armed states refer to the device model for the current

state of the buttons; in this case only the first switch is tested. Retrieval of this information is gathered by ;
the render list `dmInput'.

<RenderLists>
<RenderList Name="dminput">

<Code>
<Statement>
deskMouse->getMouselnfo(xChange, yChange, dmsutton);

</Statement>
</Code>

</RenderList>
</RenderLists>

</ComponentDeclaration>

In fact, this definition of a `desktop mouse' is incomplete since no graphical description of this logical

device has been specified. This is quite deliberate since it may be desirable to define a number of subtly
different mouse behaviours whilst binding them to a constant appearance. For example, in a system in

which 2D and 3D interaction contexts co-exist, it may be useful to use a `3D Mouse' input component

which accepts motion from the abstract mouse device and modifiers from an abstract keyboard to express

six degrees of freedom in motion. For this reason, the presentation part is separately defined:

<ComponentDeclaration Name="desktopMouselmage">

<Devices>
<Device Name="dmiBitmap" Implements="displayDevice"/>

<Device Name="dmiTarget" Implements="displayDevice" Targets"AFFECT"/>

</Devices>

In this device section, an optional `retargetable' attribute is specified for the second device instance.

Retargetable devices are useful when it is desirable for a component to use the device context of another.
Any device used in a component may be either re-targeted (AFFECT) to another device or be declared as

a potential target itself (EFFECT). Only one of each type may be declared in any one component, and no
declared device may be both.

60

<Attributes>
<Attribute Name="xPosition">

<Type Type="INTEGER"/>

<Access Type="RW"/>
</Attribute>
<Attribute Name="yPosition">

<Type Type="INTEGER"/>
<Access Type="RW"/>

</Attribute>
c/Attributes>

<StateModels>
<Chart Name="dmiStates">

<States>
<Node Name="Init">

<FireStatements>
<Code>

<Statement>
dmiBitmap->Load("bitmap. bmp");

</Statement>
</Code>

</FireStatements>
</Node>
<Node Name="Running"/>

</States>
<Transitions>

<Arc Name-"start"/>
</Transitions>
<Topology>

<Network>
<Start>Init</Start>
<Arc>Start</Arc>
<End>Running</End>

</Network>
</Topology>

</Chart>
</StateModels>

The position of the desktop mouse image is both readable and writable; a simple state model executes a

call to the bitmap device to access an image to display before entering an endless loop in which the render

list `dmiRender' continuously renders the mouse image to its target (see section 6.5.1).

<RenderLists>
<RenderList Name-"dmiRender">

<Code>
<Statement>
dmiTarget->CopyFrombitmap(dmiBitmap, xPosition, yPosition, 0);
</Statement>

</Code>
</RenderList>

</RenderLists>
</ComponentDeclaration>

6.3 ISML Meta-objects part

Central to the ISML framework is the meta-object part in which the syntactic and semantic definitions

that underpin the metaphorical aspects of a user interface are specified. In fact, the meta-object section

can be split into two parts: (i) the metaphor objects and (ii) the interactor architectures derived from them.

61

MappingsAndConsVý.

ActionEvents +

MetaObjects +
ISMLMetaObjects - ý-ý - "". ". "... """""

Displayparts +
I nterac:,

4 ControllerParts +

InteractorDefinition +

Figure 25 ISML Meta-objects part

6.3.1 MAPPINGS AND CONSTRAINTS

Within the metaphor part, mappings and constraints definitions are used to specify potential, transient

relationships between subsequently defined meta-objects. Whilst both mappings and constraints, as well

as Action-Events (see below), are defined outside of the scope of any particular meta-object they are not

globally applicable.

,,.. -
T «pat

MorpMSm ,

MaPPingsAndConstraInts -' --
i-

0mGm

! rAftrRel

1. a.

Figure 26 NMI, Mapping and components

The specification syntax for both mappings and constraints are very similar either element (man or

constrain) declares a target upon which either the morphism or predicate will operate. Morphisms are

mathematical relationships between named sources and the target, such as 'target -x4 y' whilst

predicates must be logical statements that evaluate to either true or false such as '(target " x)'. A

mapping must have at least one source attribute as the basis for the mapping. expression, whilst for a

constraint this is optional. In defining a mapping or constraint, not only is a relationship specified but

also an associated, ordered set object which may contain zero or many references to meta-objects.

62

Adding meta-objects to a particular mapping-constraint (or 'MC' mappings and constraints arc

contained in this single unit) automatically applies mappings (if possible) and allows the testing of

constraints (see section 6.3.6).

In the following example, a very simple direct manipulation environment is imagined in which objects,

such as the cube, may be `picked up' from some surface by an entity (depicted by the arrow), moved, and

then `dropped'. In addition, it may be desirable that the objects being manipulated cannot be dropped

outside of the surface.

.ý ýli'ý
Yýy

ý, ̀ý

Figure 27 Direct manipulation scenario

In imagining this environment in an abstract form, a number of simple concepts are useful - that of

ownership, containment and holding. Figure 27 is presented as a three dimensional model -- this is for the

illustration of each object's context in the example, the MCs given here do not model 3D operations,

although they could be extended to do so.

The mappings and constraints for these three concepts are given below.

<MC Name="owns"/>

63

An empty MC, `owns' is the simplest type of mapping-constraint that will be used to denote exclusive

ownership of one object by another. This basic MC allows the model to maintain an association with the

cubes resting on its surface, as opposed to cubes that may be elsewhere in the environment. `Contains' is

an MC with two constraints on target attributes x and y- for ease of reading, normally illegal characters

in an XML document have been left non-escaped.

<MC Name="contains">
<Constrain>

<Target>xPosition</Target>
<Source>

<AttrRef>xPosition</AttrRef>
<AttrRef>width</AttrRef>

c/Source>
<Predicate>
<Statement>
((target > xPosition && (target < xPosition + width)
</Statement>
</Predicate>

</Constrain>

<Constrain>
<Target>yPosition</Target>
<Source>

<AttrRef>yPosition</AttrRef>
<AttrRef>height</AttrRef>

</Source>
<Predicate>
<Statement>
((target > yPosition) && (target < yPosition +height)
</Statement>
</Predicate>

</Constrain>
</MC>

In this simple two dimensional containment relation, a point in 2D space is considered ̀ contained' within

another object if that object has a boundary defined by xPosition, yPosition, width and height attributes.

It may be useful to test the `contains' constraint to verify whether an object being dropped falls within the

boundary of the surface. The final MC is an morphism named `holds' that maps the xPosition and

yPosition attributes of the source object to the same attributes of the target. When the holding object, in

this case represented by an arrow, holds a cube the position of that arrow affects the position of the cube.

64

<MC Name="holds">
<Map>

<Target>xPosition</Target>

<Source>

</MC>

</Map>
<Map>

</Map>

<AttrRef>xPosition</AttrRef>
</Source>
<Morphism>

<Statement>target = xPosition</Statement>
</Morphism>

<Target>yPosition</Target>
<Source>

<AttrRef>yPosition</AttrRef>
</Source>

<Morphism>
<Statement>target = yPosition</Statement>

</Morphism>

Before the holding MC can be enforced, it would be useful to remove the cube reference from the

influences of the `owns' and `contains' MCs affected by the surface on the cube. This serves two

purposes: firstly it serves to release the association of the cube with the surface and secondly, it may be

desirable for the arrow to move the cube outside of the boundary of the surface whilst manipulating it.

lt is not the intention of the above MC examples to capture all the possible semantic features of terms like

`contains' or `holds' but rather just to express useful relationships associated with them. In Figure 27, the

objects discussed here are represented in 3D not because the MCs used here express all the features

necessary to model a 3D environment, but to emphasise some of the elementary semantics associated

with these manipulations.

6.3.2 ACTION-EVENTS

All communication of the actions of one object on another is defined within the Action-Event (AE)

section. Similar qualifiers must be declared for each meta-object definition regarding how the AE is used

(see section 6.3.3).

H ActionEvents -=J;
}

- AE Parameters - ý; } - Param

0 co 1.. 1

Fig ire 28 ISML Action-events

Each AE must be named and may also carry with it zero or many parameters that are specified as basic

ISML types. Not all action-events defined here are necessarily used in the meta-object definitions; it may

65

be useful to define AEs that are used for a specific design solution in the interactor part (more on this in

section 6.5.2).

Following on from the simple direct-manipulation environment example begun in section 6.3.1, it is now

possible to imagine a communication mechanism that would support the simple picking and dropping of
the cube (see Figure 29).

66

AOO
Agý

ýý
r

,. ýý-

r ý. ý
ýý

w_ . ýý
,ýýý.. ý

ýk. -ý' '" - ý'° _

Initial state. HIC cuik is a member of' the surface's'ovklis'
MC.

Begin pick up. The arrow is moved to indicate the focus of
the cube object (i. e. their positions intersect in some
manner).

Request Ownership (RO). The arrow sends a 'Request
Ownership' action to the surface, supplying surface position
information. The same action is then echoed from the
surface to all the objects owned by it (in this example, only
one).

Request Freedom (RF). Having received a Request
Ownership action from the arrow, the cube tests the arrow
for boundary containment using the `contains' MC. If true,
the cube sends a `Request Freedom' action to its parent (the
surface).

Accept Ownership (AO). Finally, the cube then sends an
`Accept Ownership' action to the sender of the original
event, the arrow.

Figure 29 Direct manipulation Action-Event sequence

67

AO

r- 7
The syntax for the actions described in Figure 29 is relatively simple:

<AE Name="RequestOwnershipAction">

<Parameters>
<Param Name="eventSender" Type="SET"/>

<Param Name="x" Type="INTEGER"/>

<Param Name="y" Type="INTEGER"/>

</Parameters>
</AE>

<AE Name="RequestFreedomAction">

<Parameters>

<Param Name="eventSender" Type="SET"/>

</Parameters>
</AE>

<AE Name="AcceptOwnershipAction">

<Parameters>
<Param Name="objects" Type="SET"/>

<Param Name="x" Type="INTEGER"/>

<Param Name="y" Type="INTEGER"/>

</Parameters>
</AE>

In all cases, a set object is used to refer to either an MC contained within the sending object or the

sending object itself, signified as `ME'.

6.3.3 META-OBJECTS

Metaphorical objects specified in the ISML framework are defined as meta-objects tipes, the abstract

parts of which are comprised of attributes and state models. The semantics section determines the

object's use of previously defined mapping-constraints which may he classed as affc'ctivr, effLctive, both

affective and effective or exclusively affects.

Attributes

i StateModels

MetaObjects -'ý; } _
Semantics - ;} [T} { Instance

Object --0W

Messages -
'gyp}

- Instance
:. 7i.

OD

Handlers +

Figure 30ISML Meta-object

68
ik

-Fn
ntt

One instance of an MC or AE class may be instantiated in the definition. In the partially complete

example below, a `desktop' object is specified:

<Object Name="desktop">
<Attributes> </Attributes>
<StateModels> </StateModels>

<Semantics>

</Semantics>

<Messages>

</Messages>

</Object>

<Instance Name-"desktopowns"
ImplementsMC-"owns" Qualifier-"XAFFECTS"/>

<Instance Names"desktopContains"
ImplementsMC-"contains" Qualifier-"AFFECTS"/>

<Instance Name-" desktopROAction"
ImplementsAE="RequestOwnershipAction"
Qualifier="EFFECTS"/>

<Instance Name="desktopRFAction"
ImplementsAE="RequestFreedomAction"
Qualifier="EFFECTS"/>

<Instance Names"desktopAOAction"
ImplementsAE="ACceptOwnershipAction"
Qualifier="EFFECTS"/>

Here, the desktop's semantics are (i) exclusive, affective ownership and (ii) affective containment. Both

MCs affect objects contained within their sets16 but since no effective relationship has been declared other

objects cannot own the desktop. All three messages (described above) are effective to the desktop, which

is to say that the desktop object will respond to these specific actions by other objects through its

handlers.

16 To qualify: objects in these sets must be legal `effectees' of this MC, (specified in their semantics part).

69

6.3.4 HANDLER

An object reacts to action-events communicated to it through the execution of zero or many MC set

operations or tests or any number of procedurally specified mathematical operations.

cm o
c. r.

Figure 31 ISML Handler

6.3.5 MC SET OPERATORS

A small number of basic operations on MC sets are available to assist in the modelling of dynamic

metaphor behaviour - these include emptying, adding to, subtracting from and calling an AE class of

members within a set. Child elements named `target' or `source' are of' the type [)hje'ciSet (expanded

only once in Figure 32 for brevity).

r-ýFMW1

EmptySet - ý» - Taget - Jý}
IMPlH

O"Happy

TMget +
AddSet -ý r='

Source +

Tapet

Sulrtract5et -

Source

Target +

CaIIAE -- -ýýAEClass

ý-; -Parameter

Figure 32 LSML Mapping-constraint Ope/utinns

The focus of the set operation may be either a named set within the scope of the object the handler resides

within or in temporary result sets `happy' and `unhappy'. A `happy' set is filled with references to those

70

objects that evaluate true after an MC test expression (see section 6.3.6); the `unhappy' set is filled with

those objects that failed (every time an MC test expression is evaluated, the previous objects occupying

the result sets are removed). Action-events may also he issued to any member of locally scoped MC sets

although only objects that are legally able to accept them will receive notification of the action.

6.3.6 MC TEST EXPRESSIONS

Evaluating the condition of an MC set and the objects in it are possible through seven types of test, each

of which evaluates to either true or false and possibly generates references to objects in either the happy

or unhappy result sets. Objects within a set may be tested for a particular `state focus', specified as a state

name (string type) and the name of the state model (if the object has no such state model, the test is

considered a failure).

Figure 33 ISAIL Mapping-constraint test expressions

Class types may also be queried for a set such that those objects that are of that class are considered

successes. Each object may also be evaluated with respect to whether or not it is capable of affecting a

particular AE or being effected by it. Specific instances (as opposed to classes) of an object may be

evaluated using the `exists' test in which the object(s) of the source are sought in the target (the result is

only considered a success when all objects in the source are found). A test for emptiness of a particular

set is also provided, failure resulting in existing objects being placed in an `unhappy' result. Finally, the

71

satisfaction of any existing constraints within an MC may be tested; only objects satisfying all constraints

are placed in the `happy' result set.

Now that the potential properties of a handler have been reviewed, the definition of the `desktop' begun

earlier can be completed:

<Object Name="desktop">
<Attributes>

<Attribute Name="xPosition">
<Type Type="INTEGER"/>
<Access Type="RO"/>

</Attribute>
<Attribute Name="yPosition">

<Type Type="INTEGER"/>
<Access Type="RO"/>

</Attribute>
<Attribute Name="width">

<Type Type="INTEGER"/>

<Access Type="RO"/>

</Attribute>
<Attribute Name="height">

<Type Type="INTEGER"/>

<Access Type="RO"/>

</Attribute>
<Attribute Name="containedltems">

<Type Type="INTEGER"/>

<Access Type="RO"/>
</Attribute>
<Attribute Name-"floatingltems">

<Type Type="INTEGER"/>

<Access Type="RO"/>

</Attribute>
</Attributes>

In this simple direct manipulation example, the `desktop' will manage two object contexts, the first those

objects owned by its surface and the second objects inhabiting its `airspace'. Within the attribute part,
two integers have been declared to keep a count of the objects contained in both whilst the semantics

section declares MCs implementing these contexts (see Appendix G for the complete specification of this

example).

72

<StateModels>
<Chart Name="desktopStates">

<States>
<Node Name="empty"/>
<Node Name="containsThings"/>

</States>

<Transitions>
<Arc Name="recievesltems">
<AEOccur AEClass="AcceptOwnershipAction" Direction="EFFECTS"/>
</Arc>

<Arc Name="loosesAllltems">
<MCTest>

<IsEmpty>
<Set>

c/Transitions>

</Chart>
</StateModels>

</Set>
</IsEmpty>

</MCTest>
</Arc>

<Topology>

<MC>desktopOwns</MC>

<Network>
<Start>empty</Start>
<Arc>receivesltems</Arc>
<End>containsThings</End>

</Network>
<Network>

<Start>containsThings</Start>
<Arc>loosesAllitems</Arc>
<End>empty</End>

</Network>
</Topology>

The bi-state model for the desktop simply indicates whether the desktop surface context contains items or

not based on the Accept Ownership actions sent by other objects and the test for emptiness of the

desktop's ownership MC.

<Semantics>
<Instance Name="desktopOwns"
ImplementsMC="owns" Qualifier="XAFFECTS"/>

<Instance Name="desktopContains"
ImplementsMC-"contains" Qualifier="AFFECTS"/>

<Instance Name="desktopAirSpace"
ImplementsMC="withinAirspace" Qualifier="XAFFECTS"/>

</Semantics>

In addition to the two MCs `desktop Owns' and `desktop Contains' this desktop also now maintains

objects within an 'airspace' - space above the surface of the desktop, objects contained within which, are

rendered last in the implementation of the system (see section 6.5.1).

73

<Messages>
<Instance Name="desktopROAction"

ImplementsAE="RequestownershipAction"
Qualifier="EFFECTS"/>

<Instance Name="desktopRFAction"
ImplementsAE="RequestFreedomAction"
Qualifier="EFFECTS"/>

<Instance Name="desktopAOAction"
ImplementsAE""AcceptOwnershipAction"
Qualifier: "EFFECTS"/>

<Instance Name="desktopREAction"
ImplementsAE="RenderAction"
Qualifier="AFFECTS"/>

<Instance Name="desktopEASAction"
ImplementsAE=" EnterAirSpaceAction"
Qualifier="EFFECTS"/>

</Messages>

Two additional AEs appear in the messages part in the form of `Render Action' (this is used later in the

Interactor definition rather than a part of the metaphor model) and the `Enter Air Space' action (an

important part of the metaphor model, but actually applied at instantiation), see section 6.5.1.

74

<Handlers>
<Handler AEImplementation="desktopROAction">

<MCOperation>
<Ca11AE>

<Target>
<MC>desktopOwns</MC>

</Target>
<AEClass>RequestOwnershipAction</AEClass>
<Parameter>eventSender</Parameter>
<Parameter>x</Parameter>
<Parameter>y</Parameter>

</Ca11AE>
</MCOperation>

</Handler>

<Handler AElmplementation="desktopRFAction">
<MCOperation>

<SubtractSet>
<Target>

<MC>desktopOwns</MC>
</Target>
<Source>

<MC>eventSender</MC>
</Source>

</SubtractSet>
</MCOperation>
<Code>

<Statement>ownedItems--; </Statement>
</Code>

</Handler>

<Handler AElmplementation="desktopAOAction">
<MCOperation>

<AddSet>
<Target>

<MC>desktopOwns</MC>
</Target>
<Source>

<MC>objects</MC>
</Source>

</AddSet>
</MCOperation>
<Code>

<Statement>ownedItems++; </Statement>
</Code>

</Handler>

<Handler AElmplementation="desktopEASAction">
<MCOperation>

<AddSet>
<Target>

<MC>desktopAirSpace</MC>
</Target>
<Source>

<MC>eventSender</MC>
</Source>

</AddSet>
</MCoperation>
<Code>

<Statement>floatingItems++; </Statement>
</Code>

</Handler>
</Handlers>

</Object>

Four handlers collectively specify the behaviour of the simple manipulation of objects into and out of the

desktop ownership context. Requests for object ownership are passed to the objects owned by the

desktop - the desktop cannot be owned itself. An object requesting freedom from the desktop is removed
from the ownership MC, whilst those requesting ownership are added. Objects entering the airspace are

added in the same way.

75

To complete the simple direct manipulation model, a generic desktop object `deskObject' and a pointing

object `pointerObject' must also be defined. Instead of fully listing the specification here, the parts

salient to the overall model in each object are described in brief (see Appendix G for the complete

specification).

6.3.7 THE GENERIC DESKTOP OBJECT

This object may be owned, contained and held by others but cannot do so itself. It may receive requests
for ownership and in doing so request freedom from its current owner, as specified in the handler below:

<Handlers>
cHandler AElmplementation="deskObjectROAction">

<MCOperation>
cCallAE>

<Target>
<MC Affector""true">deskObjectOwned</MC>

</Target>
<AEClass>RequestFreedomAction</AEClass>
<Parameter>ME</Parameter>

</CallAE>
</MCOperation>
<MCOperation>

<Ca11AE>
<Target>

<MC>eventSender</MC>
</Target>
<AEClass>AcceptOwnershipAction</AEClass>
<Parameter>ME</Parameter,

</Ca11AE>
</MCoperation>

</Handler>
</Handlers>

A qualifier "Affector = true" determines that the AE being called is directed to the object(s) exerting the
MC on this object.

6.3.8 THE POINTING OBJECT

Key behaviour of the pointing object is to pick up an object and then release it and is primarily specified
in the state model:

Picking

Pick Action
Up Next

Empty Full

Next rop Action
P utting J1

Figure 34 Pointing object state model

76

Transitions between the states are either transient ('Next' has no rule) or based on the value of the

pointer's action attribute and the condition of the `ownership' MC:

<Arc Name="pickAction">
<RuleStatement>

<Rule>
<Statement>(pointerAction == 1)</Statement>

</Rule>
</RuleStatement>
<MCTest Logic="AND">

<IsEmpty>
<Set>

</Set>
</IsEmpty>

</MCTest>
</Arc>

<MC>pointerObjectOwns</MC>

<Arc Name="dropAction">
<RuleStatement>

<Rule>
<Statement>(pointerAction -- 0)</Statement>

</Rule>
</RuleStatement>
<MCTest Logic="AND" Negate="NOT">

<IsEmpty>
<Set>

cMC>pointerObjectOwns</MC>
</Set>

</IsEmpty>
</MCTest>

</Arc>

Rules in transitions may be logically concatenated and negated, evaluating pairs from the start of the list.

The `Pick Action' transition will fire if the pointer action is 1 and the ownership MC set is currently

empty. Conversely, if the pointer action attribute is zero and the ownership set is not empty, the `Drop

Action' transition will fire. On entering the state of `Picking Up', the pointer sends a request for

ownership to the object whose ̀ airspace' it currently resides in - the desktop (the pointer set to belong to

this `airspace' later in the system set-up, see section 6.5.3).

77

<Node Name="pickingilp">
<FireStatements>

<MCOperation>
<CallAE>

<Target>
<MC Affector="true">pointerlnAirSpace</MC>

</Target>

<AEC1ass>RequestOwnershipAction</AEC1ass>
<Parameter>ME</Parameter>
<Parameter>x</Parameter>
<Parameter>y</Parameter>

</Ca11AE>
</MCOperation>

</FireStatements>
</Node>

cNode Name="puttingDown">
. cFireStatements>

<MCOperation>
<CallAE>

<Target>
<MC Affector. 'true'>pointerlnAirSpace</MC>

</Target>
<AEC1ass>AcceptOwnershipAction</AEC1ass3,

<Parameter>pointerObjectOwns</Parameter>
</Ca11AE>

</MCoperation>
<MCOperation>

<EmptySet>
<Target>

<MC>pointerObjectOwns</MC>
</Target>

</EmptySet>
</MCOperation>
<MCOperation>

<EmptySet>
<Target>

<MC>pointerObjectHolds</MC>
</Target>

</EmptySet>
</MCOperation>

</FireStatements>
</Nodes

Finally, whilst dropping the currently held object, the pointer sends a request for acceptance of ownership'

of its held item and then empties references to that item from both its ownership and holding mapping.

constraint sets.

6.4 Meta-Interactor definition

The ISML Meta-object part concludes with definitions of interactor types based on the meta-objects

already defined for use in the proceeding part of the specification. Interactors will actualise some or all of

the properties of the metaphor model at the user interface through the inheritance of meta-object

abstractions. This is achieved by defining display and controller types and binding them with a meta-

object.

78

MappingsAndConstr aims

AdionEvetrts

MetaOblects

Displayparts - -' ý; } - Display - -} - Abstractl0
ISMLMetaObjeds

0m1a

CorrtrollerParts --ý; } - Cor troller - -ý; } - MCA[

Om1m

Abstraction

InteraclorDefinition --ý;
}

- MetalMeractor
`0 m

J; } - DCParts

1m

Figure 35 ISML Meta-Interactor dcfInition

6.4.1 DISPLAY AND CONTROLLER PARTS

Each display part is simply a tuple of one or many named abstract input/output channels that will later be

bound to a `concrete' component (see section 6.5.1). Two display parts are named here, the second being

more interesting as it will be used to bind the mouse device and image components together.

<Display Name="simpleDisplay">

<AbstractlO Name="simplePart"/>

</Display>

<Display Name=" compoundDisplay">

<AbstractlO Name="inputPart"/>

<AbstractlO Name="outputPart"/>

</Display>

Controllers are also simple tuples, collecting together one or many previously specified MC and AE

definitions.

<Controller Name=" globalController">

<MCAE MCAERef="ownes"/>

<MCAE MCAERef="contains"/>

<MCAE MCAERef="holds"/>

<MCAE MCAERef=" withinAirSpace"/>

<MCAE MCAERef=" RequestOwnershipAction"/>

<MCAE MCAERef=" RequestFreedomAction"/>

<MCAE MCAERef=" AcceptOwnershipAction"/>

</Controller>

In the example given above, a global controller has been defined to manage all of the MCs and AEs

already presented. This is a somewhat clumsy means of defining control for an interactor; it may be more

desirable to specify a variety of controllers that exert particular types of management, such as for

ownership and containment.

79

6.4.2 META-INTERACTOR DEFINITION

Once the display and controller parts have been specified, it is possible to define meta-interactor types -
these are objects that will be used as the basis for interactor definitions proper in the Interactors part of the

ISML framework. Each type must implement only one meta-object and one or many display or controller

parts.

<MetaInteractor Name="desktopMl">

<Abstraction Name="abstraction" ImplementsObject="desktop"/>

<DCParts Name="desktopDisplay" ImplementsDC="simpleDisplay"/>

<DCParts Name="desktopController" ImplementsDC="globalController"/>
</MetaInteractor>

Above, `desktopMI' implements the desktop meta-object and uses the simple display and global

controller'. Other meta-interactor definitions for the direct-manipulation example can be found in

Appendix G.

6.5 Interactors

Specific details regarding the presentation of the metaphor and its links with a design solution for a

particular problem are specified in the interactor part of ISMI,. An interactor definition must be based on

a previously defined meta-interactor object and may be extended with problem specific abstractions using
locally scoped attribute and state models.

InleradorDeclarrtions -

UmUm

ISML uderactors -

Lt System

Figure 36 ISML Interactor FIGURE LSML14

I' In fact, one of the members of the controller does not apply to the desktop making this a poor specification. I Iowever, for the
sake of brevity and since the controller does not play an important role in this very simple example, this is noted but overlooked.

80

6.5.1 DISPLAY AND ATTRIBUTE BINDING

Display binding allows the mapping of previously defined components to abstract display parts (at

present this is static). The desktop object uses the basic graphics component ̀ user display' as a concrete
basis for the abstract ̀ simple part' of its display.

<Interactor Name="desktopInteractor" ImplementsMI="deskObjectMI">

<StateModels>

</StateModels>
<DisplayBinding

<Handlers>

</Handlers>
</Interactor>

DisplayPart="desktopDisplay"
DisplayAbstractIO="simplePart"
ImplementsComponent="userDisplay"/>

In the partially specified `pointer interactor' example below, the display parts are bound to input and

output components respectively, effectively combining the two component behaviours into a cohesive

object that behaves like a desktop mouse.

<Interactor Name="pointerlnteractor" ImplementsMl="pointerMl">

<StateModels>

c/StateModels>

<DisplayBinding

<DisplayBinding

<Handlers>

</Handlers>

</Znteractor>

DisplayAbstractIO="pointerlO"
DisplayPart="inputPart"
ImplementsComponent="desktopMouse"/>

DisplayAbstractlO="pointerlO"
DisplayPart-"outputPart"
ImplementsComponent="desktopMouselmage"/>

Once an association between the abstract display part and a component has been established, attribute

bindings allow bi-directional mappings from the interactor abstraction to the concrete component. Now

the generic `deskObject' previously defined in the meta-object part is refined as a `file' object for use in

the desktop environment. Once again, the `simple part' display is used but this time for a component

called `desktop file icon'. More interestingly, however, the attributes of this component are targets for the

abstract co-ordinates of the base meta-object for this interactor class (xPosition and yPosition).

81

<interactor Name-NfileObjectlnteractor" ImplementsMI-OdeskobjectMl*>
<Attributes>

</Attributes>

<DisplayBinding DisplayPart="deskObjectDisplay"
DisplayAbstractlO-"simplePart"
ImplementsComponent="desktopFilelcon"/>

<AttributeBinding Direction="AFFECTIVE"
InteractorAttribute="xPosition"
Displaypart="deskObjectDisplay"
AbstractIO="simplePart"
Ab stractIOAttribute="xPosition"/>

<AttributeBinding Direction-"AFFECTIVE"
InteractorAttribute="yPosition"
DisplayPart-"deskObjectDisplay"
AbstractlO-"simplePart"
AbstractIOAttribute="yPosition"/z.

<Handlers>

</Handlers>
</Interactor>

The effect of this mapping is the partial actualisation of parts of the metaphor model into a specific design

representation. Component mapping suffices to describe the appearance of the interactive objects but

additional logic must be introduced into the interactor design to complete the realisation. To achieve the

effect of a conventional, two-dimensional representation of a simple direct manipulation environment, the

order of rendering must be managed such that objects are drawn on top of the desktop surface and the

pointing device on top of these. Action-events specified in the meta-object part fall into three implicit

categories: those that are used solely in the metaphor model; those that are used in the metaphor and the

interactor model; those that are exclusive to the interactor model.

In order to complete the simple environment, two additional AEs not used in the metaphor model,

`Render Action' and `Give Me Pixels' are utilised by interactors (the impact of the use of AEs in this

manner is discussed further in section 7).

82

<Node Name="alwaysOn">
<FireStatements>

<MCOperation>
<CallAE>

<Target><MC> ME </MC></Target>
<AEClass> RenderAction </AEClass>

</Ca11AE>
</MCOperation>

cMCOperation>
<CallAE>

<Target><MC> desktopOwns </MC></Target>
<AEClass> RenderAction </AEClass>

</Ca11AE>
</MCOperation>

cMCOperation>
<Ca11AE>

<Target><MC> desktopAirSpace</MC></Target>

<AEClass>RenderAction</AEClass>
</Ca11AE>

</MCOperation>

</FireStatements>
c/Node>

Above, an excerpt from the single node state model within the interactor desktop object specifies ̀ Render

Action' calls to three specific interactor groups. The first is a call to itself ('ME', the desktop), the second

to all objects owned by the desktop and the third to objects within the desktop's airspace.

6.5.2 HANDLERS

All of the objects in this interactor model use the AE `Render Action' to specify render statements that

affect the mapped component rendering (determined by its current render focus - see section 6.2). The

render action AE for the pointer object is shown below:

<Handle Name="pointerObjectREAction">
<Render Displaypart="pointerlO" AbstractIO="outputPart"/>

</Handle>

The remaining logic required for the interactor part is an example of dynamic re-targeting of abstract
display parts (and consequently their associated components) to the context of another interactor's

display.

<Handle Name="desktopGMPAction">
<Retarget DisplayType="simpleDisplay">

<Source MC="eventSender"/>

<Target Displaypart="desktopDisplay"/>
</Retarget>

</Handle>

Re-targeting is only successful if all interactors in the source MC have a display part or parts of the type

specified by `display type' in the source element and the target element's `display part' is also of the same

type. Successful re-targeting maps all source interactor display parts to the single display part specified

83

by the target. The effect of this is that any components associated with source display parts with re-

targetable devices then use the targeted device of the component associated with <Target
DisplayPart="desktopDisplay"/>.

6.5.3 SYSTEM SET-UP

The interactor part of the ISML framework concludes with concrete instances of the interactive system to

be instantiated within the `system inventory' and any number of procedural set-up instructions that are

executed at start-up.

it} - Instance

ocr,
System -

Setup - J; } - Ststement

1m

Figure 37 LSML 5isieni
. crt up

<System>
<Inventory>
<Instance Implementslnteractor="desktopinteractor" Name="myDesktop"
<Instance Implementslnteractor="pointerInteractor" Name: ^myPointer"/>

<Instance Implementslnteractor="fileObjectlnteractor" Name-"myF:: e^'.
</Inventory>

<SetUp>
<Statement>myFile->xPosition = 50; </Statement'
<Statement>myFile->yPosition = 50; </Statement'
<Statement>myDesktop->desktopEASAction(myMouse); </Statement>
<Statement>myDesktop->desktopAOAction(myFile); </Statement>
<Statement>myDesktop->desktopGMPAction(myMouse); </Statement,
<Statement>myDesktop->desktopGMPAction(myFile); -/Statement.

</SetUp>
</System>

An instance of each of the interactor definitions is created in the example above, followed by specifying

some initial attributes. In set-up, action-events may also he called to initialise the expected conditions of
both the metaphor and interactor models: the mouse enters desktop airspace, 'myFilc' becomes owned by

the desktop and finally, device context re-targeting is declared.

y

`ýý`:

84

6.6 Tasks

Parts `devices', 'components', `meta-objects' and 'interactors' have so fair encapsulated the appearance

and behaviour of objects with respect to an interface design realisation'8 and potential metaphor

behaviour that carries it, but so far without reference to the tasks that it might support. The ISMI, 'task

world' re-uses the basic meta-object features to describe extant task related entities and their role within a

hierarchical description of tasks.

MappingsAndConstraints

ActionEvents fR

ISMLTaskWorld--»-ý] TaskObjects

TaskHierarchy Li

start C

Figure 38 ISML Task world

Objects, MCs and AEs can maintain a high level of abstraction since the mapping from task to an actual

interface design solution does not follow the same path as a derived interactor solution. Actions on

objects are specified in the same way as described earlier (see section 6.3.2) but in addition, a 'user'

object is specified:

This tenn is used deliberately. A complete 'interactiv'e system design' extends beyond that which the ISML framework
provides.

85

<Object Name="taskUser">
<Attributes>

</Attributes>
<StateModels/>
<Semantics>

<Instance Name="userHolds"
ImplementsMC="taskHolds"
Qualifier="AFFECTS"/>

</Semantics>

<Messages>
<Instance Name="userPickUp"
ImplementsAE="taskPickUp" Qualifier="AFFECTS"/>

<Instance Name="userRelease"
ImplementsAE="taskRelease" Qualifier="BOTH"/>

</Messages>

<Handlers>
<Handler AElmplementation="userRelease">

<MCOperation>
<AddSet>

<Target>
<MC>userHolds</MC>

</Target>
<Source>

<MC>object</MC>
</Source>

</AddSet>
</MCOperation>
<Code>

<Statement>actionCount ++; </Statement,
</Code>

</Handler>
</Handlers>

</Object>

The simple task world used in this example requires that users pick up and release an object from their

desk a certain number of times to complete their task. A small collection of MCs and AEs are defined to

model this behaviour (see Appendix G). Affective actions of the user are specified in the task hierarchy

rather than in a state model; the effect of the desktop releasing an object to the user is described in the

event handler. The attribute `action Count' is used to monitor the number of times the user has picked up

an object and is used in a rule for the task model.

6.1 TASK HIERARCHY

An ISML task tree consists of one or many task nodes, each of which may refer to zero or many actions

performed by one object upon another. These action sequences may be repeated many times, exiting on

the evaluation of `true' of either an MC test or a conditional statement relating to an object's attributes.
One or more `node lists' sequences defines a series of nodes by specifying their ID, followed by either
`ENABLES' (completion of this task is then followed by the next in sequence) or alternatively `OR' (this

task is optional and the next in sequence is immediately available).

86

Adios -- --. - Prrams

Task IIodea - ;}- flode - -, --- -0

1 q,
MCTest +

TaskHierarclry --- Code +

Sequences - ;} IlodeList - Tankfirm

1 ao D co

Figure 39 JSML Task hier"arch. v

Each node list may optionally specify a parent node; only one node list may contain no parent indicating

that it is the tree root. In specifying the simple `pick up and drop' task, the task tree in Figure 40 is

constructed. Arranging a desk is simply a matter of picking an item, moving it and then release it.

Arrange desk

Pick Up Item II Move Item II Release Item

Fk ure 40 Simple task tree

Below is the complete specification for the task tree specifying nodes top-down, left to right. Actions are

specified for the user in nodes `Pick Up Item' and `Release Item' whilst iterating conditions maintain task

persistency for moving an item (the user has something in his/her hand) and completion of the overall

task (the user has moved an object more than twice).

87

<TaskHierarchy>
<TaskNodes>

<Node Name="ArrangeDesk">

<Iterate SourceTaskObject="taskUser">
<Code>

<Statement>(taskCount > 2t</Statement,

</Code>
</Iterate>

</Node>

<Node Name="PickUpltem">
<Action SourceObject="taskUser"

TargetObject="taskDesktop"
TargetAE="taskPickUp"/>

</Node>

<Node Name="Moveltem">
<Iterate SourceTaskObject="taskUser" Log. c="NOT">

<MCTest>

<IsEmpty>
<Set>

</Set>
</IsEmpty>

</MCTest>
</Iterate>

<MC>userHolds</MC>

</Node>

<Node Name="Releaseltem">
<Action SourceObject="task, User"
TargetObject="taskDesktop" TargetAE="taskRelease">
<Params Name="userHolds" Type="SET"/>
</Action>

</Node>
</TaskNodes>

<Sequences>
<NodeList ParentNode="ArrangeDesk">

<Taskltem NodeRef="PickUpltem"/>

<TaskItem NodeRef="Moveltem"/>

<Taskltem NodeRef="Releaseltem"/>

</NodeList>

<NodeList>
<TaskItem NodeRef="ArrangeDesk"/>

</NodeList>
</Sequences>

</TaskHierarchy>

6.2 METAPHOR MAP

Mappings between the task and interface model are specified through the metaphor map. Two types of

mapping may be specified: mappings between objects and mappings between action-events.

AttrihirteMap
ObjectMap -; Js}

StateMa 0 MetaphorMap - ý; } -

0 co ActýonMap -- Implemetrts

1 as

Figure 41 ISML Metaphor map

88

Both types relate task objects and actions to the interactor specification. The advantage of mapping to

the interactor abstraction rather than to the underlying metaphor model is two-fold. Firstly, tasks are

related directly to a design solution rather than just the metaphor and secondly, the relationship between

task and metaphor can be indirectly traced through the interactor types used to enact the interaction.

<MetaphorMap>
<ObjectMap TaskObject="taskDesktop" TargetInteractor="desktopinteractor"/>

<ObjectMap TaskObject="taskFile" TargetInteractor="fileObjectlnteractor">
AttributeMap Source="taskFileName" Target="fileName"/>

</ObjectMap>

Object maps indicate analogies between task objects and interactor based representations. These may be

simple name-space mappings (as seen in the first example above) in which no specific abstractions are

mapped or more detailed relationships in which attributes or specific states are considered equivalent (see

second map).

<ACtionMap TaskObject="taskDesktop" TaskAE-"taskPickUp" Qualifier-"EFFECTS">

<Implements Targetlnteractor="desktoplnteractor" TargetAE-"RequestOwnershipAction"
Qualifier="EFFECTS"/>
</ActionMap>

<ActionMap TaskObject="taskDesktop" TaskAE="taskRelease" Qualifiers"AFFECTS">

<Implements Targetlnteractor="desktoplnteractor" TargetAE="AcceptOwnershipAction"
Qualifier="AFFECTS"/>

</ActionMap>

<ActionMap TaskObject="taskDesktop" TaskAE="taskRelease" Qualifier="EFFECTS">

<Implements TargetInteractor="desktopInteractor" TargetAE-"AcceptOwnershipAction"
Qualifier="EFFECTS"/>

</ActionMap>

</MetaphorMap>

Action maps relate operations in the task world with those interactively executed through interactor types.

In the above example fragment, the AEs formed for the `task world' desktop are mapped to the interactor

equivalents - note that the affective and effective qualifiers must be specified for the target and the source.

7. Discussion

During the course of this chapter, a simple, direct manipulation system and related task model was

specified. The example has been used to illustrate most of the features of the ISML framework, but it

cannot be used to validate the language convincingly. In chapter 6, the results of an initial prototyping

phase of a larger scale project is used as the basis for a more realistically scaled project. Despite its

relative simplicity, the example provided here can be considered as a plausible basis for more realistic

`desktop' systems since the basic mechanisms for pointing, selecting, dragging and dropping have been

89

demonstrated. In constructing this facility, a number of issues regarding the use of ISML, particularly.

with respect to the separation of metaphor from interface design, have emerged.

One of the most striking features of this example specification is the number of pages required to describe

a very simple interactive system which is 1138 lines long (see appendix G). There are various possible

explanations to this problem, including notational issues and ISML concept limitations. A penalty for

using XML to both describe the ISML grammar and write specifications is readability of the text. This is

particularly problematic with respect to specifying mathematical and logical statements since they do not
lend themselves well to the declarative form of XML. Balanced against this, XML is useful since a

growing number of writing tools and parsers already exist which makes the ISML framework more

accessible to the development community. Basic `well-formed' tests are also built into the algorithms

that verify the grammar of ISML and the documents written using its framework. Such tests are useful in

automatically determining whether the minimal elements required in any ISML specification exist and, to

a certain extent, of what type they should be.

At present, ISML does not support some of the more advanced data concepts enjoyed by other

specification and programming languages, most notably data structures and object-orientation (with the

exception of meta-object to interactor inheritance). This inevitably leads to unnecessary redundancy and
is an issue that needs to be addressed in the future - device, component, meta-object and interactor

definitions could all be potentially more manageable by implementing this feature. State models would

also benefit by the extension of the statechart framework Harel (1987) in which parallelism and state-

expansion also reduce scaling problems. Currently, ISML only supports parallel, independent state

models without state expansion (i. e., states may not contain child states).

With respect to the de-coupling of the metaphor model, the simple, direct manipulation example

highlights an uncomfortable conceptual stance in that some consideration to implementation creeps into

the meta-object part. Specifically, two AEs 'Render Action' and 'Give Me Pixels' were declared (although

not actively used) and assigned in the semantics for each of the meta-objects. Neither of these AEs play a

relevant role in what is arguably the core of the direct manipulation environment, but both are required to

provide a framework within which the interactor solution can provide a realisation. This problem may

grow as the size, number or complexity of the metaphor models increase, leaving a question mark over

the practicality of abstracting a metaphor model without specific reference to its eventual realisation.

90

8. Conclusions

Contemporary research in the model-based community is working toward a set of models that capture

useful and diverse aspects of interactive system design. Ideally, each contributing model is at a level of

abstraction suitable for its intended developers, has minimal commitment to implementation issues and

can be integrated into an over-all framework for interactive system design. ISML contributes another

perspective on integration of models, but does not solve this problem. There are many aspects of the

language which require refinement or extension; some perspectives on interactive system design are

entirely missing, such as user models or contemporary software engineering concepts such as class

hierarchies and entity relationships. It may be possible to include these into the framework at a later date,

but before doing so further investigation is required to determine the validity of the basic premise that

explicit metaphor modelling is possible, practical or indeed, desirable.

91

BLANK IN ORIGINAL

CHAPTER 5 Urban Shout Cast case study

1. Introduction

This chapter describes a six month case study conducted with two final year undergraduate software

engineering groups, each independently working on a multimedia project entitled `Urban Sound Cast'

(USC). The USC case study was created to evaluate ISML within the context of a more realistic user

interface design project than the example previously considered. The purpose of the case study was two-

fold: firstly to gather design data for the specification of a larger user interface design (see chapter 6) and

secondly to examine the utility and practicality of ISML within a real software design project. During the

course of the case study a series of meetings, held separately with each group, took place to discuss

design decisions and elicit data to be used for the specification of the USC system using ISML. Towards

the end of the project, the engineers were encouraged to discuss their experiences with the project,

specifically relating to the use of ISML as a means of conceptualising and specifying their interface

design. What follows is a brief outline of the USC project proposal and the participants; a review of the

case study life cycle; a qualitative analysis of the project based in grounded theory Glaser and Strauss

(1967) and a discussion of the lessons learned from the case study. The specification of the USC

prototype is addressed in chapter 6.

2. Research method

The interface specification meta-language is new and unique in its organisation of HCI design concepts;

as such it can be regarded as a `prototype' language that requires testing and evaluation. Presently, ISML

is in almost the earliest stage of development that any such enterprise can be. Even so, the XML

expression of the ISML framework is already complex and specifications for even small examples are

substantial (as chapter 4 demonstrates). Arguably, the concepts and relations in the ISML framework are

independent of their expression in a language (indeed, a BNF version of ISML was created based on the

ANSI C grammar Degener (1995), but later abandoned). Given these constraints, it is important to

consider the potential evaluation strategies available and identify that which is most appropriate for the

evaluation of ISML.

A range of evaluation techniques is already used within the HCI community including experimental

laboratory, field-based observation, heuristic and model-based evaluation Dix et al. (1998). Laboratory

experimentation is inappropriate simply because the number of confounding influences is enormous in a

real-world design context. Whilst progression in the MB-UID community is considerable, rules have yet

93

to appear that govern the development of model-based languages for GUI design, ruling out both the
heuristic and model-based approaches.

In evaluating model or interactor based specification languages, it is typical to find examples in the
literature of small-scale component examples (such as input device simulation or simple buttons and
forms) to demonstrate the potential application of the language or toolkit. The ability to verify

reachability, feedback and reversibility in a design is a desirable analytical feature during specification of

an interactive system Jambon et al. (1999). A number of the languages reviewed here have a formal

underpinning (such as Petri-net models or a temporal algebra, see chapter 3) that offers verification

methods to test such properties of potential models. Conceivably, some mathematical verification of the

properties of the ISML could be applied but this approach would have little to say regarding the usability

and practical application of ISML concepts within a real software development project.

Whilst larger case studies can also be found in the literature Markopoulos et al. (1999), Sage and Johnson

(1998), reports on the use, impact and acceptance of specification languages and model-based approaches

within a software engineering environment are few Markopoulos et al. (1998). Arguably, a design

notation, regardless of its formal rigour, will be of limited benefit to a software engineering team if they

are unable to express their ideas whilst using the formalism. There may be many potential reasons for-

this, including the need for special training, a lack of support for particular concepts within the design

notation or problems with the level of abstraction or complexity.

For these reasons research objective 3, an assessment of the effect that an abstracted metaphor layer

would have on design, was chosen rather than analysing the language itself. It can be further argued that

an evaluation of the current structure of the ISML with designers also provides important feedback with

respect to further development of the language. Without feedback from such an evaluation, it would be

impossible to tell whether or not the concepts embodied in the language are useful in GUI design. Based

on these evaluation requirements, a qualitative, case study based approach was identified as being a

potentially fruitful means of gaining insights into the use of ISML within a software engineering project.

3. Qualitative research method

3.1 Brief introduction to qualitative research

The description and theory of some aspects of human behaviour, particularly where there are

sophisticated interactions between individuals in complex environments, led to the evolution of

qualitative research methods in the psychological and social sciences. Qualitative research attempts to

build theories of human knowledge and behaviour in relation to a social context where it is unrealistic to

94

apply classical quantitative methods. It is argued that shared social concepts, behaviours and processes

exist in a real sense and may be `captured' by a variety of elicitation methods including semi-structured
interviews, observational recording and archival analysis Fielding and Lee (1998). Analysis and theory

building methods in qualitative analysis led to different forms of `knowledge claims' and it is not

surprising that there is still considerable controversy between these two outlooks on research Pidgeon

(1996). However, such a philosophical discussion is beyond the scope of this thesis. Despite its

criticisms, qualitative methods (such as ethnography) have been accepted in IICI Carroll (1997) and are
beginning to gain acceptance in the software engineering community Avison et al. (1999), Viller and
Sommerville (1999).

Little theoretical work exists on the usability of many of the specification languages and tools particular

to user interface design, so a formalised methodology that naturally lends itself as a basis for analysis was

not available. However, `action research' as a qualitative method for understanding software engineering

activities in context through participation and iterative reflection has been advocated by some researchers

Avison et al. (1999). This method demands an actively participatory design role on the part of the

researcher that enables him or her to reflect on context rich data within the development environment.
The general approach suggested by the action research method was considered a useful heuristic in

shaping the design discussions and general analysis method during the case study. Action research

promotes a collaborative, iterative and interactive approach to gathering data on field-based design

studies; the analyst and design team work together in understanding and solving problems. However, full

design and development participation on the part of the interviewer was not possible since the role of the

interviewer was strictly as the `customer' of the product. In the light of this, a more passive qualitative

methodology was adopted: the grounded theory approach Pidgeon (1996).

Historically, grounded theory was developed as a reaction to the quantitative inductive approach take by

the social sciences in the early part of the twentieth century Fielding and Lee (1998). Grounded theory is

an iterative process during which theories are generated and refined as textual data are codified and

organised into categories and relationships between them emerge. A variety of strategies for coding and

theory building can be found in the literature Kelle (1995), but the principles of description (often referred

to as open coding) and relationship building (referred to as axial coding) remain a constant feature

throughout. It is the nature of grounded theory to work within a general subject structure but with a

degree of flexibility that will allow the researcher to alter the direction of the interviews with subjects

where it is deemed appropriate. This gives the researcher the ability to reduce the time spent on unfruitful

avenues of exploration or to pursue more useful topics of discussion; a more detailed account of this

process is given in the analysis section.

95

3.2 ISML qualitative research questions

One of the strengths of the grounded theory method is that it allows the analyst to explore the behaviour

of a person or a social unit where there is no previously prescribed theoretical framework upon which a
data capture can be based. This is useful in the specific case of ISML, since it is new to the MB-UID

community. However, at least some basic structure must be defined such that the qualitative evaluation
has a focus likely to generate meaningful data with respect to the use of ISML within a user interface

design project. To this end, two broad directions for analysis are posed (and subsequently refined) to

address research objective 3:

Question 1: What are the reactions of developers to the use of ISML?

Questions 2: To what extent does ISML capture a design?

In this chapter, analysis question one is addressed through the application of a qualitative research method

used to examine the USC case study. Analysis question one is further sub-divided into two parts:

Part 1: How is a user interface metaphor developed within the ISML framework?

Part 2: What is the perceived utility and practicality of the application of ISML to design?

Sections 5.1-5.3 describes the analysis of the USC design meetings, examining how design ideas were

expressed and developed within the ISML framework, by each group. Issues regarding utility and

practicality are examined in section 5.4. Analysis question two is addressed in chapter 6.

The USC case study commenced adopting the grounded theory approach using a series of semi-structured

meetings. These were captured on digital mini-disc, converted to MP3 format audio files and transcribed

using custom software. To provide a structure for qualitative analysis, the ISML framework was used as

a basis for discussion during the course of the project, the expectation being that the framework would

present a platform upon which to relate the engineer's understanding of the design to concepts provided
by the ISML. Two of the major qualitative analysis software packages were reviewed in selecting a tool

to aid the analysis of the design meetings, these were N6 QSR (2002), and Atlas. ti Muhr (2002). These

packages share many features, however Atlas. ti was chosen because of its unique, graphical handling of

source documents and codes.

96

4. USC case study background

Final year undergraduate students on the software engineering management course at Bournemouth

university are expected to participate in a group project (involving four members) in which they bid for

ownership of a six month software project, outlined in brief by a pseudo company customer. The winning

groups work with the customer through requirements, specification, prototyping, design and testing

phases of the product. The company in the case study consisted of the author, acting as design and

software engineering liaison, and a university member of staff acting as manager. Each group of four

students was expected to have an understanding of the fundamental principles of IICI and have had

experience of prototyping user interfaces with a variety of user interface design tool kits. It was

anticipated that whilst both groups had training and industry experience of software engineering19 as well

as some basic HCI knowledge (both groups of four had one member who had chosen a final year module

in usability engineering), neither would have had extensive knowledge of interface specification

frameworks.

4.1 USC design problem

As a larger scale evaluation of ISML, it was considered a general requirement that the design problem

should necessarily feature relatively large degrees of freedom with regard to interface design,

implementation and most particularly, metaphor development. It has already been established that

metaphors are devices used to employ knowledge from one domain to explain the features of another and

it is for this reason that a problem domain was chosen that already has many potential analogical counter-

parts in the real world. In addition to these considerations, it was also desirable for the target problem

domain to be relatively novel so that existing, conventional solutions were not immediately apparent.

The central tenet of USC is that of a virtual radio broadcasting station, maintained by a number of

networked (LAN or Internet) PCs and controlled by co-operating users (or 'virtual broadcasters') within

the virtual environment. Virtual broadcasters working within this environment co-operate to produce a

show that is streamed to listener clients on the local area network or Internet. A user may act as either a

DJ, or as a producer - although only one producer role is permissible. Both DJs and producers were

expected to be able to play music, or produce sound by other means. However, the producer is said to

have executive control over what audio is broadcast to air, and at what point in time this occurs.

19 Students on this course spend their P year in an industrial, software engineering placement

97

At the outset of the case study, both groups were made aware that their main goal was to develop a

prototype system and that full audio streaming functionality was not a priority. In addition to this, a

requirement for this project was the development of novel and creative user interface solutions that

avoided the ubiquitous WIMP interface style. Both USC groups (referred to here as group I and group 4,

this numbering is an artefact of the SEM course programme) were presented with a project that had no

previous development history. In light of this fact and the absence of any specific interface design from

the customer, both groups began the project with a domain investigation through artefact collection

(photographs of existing hardware) and consultation with individuals working in local radio broadcasting

groups. Their initial investigation served as a basis for analysis of requirements and early design

discussions.

4.2 USC project life cycle

Throughout the project life cycle, the author (acting as USC customer) held a total of seven meetings2°

with each group to discuss general project matters (such as progression and technical issues) and phase-

specific issues. At the beginning of the project, each group estimated milestones that reflected the

waterfall development model. However, it became clear that by the end of the life cycle, both teams

were, in reality, adopting a strongly prototype oriented approach to design Sommerville (2001). Initially,

it was proposed that in order to accommodate the design teams' milestones, conventional requirements

and specification stages would be executed, followed by design and development phases during which an
ISML model would be constructed. Running in parallel with both design groups' development phases,

the interviewer conducted three main activities (see Figure 42).

Functional specification

Prototype build
Requirements

IIIIiII

month
October November December January February March

ISML introduction ISML elicitation

Figure 42 Interviewer activities

4.2.1 REQUIREMENTS

20 These occurred in varying frequency according to project phase (varying from 1-3 week intervals)

98

A series of meetings was held to develop and refine requirements for the prototype system in which the

high level functional and technical aspects of the system were discussed. In addition, the role of users as

DJs or producers and their interaction with the system (in terms of expected function) was broadly and

informally discussed. At this stage in the design life cycle, both teams were eliciting requirements from

the interviewer acting as the customer during which the design and deliverables of the prototype were

negotiable.

4.2.2 INTRODUCTION TO ISML

Subsequent to requirements gathering, both groups were introduced to the ISML framework over two

meetings. The high level framework was introduced followed up by a more detailed discussion of meta-

object, interactor and task model parts. Both teams were able to follow the ISML introduction but reacted

strongly against the request that they attempt to write parts of the ISML specification themselves with fill-

in forms provided by the interviewer. In each case, the team felt that a considerable amount of time and

effort would be required to complete this task (unsupervised by the interviewer) and that it would

significantly impact on their other development activities. For this reason a compromise had to be

negotiated - each group agreed to engage in elicitation meetings in which the interviewer would elicit

ISML models through a series of semi-structured interviews.

4.2.3 ISML ELICITATION

This last phase was used to gather design data suitable for the specification of the USC system and elicit

qualitative responses from the engineers regarding their understanding and reaction to the ISML

framework. Each group was taken through the same procedure (outlined in appendix B) in which data for

task, meta-object and interactor abstractions were captured in sequence21. At the beginning of each

session, the group was briefed on the nature of the abstraction they were constructing and reminded that

the exercise was neither a test of their intelligence nor a design assessment exercise.

21 Although for both groups there were occasions when the discussion temporarily returned to earlier elicitation stages

99

A high-level task model was interactively constructed by each group based on their experiences with the

radio station interviews they conducted at the beginning of the project. At this stage, the 3 main

objcctivcs were to:

1. Generate a task hierarchy

2. Identify the associated task objects

3. Verify any specific conditions or constraints associated with the tasks

A basic set of goals was established and then progressively refined into sub-goals and eventually actions.
Domain objects and potential actions directed toward each object from the DJ environment were then

enumerated. These objects and actions were then married up with the leaves of the task tree to specify

potential relationships between task and objects. Finally, each object was examined to identify any

attributes or states that may constrain the behaviour of either itself or other objects (including for

example, the DJ) within the task model. Any such occurrence was referred to as a `stop-iterate' condition

and identified as a situation in which an object and an associated task node modified or qualified the

normal sequence of actions.

Following the task model, the metaphor designs developed by each group were discussed. The following

objectives were addressed at this stage:

1. Identify principal metaphorical objects for use in USC

2. Identify actions associated with the objects

3. Identify potential mapping-constraints between objects

Initially, the group gave an informal description to each object identified. This included its basic features,

states and likely metaphorical mapping to the task model. Following this, relevant actions that would be

directed toward the object were considered. For each of these actions, two further issues were explored:

1) the focus of the action onto possible smaller, sub-ordinate parts of the object and b) any mappings or

constraints that were enforced as a result of that action. In this way, potential areas for expansion or

refinement were identified and the semantics of the interaction between objects revealed. An inverse

100

mapping of actions then took place in which those actions previously identified were mapped to their

potential sources (such as the DJ). Any resultant mappings or constraints for the source (the target having

been previously considered) were then specified. having completed this ̀ first cycle`, the attributes, states

and actions were then verified for each object and any sub-ordinate objects associated were subjected to

the same process described above.

In the last stage of the elicitation (conducted during the closing phases of the project) scrccn-shots from

the emerging prototypes were examined to identify the intcractors used to implement the metaphorical

objects developed by the team. The objectives here were to:

1. Specify input and output devices

2. Identify high-level interactors that implement the principal mcta-objccts

3. Identify the interactions used to enact actions

Objective one identified the physical hardware used by the prototype and the software development

environment used by each group to implement their system; this allowed the author to anticipate both the
basic types of interaction and the rendering capabilities of the final design. Each intcractor in the screen

shots was labelled and associated with the meta-object model (if possible). Inputs from the user (mostly

mouse based) and virtual actions executed in the implementation (mouse pointer movement, button clicks

and direct manipulations for example) were subsequently associated with the underlying meta-object

model, where appropriate. In a process similar to the meta-object refinement (see above), sub-ordinate
interactors that received the specific focus of an enacted action where identified Finally, those actions

and objects described within the group's implementation were associated with the task model in an

attempt to bind tasks, interactor implementation and the underlying mcta-objcct modcl.

In the latter stages of the meta-object and interactor design discussions, both groups were asked at the end

of each meeting to freely express their reactions to both the ISTIL framework and the specification

elicitation process, this is discussed in more detail in section 5.5. Throughout the course of these

meetings, data was captured both in the form of audio on mini-disc and on paper - mostly written by the
interviewer, but occasionally annotated by the group. After each meeting, the models created were

converted into electronic form by the interviewer. The purpose of this was to generate structured
`intermediary' design documentation for both the interviewer and the groups. This intermediary

documentation is a high-level, human readable description of the ISML concepts used by each group to

101

describe their designs. Its translation into the formal ISML expressed using XML was performed `off-

line', after the elicitation process had completed. In doing this, there was also the opportunity to identify

potential areas that required clarification or exploration for the next meeting. After completing the

elicitation, the intermediary models were compiled into a single document that was supplied to each

group; extracts from these documents are also used to discuss the designs of the USC prototype in chapter

6 (see appendix L for the complete intermediary documentation).

5. Post-project qualitative analysis

On the project deadline, both groups produced executable prototypes, user manuals and software

engineering documentation. The ISML elicitation produced a high-level task and meta-object model,

marked up screenshots indicating interactor implementation of the meta-models and a set of associations

between each. Eight meetings with each group were transcribed into separate documents totalling

approximately 37,000 words each. The large size of the transcribed data meant that some limitations had

to be imposed on the scope of the analysis to make the exercise practical. A preliminary examination of

the transcriptions suggested that phase two of the interview (ISML introduction) had little to contribute

since it was a mostly one-way tutorial of the language given by the interviewer. Phase one promised a

greater richness than this, but since it has a large functional and technical component and no discussion

set within the ISML framework, this too was eliminated leaving the final elicitation phase as being the

most likely to reveal interesting aspects of the design process.

5.1 Open coding

At the beginning of the qualitative analysis, it is typical to begin the process by looking for general

structures and categories to start to make sense of the data Fielding and Lee (1998). Simple mark-up

categories were applied to delineate basic features of the interviews including speaker identification,. ''

questions and `conjunctive phrases' (phrases that are just incidental, or simple affirmations or

disagreement statements without content). Following this, the classic problem of establishing categories,

of phrases Kelle (1995) emerged: attempts to categorise phrases at a high or low level proved too general

and time-consuming respectively. As a result of this process, two `middle ground' general categories

suggested a more useful starting point. Phrases that discussed ̀media objects' (such as CDs, tapes, media,

players and tracks) were referred to as media phrases whilst those which discussed DJ environment

related objects (such as the DJ or producer, the mixing desk and play list) were referred to as DJphrases. '

Having established these categories, it was possible to construct inventories of nouns associated with both'-

phrases and, using Atlas. ti, it was then possible to search through all phrases to verify the phrase types

already marked up and identify those that were missed.

102

It is common practice to make notes during open coding, and it is from the initial exploration of media

and DJ phrases that other open category codes began to emerge, which include:

Phrase code Description Example
category
Media Discussion of media Is there a minidisk device?

objects
Yes. And perhaps a tape.

DJ Discussion of DJ objects The actual list itself, what does it comprise of, just a list of DJs In
order?

Yes. I mean, in the real world, you might have time slots as well...
Interface References to interface We've got this scroll bar here as well.
component components

These adverts are draggable.
General References to artefacts I don't know I would have thought I don't know, in a real DJ
interaction that can be manipulated environment, you'd have a button which you press? Perhaps you

have a twiddly knob where you tune into things?..
'Real world' References to real world I think she was saying that their adverts exist in books. Or am I

objects outside of the making a mistake there?
specific locus of the DJ
environment We represent it as adverts sitting in a book, and then you flick over

pages.
Task model References to discussions And then we've got this thing called play media, we need some

of the task model action for that.

You need to find the track, if we're still putting that in the...... Find
track .

Modelling References to ISML OK. So, let's call it music stopped. And, that particular condition is
modelling terms a condition of the track itself, isn't it?

Meta-design Discussion of the elicitation So the mixing desk, if we gave it a brief description, it would be?
and design process

What form of description?
Abstract References to abstract Would you be switching on sources, on and off? Or is that the

nouns such as 'sources' or function of the slider?
'inputs'

Sorry, I'm trying to separate the implementation from the ..
Prototype References to the This is still in the metaphorical thing?

prototype design or
implementation That's right, not necessarily what you've implemented.

Programming Programming terminology No, they're not? OK. So, what do those tracks, they represent
exactly the same ...

No, they're not MP3 or WAV data, they have a pointer to them like
a file name perhaps.

Software References to the software Is auto DJ part of the implementation?
Engineering engineering process

You'll have to check your requirements for that.
Computer References to computer I don't like the word write, because it could be printed.
software software

No I don't. Exactly. That's where I was going with it, I mean you
probably wouldn't write it nowadays. You'd stick it in a
spreadsheet.

Computer References to computer When you start the machine up, you need to index all the MP3s,
hardware hardware all the ID3 tags and all that. So that the user doesn't think it's not

doing anything, we bring that up.

Table 2 Open coding examples

103

Not surprisingly, any one phrase may have several over lapping codes. Finally, to get a broad picture of

possible interesting relationships between the phrase categories, a matrix of co-occurrences between the

phrase types and the appearance of individual phrase nouns from a specific category was assembled (see

appendix B).

From this summary of relative frequencies (across both groups) it is possible to observe a few general
distribution patterns. Most obviously, the highest degree of crossover in discussion is between the DJ and

media phrases. Notably high co-occurrences of DJ related nouns within modelling, abstract, task and -
meta-design phrases can be compared with fewer relating to the media objects themselves. Although less

frequent, a cluster of ISML modelling phrases coincide with abstract phrases, tasks and high-level design

process phrases (meta-design phrases).

5.2 Axial coding

The frequency analysis suggests a more detailed examination of primary media and DJ objects between

themselves, and with a secondary view to tasks and ISML modelling abstractions. The secondary view of
tasks and modelling abstractions was broken down by using the three elicitation stages conducted during

the case study as focuses for analysis. In this way, a separate view in each case can be compared and

contrasted. To do this, a preliminary list of the major objects discussed by both groups was created and

all individual references to them marked up as separate open codes. For each group, and for each

elicitation phase, a systematic search was conducted on each of the major media and DJ objects. A

conceptual graph was then constructed using the graphing facility in Atlas. ti in which quotes from the

group are clustered around the object codes, linked by arcs (see appendix D).

The nature of each object and its relationship with others can then be compiled from the linked quotations

whilst at the same time capturing other interesting features that relate specifically to the elicitation phase.

In the following sections, evidence collected from the graphs for each of the major objects discussed by

each group is summarised in table form, with individual references to transcripts indicated by a bracketed

number. This number refers to a quotation stored in the Atlas. ti files, an example of which can be seen
below:

(2: 426)
"Yes, you press the button and the button physically lights to indicate that that's-And perhaps even the sliders,
the sliders would activate a light... "

104

For brevity, quotations are summarised in this numeric form and presented in tables in the following

sections for tracibility. For a more detailed explanation of the data, generated during the analysis and

stored as notes in Atlas. ti, refer to appendix E.

5.2.1 THE DJ
Group 1 Group 4
Task phase Task phase
(1: 1330) (1: 1323) (1: 1304) (5: 1439) (5: 1438) (6: 564) (5: 1434) (5: 1436)

(5: 1428) (5: 404) (6: 564)
Meta-object phase Meta-object phase
(2: 1759) (2: 1762) (2: 1767) (2: 1766) (2: 1761)
(2: 1763) (3: 1160)

(7: 855) (8: 26) (7: 159) (8: 1301) (7: 117) (8: 231).
(7: 854) (7: 853) 7: 852 8: 1299 8: 1300 7: 125.

Interactor phase Interactor phase
(4: 960) (3: 1174) (4: 959) (4: 957) (8: 1316) (8: 358) (8: 1321) (9: 440) (8: 1317)

(8: 1319) (8: 1311) (8: 1314) (9: 439) (8: 1318)
8: 1315

Table 3 DJ evidence

5.2.1.1 Group 1 data

The DJ as a modelled entity is not highly specified throughout all the elicitation phases with group 1.

Most of the discussions regarding the task model referred implicitly to actions executed by the DJ upon

objects within his/her environment. The implicit actions of a DJ upon objects continues in the metaphor

elicitation -a small number of potential objects (such as paper letters) is suggested as mechanisms for

enabling some of the tasks that are later not supported in implementation. Other than actions, the only

significant model for the DJ is that of a hierarchy of responsibility for channelling music out to air:

broadcast sound is initiated by the DJ and then sent out to air by the producer. The interactor elicitation

phase reveals small changes in the graphical appearance of objects that make the DJ, an otherwise

implicit entity in the over-all prototype, more `visible'. This includes differentiation of the mixer desk

(for DJ or producer) and the appearance of DJ names under sliders.

5.2.1.2 Group 4 data

In contrast to group 1, the DJ stands out as a distinct entity from the beginning of the elicitation process

that not only exercises actions, but also has properties and relationships with other parts of the model

being discussed. During the task phase, the DJ is considered to be on or off air, have audio output and

volume and to sit within a broadcast hierarchy of a similar type discussed above. Group 4 recognise that

mixing DJ audio is a part of the task model but stipulate in advance that they would not be supporting this

aspect of the prototype22. Another assumption suggested by this group was that of the role of the play list

which rather than acting as a guide for the DJ, is viewed as a prescriptive list from which the DJ may not

22 In fact, in the end, both groups did not support continuous mixing in their prototypes.

105

deviate. Phase 2 of the elicitation process unpacks a "rather complex" DJ object that shares many of the.

properties already suggested in the task model and is also supplemented with a `profile' object. Initial

discussions of the profile by group 4 suggested that the profile was a container for the properties of the DJ

object - including his/her appearance within the environment. This de-coupling of the DJ object from its

properties was resolved later as implementation detail rather than important distinction at the metaphor
level. The final interactor elicitation sheds some light on the earlier contention between the DJ and DJ

profile distinctions: the DJ object is graphically represented in the DJ booth but is non-interactive; whilst
in the producer's environment the DJ object is an entity that is engaged by the producer. In the former

case, the graphic provides a visual representation of the DJ's properties (a `profile'), whereas the latter DJ

object (visually identical) is considered as an entity that interacts with both the producer and the

microphone.

5.2.1.3 Discussion

A clear difference between groups is apparent in the visibility and definition of the DJ within the

metaphor and interactor models. In all but small changes between producer and DJ interactor displays,

group I makes little attempt to include the DJ as an explicit part of the metaphor model. In comparison,

group 4 combines the views of a USC user acting as a DJ (or producer) with an object that acts like a

passive ̀ avatar' - an interactive entity that represents, but does not act on behalf of, the logged on user.
Arguably, group 1 does present images of the logged on users on a notice board object at the back of the

producer's room and as labels on the mixer desk. However, these indications of DJ presence are

modifications of other objects, rather than the appearance of a DJ object itself. Whilst this dichotomy of

views allows group 4 to strengthen the presentation of a shared environment to USC users, it also
introduces a metaphorical paradox: a DJ is simultaneously present in both his DJ booth and in the -

producer's room.

5.2.2 THE PRODUCER
Group 1 Group 4
Task phase Task phase

(5: 1424) (5: 1441) (5: 1435) (5: 497) (5: 1437)
(5: 1443)(5: 1444)(5: 404)(5: 1001)(5: 1440)
(6: 565)

Meta-object phase Meta-object phase
(7: 125) (7: 137) (7: 858) (7: 136) (7: 856) (8: 1301)
8: 1302 7: 859 7: 850 8: 1298

Interactor phase Interactor phase
6: 358 (8: 1322 8: 1316 (8: 1319) 8: 1320

Table 4 Producer evidence

5.2.2.1 Group 1 data

Constraints on the meeting arrangements combined with the time spent focusing on other aspects on the

prototype resulted in virtually no time to focus on the producer's part of the system during discussions

106

with group 1. However, aspects of the producer's role in the system can be found in the specialisation of

other objects within the environment, most particularly with respect to interaction with the mixer desk

(see section 5.2.7).

5.2.2.2 Group 4 data

The principal role of the producer in the task model discussed by group 4 is that of a controller. He or she

may place DJs on and off air and modify the audio properties of the sound generated by the DJ (expressed

as a hierarchy). A high-level discussion of communication mechanisms between DJs establishes the

assumption that DJs are located in different rooms and can communicate visually. Two types of list are

introduced in the task specification for the producer: collections of play lists and a show list. Group 4 use

terms familiar to them (a `browser') to describe how a producer might collect and arrange the play lists of

particular DJs, which, allocated with time-slots make up a list of DJs in a show list (see section 5.2.10).

A refinement of the basic task model is elicited in the meta-object phase in which the mechanism for

placing a DJ on or off air is described (see section 5.2.8 for more on this). Group 4 makes a subtle

distinction at this point between the audio properties of the DJ and the transient audio properties of the

sound being sent to `air', defined as ̀ output' from the DJ. Discussions on the implementation of virtual

rooms for DJs and producers, not modelled in earlier phases, clarifies many of the issues to do with DJ

and producer interaction. DJs appear to co-exist simultaneously in both their booth and within the

producer's room -a subversion of real world behaviour used to accommodate the microphone metaphor

(see section 5.2.8).

5.2.2.3 Discussion

Little comparison between groups can be made with respect to the producer, since the role is only referred

to indirectly during group l discussions. Despite this, similar general patterns can be found in both

groups' treatment of the producer by examining group 1's mixer model (see section 5.2.7). Specifically, a

hierarchical organisation emerges in both cases in which the producer has ultimate control over audio

output to air, manipulated via a mixing object. Group 4 extends beyond this basic model most notably

during the discussion of tasks. Here, a number of physical relationships are drawn up between the DJ and

producer to enable communication (such as line-of-sight visibility and hand gestures). These features did

not find any equivalence in the subsequent metaphor model or implemented prototype, although the use

of spatial features within the producer's environment is explored further in the show list discussion (see

section 5.2.10).

107

5.2.3 MEDIA OBJECTS
Group 1 Group 4
Task phase Task phase
(1: 16)(1: 1320)(1: 1302)(1: 1316) (5: 1409,5: 1412)(5: 1411)(6: 115)(6: 561)

(5: 1423)(5: 1423)(5: 1410)(6: 558)(6: 560)
(6: 104 6: 92.

Meta-object phase Meta-object phase
(2: 1732)(2: 1730)(2: 1734)(2: 1735)(2: 1742)
(2: 1738) (2: 1776

(8: 1288)(8: 1283)

Interactor phase Interactor phase
(4: 951) (4: 948) (4: 946) (4: 950) (4: 952) (4: 953)
(4: 950)(3: 1173)

(8: 1305) (9: 433) (8: 1306)

Table 5 Media objects evidence

5.2.3.1 Group 1 data

References to `media' or media objects such as CDs, mini discs and tapes change substantially, taking on
different roles during each of the three phases. During the task phase, there is some confusion over the

differentiation of media objects that contain media and the use of the play list as a method of recording a

selection of songs. Direction of actions such as "play" and "stop" towards a media player supports the

playing of tracks - music located at some physical position on the media object. As the group progresses

on to the meta-object stage they verify the relationship between media objects and tracks (a `hi-fi' object
is introduced). Although an agreed model is reached, the group then move away from this concept

arguing that even though they recognise the concepts as a metaphor model, their prototype is not intended

to support the actual physical objects themselves. Instead, one of the media objects, the CD, is put to use

as a metaphorical entity in a slightly different way - used to represent the play list. This is achieved by

the development of the `CD rack' which holds many CDs from which a DJ might choose a track, however

group 1 recognised that whilst this model holds true in the real world, it does ̀ not align' in the metaphor

model. The reasons for this perceived misalignment become clear during phase 3 in which the actual
implementation and mappings to the previously constructed task model take place. In fact the play list

holds MP3 objects (the media) and is used for selecting songs to play whilst the mixer desk acts as the

functional point for such actions as playing and stopping media.

5.2.3.2 Group 4 data

From the outset, group 4 recognise the relationship between media objects and tracks, however the

tension between this model and the appearance of tracks on the play list becomes apparent earlier in the

task phase rather than later in the meta-object discussions. Virtually no mention of media playing devices

is made at all, despite the discussion being focused on real-world tasks - the reason for this becomes clear
during phase 3 work. The concept of a media object as a `collection' of tracks is developed and the

creation of a play list is strongly tied into the selection of appropriate media objects. Meta-object

discussions reveal a sudden ̀ folding in' of the media object into the `track' for the same reasons as group

108

1- the group only intends to support `soft media' (digitally encoded audio found on the prototype

system's hard disk). During phase 3, the playing of media is executed by the operation of a small

collection of buttons that use graphical icons found on real world media players.

5.2.3.3 Discussion

In discussing media objects (such as CDs and mini-discs), both groups identified real-world relationships
between media players, storage units and the notion of tracks. The difference in clarity and application of

these relationships to their prototype design is noticeable between groups. During the exploration of the

task model, both groups suggest manipulation of media objects in conjunction with a player and guidance
from the play list. However, group 4 makes a relatively rapid departure from this model as they go on to

describe the metaphor model in which the isolation of the track concept and its appearance in the play list

emerges. In contrast, group 1 attempt to maintain some relationship with their task model by using a

media object to embody a similar kind of'play list and track' isolation. As a consequence, group 1 end up

using media object ideas to graphically suggest the nature of the play list. Ultimately, media objects
disappear entirely in the final prototype implementation.

5.2.4 THE PLAY LIST
Group 1 Group 4
Task phase Task phase
(1: 1296)(1: 1304)(1: 1308)(1: 1303)(1: 1298) (5: 1422) (5: 1438) (6: 115) (6: 561) (5: 1408) (5: 302)
(1: 1305) (1: 1310 -1: 1311) (2; 1745) (2: 1744) (5: 1423) (5: 1413) (6: 558) (6: 560) (6: 562) (6: 92)
(2: 1763) (2: 1746) (6: 566) (5: 1447) (5: 312) (5: 1420) (5: 1430) (5: 451)

(5: 1429) (5: 1427) (5: 1428) (5: 1414).
Meta-object phase Meta-object phase
(2: 1738)(2: 1731)(2: 1741)(2: 1742)(3: 1176) (7: 844)(7: 847)(7: 204)(7: 848)(7: 845)(8: 1285)
(3: 1154) (3: 1159) (2: 1763) (3: 1154) (2: 1743) (8: 1290) (8: 1287) (7: 847) (8: 1291) (8: 1293)
(2: 1748) (2: 1747) (2: 1744) (3: 1158) (2; 1749)
(2: 1776) (2: 1738) (2: 1731) (2: 1742) (2: 1761)
(2: 1740) 2: 1741 (2: 1749).
Interactor phase Interactor phase
(4: 967) (3: 1168) (3: 1170) (3: 1169) (3: 1172) (8: 1307) (8: 1308) (8: 1325) (9: 435) (9: 438)
(3: 1173) (4: 962) (3: 1172) (4: 494) (3: 1171) (4: 967) (8: 1309).
(4: 949) (4: 950) 4: 954

Table 6 Play list evidence

5.2.4.1 Group 1 data

The play list is identified in the task phase as a mechanism by which desired songs might be recorded in

the order in which the DJ wishes to play them - these operations are discussed as potential write, erase

and shuffle operations. However, during the specification of the task view of the play list,

implementation details already begin to emerge that suggest that the role of the play list as just a

scheduling device is not shared by all the team members. This view is reinforced as discussions relating

to whether or not DJ commentary might appear as a part of the show plan continue. Disallowing a `time

slot' for the DJ to talk on air suggests that probably prototype functionality (which it turns out does not

109

support the microphone) is of primary importance for this object. However, this impasse does yield

recognition of an important aspect for the creation of the play list - the need to establish a source of songs

from which to choose. The group recognises this problem but finds it hard to suggest where or what this

source might be, so the interviewer suggests the word `inventory'. Development of the play list and the

inventory part continues in the meta-object phase - both are encapsulated within the `CD rack'. By this

stage, the idea that tracks are properties of a media object has diminished and instead the inventory

becomes a list of potential tracks that can be `copied' to the play list. The notion of `copying' is also

discussed as a metaphorical operation for the monitor (an object that displays what is playing at any one

time), but dismissed as being inappropriate. Actual implementation of the play list discussed in phase 3

reveals some remarkable distortions of the metaphor model. The play list itself is represented as an open

CD case (mistaken at first by the interviewer as a book). Additionally, the play list is used not only for

playing songs but also for broadcasting `jingles' -a secondary source of audio, but used for

advertisement. Whilst the two lists are maintained separately, they are both implemented using the same

interactor design. To view and select the jingles version of the play list, the user now clicks on the hi-fi

object - which does not, in itself, play media at all.

5.2.4.2 Group 4 data

Similar properties identified by group I for the play list are identified by group 4 during the task phase

elicitation. Analogical descriptions of the play list as a box containing media objects are soon replaced

when it is decided that the list should serve to maintain a collection of tracks, not media objects. Adding

a track to the play list is suggested as writing track information - this property is `transferred' to the play,
list, however there is considerable opposition to the idea that this operation has anything to do with media

objects. The role of tracks as information carriers, rather than properties of a media object, is emphasised

further during meta-object discussions. Tracks can be added and removed from the list as well as edited.

At this stage, group 4 recognise that there is a problem with the metaphorical operation of the play list

since they have not adequately considered a source from which to choose tracks and instead are forced to

rely on implementation details. The implementation of this list departs entirely from any real attempt to

sustain a metaphor other than that provided by the operating system.

5.2.4.3 Discussion

For both groups, the role of the play list becomes central in not only scheduling tasks but also the playing

of tracks. Similarly, both groups experience tension in treating the play list as an information carrying

device (predominant in the task model) and its adaptation as an interactive 'track' container. During task

elicitation, the use of the play list as a means of recording information that will help the DJ to remember

which track to play during the course of the show reveals the notation of a collection of media objects

from which to choose - at least for group I. This separation of media collection and play list is not

110

suggested by group 4 during either the task or metaphor phases and leads to problems during interactor

discussions. Each group only implements soft media audio reproduction (these are stored as 'files') and

this may partially account for the emergence of the play list that acts much less as a scheduling service

and much more as a container for singular media objects specified as single tracks.

5.2.5 PLAYER DEVICES
Group 1 Group 4
Task phase Task phase
(1: 1301)(1: 1316)(1: 1302)(1: 1320)(1: 1317)
(1: 924) (1: 1320) (1: 1300)

(5: 1411) (6: 560) (6: 92) (5: 1432)

Meta-object phase Meta-object phase
(2: 1733)(2: 1752)(2: 1754)(2: 1732)(2: 1736)
(2: 1753) (2: 1755) (3: 1162) (2: 1754) (3: 1157)
2: 1735 3: 1163

(8: 1282)(8: 1287)(8: 1284)(8: 1287)

Interactor phase Interactor phase
(4: 950). (8: 1305) (9: 433) (8: 1306)

Table 7 Player devices evidence

5.2.5.1 Group 1 data

The generic term `device' is most frequently used to refer to a media playing machine and, during the task

phase, has abstract and literal associated actions that include activation, play and stop. Resolution of the

conceptual role of the track and its relationship to media objects served to clarify the operation of the

player device. This disambiguation is further refined in the meta-object work with group 1 who suggest

that a `hi-fi' object should be employed to embody media playing devices for specific media objects such

as CDs or tapes. However, despite recognising the hi-fi as a model for media playing, it is dismissed

since it will not be functionally supported in the implementation. At the same time the role of the mixing

desk becomes more important as implied references to sliders controlling the audio output to `air' are
introduced. By the third phase of elicitation it becomes apparent that the mixer desk has not been

developed to mix audio output from a playing device but is in fact the playing device itself, operated by

sliders which really act as mutually exclusive switches.

5.2.5.2 Group 4 data

Throughout the three elicitation phases group 4 elaborates very little with respect to devices that play

media objects. Their implementation of a `virtual' media player suggests that they were not inclined to

recognise these devices either as valid parts of the prototype metaphor, or as machines that are actually

used in the real world.

5.2.5.3 Discussion

Media playing machines feature frequently in elicitation phases 1 and 2 for group 1 but hardly at all

throughout group 4 discussions. In either case, the strongest association of devices with media objects

111

occurs in the task description and then becomes increasingly less important in meta-object and interactor

phases. The continual reduction of involvement of player devices seems to occur with the evolution of

the play list as MP3 container. Group I suggest the use of a hi-fi object as a media playing device for

various audio formats and developed to the extent that panels and buttons are defined (however, this

model is not followed up in their prototype implementation). Rather than developing a partial hi-fi model
for their implementation, group I instead pushes media playing operations onto the mixing desk.

Ironically, group 4 who in previous task and metaphor models make little use of a media player

references, choose to use iconic buttons commonly found on a hi-fi in the final prototype.

5.2.6 THE TRACK
Group 1 Group 4
Task phase Task phase
ON MP3s
1: 1299) 1: 1303

(6: 115) (6: 563) (6: 121) (6: 560) (6: 558) (6: 562).

Meta-object phase Meta-object phase
(3: 1176) (3: 1154) (8: 1289) (8: 446) (7: 204) (7: 848) (8: 1292) (8: 1283)

(7: 846)(7: 845)(8: 1285)(7: 842)(7: 840)(8: 1290)
(8: 1286 7: 841 7: 847 8: 1287

Interactor phase Interactor hase
(4: 953) (3: 1171) (4: 334) (4: 950) (4: 953) (4: 954)
(4: 334) (4: 950).

(9: 436) (8: 1306) (8: 1308) (8: 1326) (8: 1325)

Table 8 Track evidence

5.2.6.1 Group 1 data

The nature of the track is discussed with respect to media player devices, media objects such as CDs and

the play list in other sections (see 5.2.3 and 5.2.4). Group I makes generic statements regarding tracks as
both objects that feature on a play list as well as technical media files (MP3s); this causes difficulties in

identifying the exact nature of the concept of track in the task model. Phase two discussions expand the

use of track still further by examining how track `information' can be derived from different media

objects and be displayed in other metaphorical objects such as the play list and monitor. The track

concept is further specialised by group 1 suggesting that tracks found on mini-disks are jingles.

Interestingly, group 1 uses a metaphorical description in phase three discussions to outline `movement' of,:

the track around other objects in the interface even though this is not actually manifest in the interface

prototype itself.

5.2.6.2 Group 4 data

The role of the track does not have as broad a scope for group 4 as it appears to for group 1. During the

task phase group 4 agreed on a `real world' relationship between track and media objects, but chose to

isolate the track as an abstract entity. Further abstractions of the track emerge in phase 2 where track

information is regarded as important; whilst reflecting on the possibilities of a more concrete treatment of

tracks group 4 relate to technical problems that have not allowed them to pursue this design. The

112

abstraction of the track results in a problem with respect to their source during play list creation and group

4 eventually resort to the desktop metaphor to explain their design. In discussing this issue, the group

remark that the design of the play list arises from the problem of track `tangibility'. Whilst describing the

nature of the track in phase 2, the group also use strongly implementation orientated views including the

idea that tracks "play themselves". Implementation of the play list and the `virtual media player' during

the final elicitation phase suggests that the group has been heavily influenced by coding issues with

respect to this object.

5.2.6.3 Discussion

The track entity is one of the principal concepts in the USC prototype for both groups and yet, with the

exception of the task model, it remains relatively abstract and unintegrated with other related domain

concepts. Early discussions of the track disclose a container like relationship between it and a media

object and made accessible through the use of a media player. As the role of the play list emerges, this

model is gradually dropped as the need to maintain a list of single tracks from multiple media objects

becomes apparent (group 4 makes this point explicitly). More specifically, it is the track 'information'

that is revealed as important: at the interactor phase for group 1 and at the metaphor stage for group 4.

Early examination of the relationship that tracks have with media outlined the need for group 1 to include

an inventory from which to choose songs. Group 4's relatively narrow abstraction of the track is revealed

by their view of "tracks playing themselves" and their subsequent reliance on the desktop metaphor to

support play list creation.

i 77 THE MIXER OBJECT
Group 1 Group 4
Task phase Task phase
(1: 246)(1: 1323)(1: 1333)(1: 1322)(1: 1318) (5: 1431)(5: 1445)(5: 1446)
(1: 1315 (1: 376)(1: 1322)
Meta-object phase Meta-object phase
(2: 1768)(2: 1759)(2: 1730)(2: 1752)(2: 1755) (8: 26) (8: 1327) (7: 843) (7: 137) (8: 1302) (7: 857)
(2: 1756) (2: 1762) (2: 1771) (2: 1767) (3: 1155) (7: 843) (7: 857) (8: 1302) (8: 1301) (7: 137) (7: 858)
(2: 1755) (2: 1756) (2: 1771) (2: 1730) (3: 1160) (8: 1327)
(2: 1762) 31161 2: 1770 2: 1739) 2: 424
Interactor phase Interactor phase
(4: 952) (4: 960) (4: 962) (4: 947) (4: 960) (4: 957) (8: 1315) (8: 1314) (9: 441) (9: 443) (9: 444)
(4: 956) (4: 948) (4: 960) (4: 946) (4: 962) (4: 947) (8: 1323) (8: 1324)(8: 1320)
(4: 948) (4: 963) (4: 964) (4: 965) 4: 966

Table 9 Mixer object evidence

5.2.7.1 Group 1 data

For group 1, the mixer desk definition begins broadly within the task phase and becomes progressively

narrower as subsequent elicitation phases are carried out. The task view of the mixer is that of a machine

maintaining sliders that control audio output to air from a variety of audio sources (including the

microphone and the `output' from DJs situated in rooms). However, even at this early stage one member

113

of the group challenges this role of the mixer desk, suggesting that the object should provide an interface

to media playing actions (such as `play' and `stop'). During phase 2, the beginning of an apparent

transformation of the mixer desk's function as an entity for mixing audio to that of one for playing media

takes place. A discussion of the slider reveals confusion as to whether or not the sliders are to be used as

modifiers to local media output (limited to just the DJ scope) or as a means of determining output strength'

to `air'. Possibly as a means of resolving this problem, a button and light on the desk associated with a

particular slider are suggested as a means of determining whether the audio from a particular device is

sent to the producer or not. The introduction of an ̀ exclusive switch box' model for sliders on the mixer

desk, in which only one slider at a time may be up, begins to shed some light on the final implemented

prototype. In phase 3, the original idea of the mixer desk as a device for modifying the audio that is sent

out to air is changed to that of a media-playing device. Mixing is exchanged for `switching' for all but '

one slider; media tracks are played and stopped by clicking sliders (note no dragging is used for this

action). Overall volume for the output of a mixer desk is determined by the volume slider - the value of

which is scalar and can be modified by a mouse dragging action. The function of the mixer desk for the

producer is identical in all respects other than that media sources are now replaced by DJ sources that are

turned on and off using the same exclusive switching model.

5.2.7.2 Group 4 data

In discussing mixing tasks in phase 1, group 4 makes few references to real mixing machines from the

real world; early discussions resulted in a severe reduction in description since they perceived the entities

to be highly complex. During phase 2, the development of two types of `mixing board' as fixed or

moveable collections of sliders emerges. All slider objects maintain the same basic, modifiable scalar

value manipulated by a `slide' action. However, movable sliders (described by the familiar `drag-and-

drop' desktop action) are `attached' to DJ objects within the producer's environment and as such

dynamically change the focus of their scaling behaviour. Further discussions in the final elicitation phase

support this model through a brief explanation of the software components used to implement the design.

5.2.7.3 Discussion

In different ways, both groups can be seen to accept a conventional view of the mixer desk (for group 4

this is a superficial view) before subverting its behaviour to support alternative tasks. For group 1, the

alteration of the mixer desk and associated sliders occurs at the very outset, moving through a resolution

stage in which the audio mixing function is combined with output control, resulting in a 'switching desk',

The function of mixing remains constant throughout the elicitation phases with group 4, however the

focus is on the slider object rather than the desk itself which is understated throughout. Unlike group 1,

sliders are scalar and only used to change audio properties (including volume, treble and bass). Group 4

choose to turn the conventional mixing desk model upside down with respect to modifying DJ audio for

114

broadcast -a single slider is dynamically associated with any number of DJs. Arguably, both groups'

solutions are logically similar in that they only allow the producer to modify one DJ's output to the

exclusion of all others, however the mechanism through which this is achieved is quite different.

5.2.8 THE MICROPHONE AND AIR
Group 1 Group 4
Task phase Task phase
(1: 1333) (1: 1315) (1: 1325,1: 1326) (1: 1323)
(1: 1334).

(5: 325) (5: 358) (5: 113) (5: 497) (5: 1442) (5: 1443)
(5: 1437)

Meta-object phase Meta-object phase
(2: 1758) (3: 1155) (3: 276) (2: 1755) (3: 1175)
(3: 276) (2: 1771) (2: 1756) (3: 1161)

(8: 1298) (7: 849) (7: 850) (8: 23) (8: 25) (7: 851)
(7: 136) (7: 859) (7: 851) (8: 25)

Interactor phase Interactor phase
(8: 1311)(9: 442)(9: 115)(8: 1312)(8: 311

Table 10 Microphone and air evidence

5.2.8.1 Group 1 data

Models regarding the nature and use of the microphone remain relatively consistent throughout all

elicitation phases for group 1. Audio output from the microphone is modified by the mixer desk and sent

to air according to slider status in both task and metaphorical views. This consistency may be accounted
for by the fact that no microphone implementation took place.

5.2.8.2 Group 4 data

The use of the microphone and air space is interesting. During the task elicitation, the model for putting a
DJ on and off air is described with reference to using a mixing desk to fade DJ output (from the

microphone or other media sources) in and out. A novel modification of the use and behaviour of the

hardware discussed in phase 1 is used as a basis for a metaphor in phase 2. The producer still controls

which DJ is `on air' but this is now performed via the manipulation of a microphone that is `attached' to a
DJ object within the producer's booth. Once attached, the microphone effectively acts as a conduit

passing DJ audio out to air - placing the microphone back on the stand empties the air. Implementation

of this model is achieved through a direct manipulation model and includes `snapping' behaviour

borrowed from the desktop metaphor.

5.2.8.3 Discussion

It is not surprising that group 1 view the microphone entity in a consistent manner throughout since it was

not developed by the group; if it had changed over time this would have added a concern over the

reliability of the elicitation process. Group 4 use a similar mechanism for the operation of the

microphone as for the use of the mixer object by the producer (see section 5.2.7). The combination of the

microphone and movable volume slider acts as an almost logically identical switch-based system as

115

proposed by group 1. However, unlike group 1, the objects used to perform this operation do not exhibit

as many unexpected behaviours.

5.2.9 THE ADVERT
Group 1
Task phase
(1: 310 1: 1300 1: 341
Meta-object phase
(2: 367) (2: 1774) (3: 1167) (3: 1164) (3: 1167) (2: 1757) (2: 1772) (3: 1165) (3: 1165) (3: 1166) (2: 1775)
(2: 1773) (2: 1765) (3: 1159) (2: 563) (2: 1737) (3: 1167) (2: 1751) (3: 1159) (2: 1751) (2: 1750)
Interactor phase
4: 978 (4: 975 4: 972 (4: 970 4: 969 4: 976 4: 974 4: 973 4: 979 4: 971

Table 11 Advert evidence

One of the requirements of the USC prototype was to provide support for the management and
transmission of advertisements. Both teams were expected to address this demand but only group 1

found resources to devote to its design and implementation. Adverts were considered as both audible and

visual23 during the task elicitation discussion, however the general consensus was that adverts, like tracks,

were contained on media objects and broadcast using a media player. The second phase of the elicitation

reveals an alternative to an analogous set of objects that could have been taken from the task model,
however. Here, a book containing pages is used as an inventory from which to choose adverts. -An

unusual addition to the book object comes in the form of a `time line' that allows the DJ to place adverts
from the pages in sequence. Group I makes a number of references to the similarity of the play list and
the advertisement features in this elicitation phase. During the course of the discussion, the nature of

moving adverts from the inventory to the time line is discussed in more detail, particularly with regard to

natural objects and interactions found in the real world. Adverts are copied from the inventory on to the

time-line in the order in which they are expected to go out to air. Surprisingly, the group struggled to

suggest metaphorical alternatives for the relatively abstract time-line; similarly, the idea that the mouse

might mimic the actions of the hand with the book metaphor was understood but not considered
important. Implementation discussions served to clarify the underlying model of the book and the time

line and include token button components that would allow the DJ to turn the pages of the book. At this

time, it occurs to the group that the time-line has been implemented twice within the user interface and

that it was a strong candidate for re-design.

5.2.9.1 Discussion

The task model suggested by group I drew parallels between the use of media objects to play songs as

well as jingles' (tracks containing audio advertisements). Perhaps, not surprisingly, many of the

23 One team member argued that digital radio may post text advertisements to radio displays

116

underlying features of the resultant advertisement objects (the book, its pages and the adverts contained
therein) are suggested to operate in a very similar way to the play list (see section 5.2.4). However, their

metaphor model builds on the essential proposition of an inventory and a list by the use of pages (from

which adverts may be chosen) and a time-line upon which adverts are ordered. The implementation of
the advertisement model is graphically and behaviourally different however, whilst the underlying

mechanism remains constant.

5.2.10 THE SHOW
Group 4
Task phase
(5: 1424 5: 376 5: 1428) 5: 302) (5: 1441 (5: 1421 (6: 565 5: 1425
Meta-object phase
(8: 1294)(8: 1296)(8: 1295)(8: 1319)

Table 12 Show evidence

The role of the show list evolves from a generic collection of media to a scheduling model for placing DJs

on air within a time frame, and in order. In discussing the physical mechanism for show list management,

group 4 preferred to cite a software tool (a spreadsheet) rather than a paper based system for the task

model. Later discussions of show list support in the metaphor model have not been developed since

group 4 argued that the development of scheduling features would be untenable within the project's

constraints. However, in pursuing the likely features of the show list for the metaphor model two

explanations are given. The first relates to implementation details - DJ profile information is presented
textually in a list, each item of which can be moved up and down. Later discussion regarding the nature

of the DJ object (as seen in the producer's environment) show that group 4 had considered the

arrangement of DJ objects in a visual queue as another means of managing the show.

5.2.10.1 Discussion

The rapid reduction in design complexity can be seen in group 4's treatment of the show list.

Implementation of the list is almost identical to the play list; the visual queue suggested by the group is

partially supported by the system in that DJs are horizontally aligned in the order of their connection (they

are not movable, however).

5.2.11 THE ROOM
Group 1 Group 4
Task phase Task phase
(1: 1286 (5: 1440).
Meta-object phase Meta-object phase

(8: 1303)

Table 13 Room evidence

117

Both groups recognise the physical separation of DJs in their own rooms or booths, however the impact

of this concept is not pursued in any detail.

5.2.11.1 Discussion

During the elicitation phases, the concept of virtual environments (booths or rooms) within which DJs

and producers exist is, at best, tacitly discussed between group members. In each final implementation,

an indication of a shared environment is graphically depicted weakly by group 1 and strongly by group 4.

Only small changes in the appearance of the user interface indicate DJ role and persistence in a shared

environment for group 1; a notice board displays logged on users whilst minor modifications to the mixer
desk indicates producer modality. In contrast, group 4 makes graphically distinct presentations for both

the DJ and the producer as well as engaging producer interaction with DJ avatar graphics.

5.3 Model summary

In reviewing the treatment of the eight, core USC objects expressed within the ISML framework, a

number of common design behaviours emerge:

Design reduction

> Non-concrete concepts

Implementation bias

Metaphor mangling

Common models and re-use

5.3.1 DESIGN REDUCTION

In many cases objects initially specified in the task model are subjected to a progressive reduction of
complexity as they are re-represented in the metaphor model and subsequently re-represented in their

implementation as interactive GUI components. Some of the objects in the task domain (such as the

media objects and player devices) disappear almost completely. Reduction occurs most extensively,

where the design must address the use of media and tracks, in which a structured hierarchy of objects is

made redundant by the play list.

118

5.3.2 NON-CONCRETE CONCEPTS

The manipulation of the play list and the output of specific DJs to air features strongly as the functional

`core' of the prototype around which the various metaphorical objects orbit. Both groups struggle to

resolve a sufficiently robust metaphor and interactor model that would capture the physical features of

media objects and players from the real world and the more abstract concepts of the track and play list.

Consequently, a tension appears to emerge between the abstract (invisible) and the concrete (visible),

leading both groups to fall back on software engineering or WIMP concepts where no obvious metaphor

presented itself.

5.3.3 IMPLEMENTATION BIAS

The influence of implementation concerns is likely to have reinforced the need to resort to more

conventional solutions. Examples of strong biases on the metaphor design can be found in the

functionality constraints imposed by both groups with respect to support for media sources other than

MP3 files and the availability of mixing audio streams. These thoughts are particularly apparent in

discussions with group 1 during the task phase (which ideally should be void of all implementation

details) and through later discussions regarding early design ideas with group 4.

5.3.4 METAPHOR MANGLING

Model feature deprecation and functional trade-offs may also be partly responsible for `metaphor

mangling' evident in the course of both groups' prototype. Group l's transformation of the mixer desk

and group 4's play list that contains ̀ self-playing' tracks are two examples of severe metaphor distortions

(an effective reduction in model complexity). Other, less destructive alterations to the metaphor model

are also affected by each group. The single microphone model adopted by group 4 is intuitive and whilst

group 1 borrows a metaphor for their advertisement book, rather awkwardly, from an unrelated but

natural real world object.

5.3.5 COMMON MODELS AND RE-USE

There are also occasions where the general, underlying structure and behaviour of an object within the

metaphor model are re-used (without necessarily resulting in the same implementation). `Inventory and

list' combinations appear in both designs to support the play list, show list and advertisement solutions

(this is only explicitly specified in the metaphor model by group 1, however). Group 1 also re-uses the

mixer desk model for both DJ and producer. An `attach and map' model is re-used by group 4 to

associate mappings between a DJ and his/her presence on air and also a modification in audio output.

119

5.4 Summary of design behaviours

The effects on the over-all design of the USC prototype from these behaviours are summarised in Table

14

Design behaviours
y of

C od
C Vf
O C d
Ü 2

Co
w E E

Cr
m O

0 pM ° O. E ä
CO

Objects
° O0 E ö

DJ G1 G1
Producer Both G1
Media Objects Both Both Both G1
Track Both Both Both G4
Play list Both Both Both Both
Player devices Both Both G1
Mixer Both Both Both Both
Mic and Air Both
Advertisement Both Both
Show Both Both
Room Both G1

Table 14 USC design behaviour summary

From this summary, the distribution of these effects can be seen for both groups. Both groups could not, :
for the most part, avoid quite severe reduction in design. There is some evidence to suggest that the

reasons for this may lie in both the complexities of the metaphor chosen and also the implementation bias

exhibited by both teams: implementation bias occurs in discussions concerning almost all the core,

metaphorical objects and relates frequently to the treatment of tracks. Both groups experience difficulty

in managing the relationship between media objects, the play list and media player devices, so it is not

surprising to see that this is also where problems with non-concrete concepts and metaphor mangling also

occur. Perhaps as a reaction to the inherent complexity of the design, both groups show some degree of,

re-use (or at least repetition) in the design of the `periphery' objects - i. e., the advertisement book and,

show list.

120

One possible conclusion from these observations is that the design reduction and resultant metaphor

`mangling' behaviours exhibited by both groups are at least partially the result of:

> the complexity of the metaphor model

> the lack of support for non-concrete concepts in a metaphor abstraction

> implementation bias

This theory is discussed further in chapter 7; evidence for and against this theory (developed post-project)

can be found in each group's reflections on their design experiences using the ISML framework, which

follows.

5.5 Group reflections

After the USC software engineers had been introduced to ISML and the subsequent elicitation meetings

were drawing to a close, each group was asked to reflect on the process of specifying the prototype using

ISML framework. Each group was asked a series of five open-ended questions to gather their views on

how ISML specification related to their design activities with respect to generation, modification and

practicality.

5.5.1 Q1. VERIFICATION OR GENERATION

Was the process of specifying their design using the ISML framework regarded as only a verification of

their extant design ideas or did the group feel that new aspects of the prototype design were revealed?

Group 1:
"[Interviewer] Has this been an exercise which has .. would you say it has verified what you have talked about?
And/or brought up design issues you hadn't thought about? "

"Definitely the latter, I think, yes. Because we, I think it makes you look at it in a different way, I think. Where

as we ... I
know we're probably not supposed to, but as we develop it, you're thinking ... as you design it, you're

thinking of implementation things at the same time, and that obviously incorporates it where as ... doing it this
way, you might do things a bit differently. "

Group 4:
"[Interviewer] So, this exercise, again, is it a verification exercise or have I opened up design issues, that you
guys.. "

"I think you've opened up design issues. "

"I would say that I thought we were pretty confident on where we were. More as a verification. "

121

"Yes, I think so. You know, there might be little things that maybe we had to question and then think, you
know, that stuff happens I think. "

"Yes, but I think from an HCI point of view, that methodology has totally blown our ...
has totally revealed a

massive flaw in our system, hasn't it? With the media selection ... The metaphor breaks down, doesn't it? And
the idea is to keep the metaphor going, isn't it, in this virtual ... It's ... you know, you've worded and looked at
the design from a way I've never thought of it before... "

There seems to be some agreement by both groups that the elicitation process uncovered some design

issues. An important influence that had already begun to emerge during the course of the interviews was

confirmed by the groups, namely: the implementation target places biases and constraints on metaphor

development. For group 1, implementation (or lack of it; audio mixing and transmission was problematic
for the group) results in a distortion of objects and their eventual role in the prototype. The same issue

forced group 4 to fall back on windows-based descriptions and implementations of certain objects (such

as the play list). Group 4 elaborates this on further:

"[Interviewer]: ... It's great to see, for me, where this fails. I think, I'm not saying ... this is not a reflection on
your design, I think it's a reflection on the fact that you can't necessarily fit everything into a concrete metaphor.

[Group 4J: I think that's exactly what I was trying to say. Yes, it's broken down there, because we've got this
abstract thing which we can't define metaphorically. "

Highly abstract objects (such as the `track') proved to be difficult for both groups to specify easily within

the ISML metaphor framework. It is perhaps not surprising then that these entities are framed in

computer software terms such as ̀ file' and exhibit unusual behaviours for the metaphor, such as moving

between objects (group 1) and ̀ playing themselves' (group 4).

5.5.2 Q2. ANALYTICAL OR CREATIVE

To what extent was the ISML specification process regarded as either an analytical or creative exercise?

Group 1:
"I think it's more creative.. maybe ...

both... I don't know about creative. I wouldn't personally say it's creative,
because we already had the ideas? That's why I changed my mind ... I think it's creative from a point of view
that, if you've got some already, you can modify it a lot going through this process and create further ideas... "

Group 4:
"[Interviewer] Right, creative or analytical. Was this exercise more analytical than creative? "

"[Group 4] Oh yes.. More analytical. Yes. "

This line of questioning revealed relatively little other than to support the perception that the ISML

elicitation process was a catalyst for unconsidered aspects of design.

122

5.5.3 Q3. DESIGN MODIFICATION

Did the elicitation identify areas in the design that required changes? If the group started a second-

generation prototype, would they make different design decisions as a result of the elicitation process?

Group 1:
"[Interviewer] OK ... would you make different design decisions as a result of this? "

"If we were going ... if we were using this prototype as a prototype for a newer version, then quite possibly
you'd take some of the ideas and put it there. But I wouldn't say we got a lot of ideas out of this. It was just a
couple of things. "

"Perhaps ... I think if we were implementing it now on what we've got and modifying that then we would
probably get rid of a few things there, I think. Like maybe the timeline here and a timeline here. Which, didn't
occur to me, I don't know about you? ... "

"Yes, I saw it as a symbol, rather than ... Yes, in effect, we added development effort where we didn't need to.
Because you developed a timeline in the advert where you drag and drop ... but then we developed it there as
well, so we don't really need to do that. "

Group 4:
"[Interviewer] If you went through this, ... , right from the start, ... would you have found it as easy to come up
with the designs that you have? Or would you fmd that it might constrain the way that you thought about the
problem such that you wouldn't have the opportunity to be creative?

"I think had we had done this process before we'd come up with our design, it would have been a creative tool, it
would have helped in our design, and it wouldn't then be a verification thing. Are you trying to ask could we use
this as a design tool rather than as a verification tool? Specification tool, sorry. "

"Well, yes, if we had carried it out before we'd done any design, it would have been more creative than
analytical, certainly. "

"Yes, I think this would have helped us in doing our design, yes, I think so. "

"I still think we might have taken the same route, the kernel of our main kind of idea would still ... the whole
metaphor we came up with, would still be very similar, but I do think that, if this process was taken before we'd
done any design, it would have been more creative in terms of unlocking ideas rather than analysing ideas that
we've had. "

"Yes, the point I was going to make was, yes, this method seems to be how, or certainly how I would think
anyway, but it's just that you don't know that's how you think. "

"Like, you do think, right, well what needs to be done, what are we trying to change, what is involved in that,
how do we do it, you just don't.. you do it a lot quicker in your brain, you think ah, right, you need to change
this property, ah it's a button or... But actually getting it down and writing it, I think that's where this is going
quite well, I think. "

In fact, each group was asked a slightly different question so some care must be taken in examining the

two responses. Group 4 considers the use of ISML at the beginning of a second-generation prototype and

speculates on its application in a creative sense (this question was re-phrased to combine the previous in

the hope that more detail might be forthcoming). Later in paragraph 5, the group reveals a similar attitude

to that expressed by group 1 on the issue of the re-development of USC - the ISML elicitation process

123

revealed small aspects of the design that could be changed. Group l's more direct answer, identifying

aspects they would remove rather than fundamental changes to the overall design, is surprising since the

group's final design has a number of unusual metaphor subversions not just at the interactor level, but

also in the metaphor abstraction.

5.5.4 Q4. PRACTICALITY

The group was asked to reflect on the models they had generated and asked, given their project resource

constraints, whether specification using the ISML framework was a practical exercise.

Group 1:
"[Interviewer] OK. Is this a practical thing to do? Within the constraints .. if we had the timing a bit better?
Given the output of what we've learnt about the design and what you've told me about the design. Would you
consider doing this exercise as a useful part of a practical project? "

"I've got two answers.. "

"At the moment, no. Because I've only had one go at it, so I've got no idea of what effect it might have if I did it
for real sort of thing. But I could see maybe that it could be useful, but I think that would have to be a couple of
goes at it, on actual things, to see what happens. "

"I'd say, if you had a group of people and they were all developers and they were all constantly building the
software, then this is good, because it steps you back. But if you had someone whose job was to check the IICI
of stuff, check that the design ideas are right, then you wouldn't really need it? Because they aren't getting
involved in.. what I have a problem is.. I always get involved doing it, so if there's something that would look
better, I'm just constantly worried how it works rather than the design aspect. So if you had another person doing
it, then perhaps it wouldn't be needed so much. But if its like a group of all developers, then I suppose it would
get someone to stand back and have a better look at it. But I don't know if the documentation may be a bit too

, much? That's my view. On what you've shown us on the documentation, it's .. there's a lot to do, and in industry
you probably wouldn't have the time to do all that. "

"I think that's probably what sort of industry you're in. OK. Some design stuff is quite complicated anyway, so?
So initially, from the first view point it looks complicated, but maybe once you've used it for a while, then its
not too bad. "

"Or perhaps just forcing these questions to be spoken about rather than just doing the documentation as well? I
don't know. Maybe it's just because I don't like documentation! Maybe that's what it's all down to. "

Group 4:
"[Interviewer] This whole process, given what's still coming out of it, and the types of things we've discussed,
like the tasks, the abstract design, some of your implementation. Is this a practical exercise to do, given the
output and the time it's taken? If you had another go at this, with perhaps the same sort of time constraints,
would it be a useful thing to do? "

"Yes, but earlier. "

"Yes, I would certainly do it earlier, and I think, its a really good way of everybody making sure of what the
system does. I mean, literally, other people in the group, in the team because you're all sat here, it's being
explained in fairly simple terms, so people can .. that's what's happened here. People have gone ̀ oh right, I didn't
know that'. It's made things clear. "

"It's possibly a requirements, kind of that phase. "

"It took a while for the whole group to get a handle on the actual the problem, collectively, if you see what I
mean. "

124

"Each of us still had.. "

"Yes, we had different views. "

"We had different views on how we were going to look at it. "

"Yes, perhaps if this was done earlier in the process, rather than being a verification, it would have been a
practical approach to doing some design. "

Again, some caution must be taken in examining the two responses as group 1 were asked to consider the

scheduling aspects of the project whilst group 4 were not. However, despite the qualification of

modifying the scheduling of the ISML specification, group 1 remains focused on the problems of

workload and their lack of experience with the framework. Conversely, without suggesting a

modification of specification schedule, group 4 suggests an earlier introduction. Whilst group 1 are fairly

certain that ISML specification is a lot of documentary work rather than concentrating on what to them is

important - the implementation - there is a concordance with group 4 on the issue of interface design.

Both groups independently offer the view that the process offers an opportunity to examine their interface

design ideas from a new perspective that was not just from their software-engineering point of view.

5.5.5 Q5. ELICITATION DIFFICULTY

Were the questions asked during the elicitation easy or difficult to answer?

Group 1:
"[Interviewer] OK. Was it easy or hard to answer my questions... "

"Abstraction was very difficult. Yes. It was hard to separate the abstract thing from the actual.. what we'd
already implemented. But I think what complicated it more was the fact that we had what we're going to
implement and we had like the ideal system, so you've got the design for the implementation and the design for
the ideal system, and it was like pulling the two apart. Yes. The two different designs. "

"[Interviewer] Right, can you explain what you meant by pulling them apart? "

"Well, you've got the design for the perfect system and then you've got the design for what we implemented.
Now, it was very difficult to differentiate between the two. When you were asking us questions, because half the
time we sort of like going, should we be talking about that one or this one? "

Perhaps, if this was to be done again, it would be better just having the one? So this is what I'm going to design
and then ask questions about that?

"[Interviewer] Would that be the implementation? Or the abstraction? "

"You'd have your abstraction, but that would be what you're going to develop. Because we'd got loads of
features on there, which haven't actually gone through and done? So it's

... "

"Yes. I think what would have been better with this, was if a) we'd have got our requirements off you sooner and
maybe had look then, before Christmas, at this sort of thing, got ideas and come back to you and then gone
through this before the end of term and then done this. This would have been a lot more helpful, because then it
would have been easier to base a design and come up with something that was a bit more robust maybe. "

125

Group 4:
"[Interviewer] Was this an easy or hard exercise? "

"Well, I found it easy. "

"[Interviewer] I did notice that you guys were struggling a bit with, again not a judgement thing, I was
struggling as well, with trying to fit some of these... "

"Yes, trying to .. yes, the abstract stuff was a little bit hard. "

"Yes, coming up with single words to describe things that you know.. obviously can be quite complicated, that's
quite difficult. "

"But that's a language thing, descriptive thing. "

"English language, again, very poor at describing things. "

Without prompting, group 1 immediately identifies the problem of separating the metaphor model from

the implementation details and further, they would seem to prefer it if the specification dealt only with
how such a model might be implemented. Although disappointing, a response like this is not surprising

when considering their reflections on verification and the frequent references to implementation issues

during the elicitation phases, including the task model. Group 4 identifies the same issue, siting the

narrowness of some of the definitions required from them during elicitation.

6. Discussion

A number of practical issues challenged the USC case study, including:

> Case study life cycle limitations

> Elicitation and analysis limitations

> ISML novelty and complexity

For both groups, the six-month time frame was a challenge since each individual had other work

commitments. Within this scope, each team was faced with a significant requirements gathering phase

that not only involved the author but also another university member of staff acting as a company

manager. In addition to this, specifying their design in ISML was an additional task added to their project

schedule. Consequent limitations on time forced the ISML documentation to change from the (originally

planned) pre-development specification stage to a 'rolling' exercise lasting most of the second part of the

project. For the same reason, each group was strongly resistant to giving up time to learn to write, at a

126

detailed level, an ISML specification. Pressure on time also required an elicitation strategy that resulted
in a limited focus on those aspects of design that appeared important at the time.

It is important to consider the impact of the quantity and quality of the elicitation execution whilst

examining the qualitative themes and patterns identified in the data. A number of problems and
limitations are also introduced by the application and execution of a grounded theory based approach to

the case study. An adaptive approach to data gathering had to be taken to a) accommodate and not

significantly interfere with group working practice and b) pursue interesting veins of discussion as they

occurred - this is common in qualitative method, see Pidgeon (1996). During the course of the case study,

there were two occasions where data were lost due to technical failure24 - once during the early

requirements phase and once during the meta-object elicitation. The latter had a more serious impact on

analysis since data were lost on a) the initial reflections on ISML from group 1 and b) a meta-object

discussion with group 4. With respect to quality, the transcript records occasions when the interviewer, in

an attempt to stimulate discussion, suggests ideas or phrases for the specification. In addition, during

reflection on the ISML elicitation, each team received the open-ended questions phrased differently.

Both of these issues raise questions of reliability and interpretation since a bias is introduced.

The selection of the designers of the USC prototype will also have had an effect on the data; as software

engineers there were naturally going to be a strong influences on design from the computing domain. In

designing the case study, some consideration was given to other potential design cohorts, including

graphic designers who might not have been influenced in this way or indeed have had so many concerns

regarding implementation. Choosing such a team also has disadvantages however, since some

understanding of software engineering and HCI terms was considered essential during discussions. The

chosen groups were familiar with the general principles of HCI (these included task analysis, UI

prototyping techniques and metaphor), which even though the ISML as a framework was entirely new to

them, made them the strongest candidates for the study.

Despite the restricted time available for the case study, a significant volume of transcriptions was

generated. Since only the guided elicitation phases were chosen for analysis, there is a possibility that

important design issues discussed earlier in the case study have not been uncovered by the analysis.

Indeed, there is some evidence in the reflections by each group that some design decisions were being

made during the (functional) requirements gathering - group 4 actually suggests that ISML specification

might have been useful at this point. However, the focus of the analysis reflects the case study qualitative

24 The mini-disc device failed to record audio.

127

data gathering strategy. An early decision had to be made with respect to the likely richness of a potential

specification retrieved from either a very early stage in the case study or at a later time. It was decided

that whilst an early elicitation may have resulted in the capture of interesting developmental ideas, these

were likely to be highly volatile and, at least in theory, not easily mapped interactor solutions since these

would not have been considered at that stage. Scheduling the ISML elicitation later, it was hoped, would
have allowed the USC groups time to better understand the functional requirements of the prototype and
thus have a more stable basis for discussing the user interface design.

7. Summary and conclusions

Through the specification of the USC design using the ISML framework, five common design behaviours

have been highlighted. Of these, the effects of design reduction, non-concrete concepts and
implementation biases can be seen to affect the treatment of media objects, tracks and their management
in the DJ's broadcasting role. A constrained user interface design project is highly likely to suffer from a

progressive reduction in design features; one of the subsequent effects of this is the mangling of

metaphors. Non-concrete concepts caused both groups difficulties in finding suitable metaphor

representations, resulting in either the removal of metaphor features or a design solution based on

conventional WIMP-based components.

The post-development reflections by each group appear to support the theory that difficulty in expressing

some concepts and implementation issues influenced the metaphor development (i. e., the reduction of its

scope, and subsequent reliance on the desktop metaphor). Group reflections also indicated problems with,

abstracting the metaphor model using the ISML framework, making particular reference to a limited

range of expression and confusion with implementation details. However, in addition to this, both groups
independently observe some utility and benefits from the process in that a) it highlighted problems in

their design and b) they could identify potential changes for a second version of the prototype. Finally,

concerns regarding specification effort and scheduling of the specification suggest that improvements in

ISML specification capture method are required.

The USC case study has generated a rich data set from which only a small sample has been drawn upon
for analysis. This qualitative analysis has identified five design behaviours that occurred whilst the groups

attempted to express their design ideas using the ISML framework. There are clear indications that the

separation and abstraction of the metaphor model was difficult for both teams and that implementation

issues have an influence in this problem. However, both teams were able to provide task, metaphor and
interactor models as well as provide mappings between each during the elicitation. Their perceptions of

128

the specification exercise overall was that it had some genuine utility whilst at the same time requiring

changes to the scheduling and documentation strategies.

129

BLANK IN ORIGINAL

CHAPTER 6 Evaluation of the USC specification

1. Introduction

In this chapter, the Urban Shout Cast ISML models are analysed to discover to what extent the ISML

framework captures the USC user interface design. This question is answered in two parts. Part one

analyses each of the five ISML abstractions to see what design data was captured and what was missing.

Data collected for each of the group's design were collected during the USC design meetings and

subsequently collated into three main parts: tasks, meta-objects and interactors for comparison. During

analysis, transcription data were also used as a means of clarifying parts of the specification where

necessary. Part two evaluates to what extent a unified metaphor model can support either USC teams'

concrete prototype design. The scope of this evaluation is necessarily limited to the tasks commonly

supported by both USC implementations, namely: the playing of media, play list management, mixing

and a simple broadcast model. The chapter concludes with a summary of the findings, outlining the

strengths and weakness of ISML.

2. Comparison of USC models

In the following sections, data are summarised for each of the ISML parts interactively specified with the

interviewer during design meetings. It is important to note that the models examined here do not reflect

the entirety of each group's final prototype; during the course of the project, each group diverged not only
in the metaphors they developed but also in terms of the underlying functionality of the system as a

whole. A discussion of each complete system is beyond the scope of this analysis. As before, analysis

question two (see chapter 5, section 3.2) is further sub-divided into two parts:

Part 1: What aspects of design did ISML capture and what was missed?

Part 2: To what extent can the ISML abstract the USC metaphor?

By posing these questions, some determination can be made with regard to the fitness of the ISML

framework for capturing the design of the USC prototype and also its ability to separate metaphorical

aspects from other design views. [Section 2 addresses part 1 of analysis question 2; whilst section 3

addresses part 2].

131

2.1 Task

High-level task groups were initially established resulting in similar collection of basic tasks from each

group, see Figure 43.

oV oN
D

In
a

N

Q
N

N

a
C
V

C

E
D1 y IN

9
U

C

,"
4)

r,,
s=

2

N
1-

xx

w
~C

N

Q a
0
0

v

Figure 43 USC top level tasks

132

The following task groups from each design team are sufficiently similar to afford comparison:
Group 1 Group 4

Playing Media Ti Ti
Mixing T2 T3 and T6
Play list T3 T2
DJ Communication T4 T4

Table 15 USC common task groups

Each task group is considered in more detail in sections 2.1.1-2.1.4. In addition to these common tasks,

advertisement management (group 1) and station set-up (group 4) were also modelled at a very simplistic

level. Whilst advertisement management is considered in more detail later on in the ISML framework,

both of these additional task groups are not considered further here since they were not developed beyond

a cursory level during elicitation.

After the initial task elicitation had taken place, a verification exercise took place to confirm the overall

structure and task objects and actions. The result is an inventory of objects, actions and `stop-iterate'

conditions (a state, which when reached, indicates the end of some task). Each object will be considered

as a potential meta-object candidate in the task specification. During the elicitation, all actions were
discussed from the point of view that the DJ or producer would enact them. A summary of the task

models is given in appendix L.

Action names do not necessarily match up with the `leaf nodes in the task model and so are cross-

referenced against node numbers as well as the objects that are subject to them. Additional verification of

each object follows, detailing the actions directed toward it and the associated task nodes. Finally, 'stop-

iterate' conditions are referenced against the task nodes and objects to which they apply; the test

condition is specified against the target attribute, state or object set. Each stop-iterate condition is

formally re-specified as a mapping-constraint class. The summary is by no means complete or rigorous -
its principal use is to serve as a basis for further discussion during the design process and as a means of

documentation to aid formal ISML specification. In examining the four common task sub-groups, some

of the weaknesses of the initial task summaries can be identified.

133

2.1.1 PLAYING MEDIA

Both groups realise a similar model for playing media and make some implicit assumptions regarding the

over-all task model. This can be illustrated in the way both groups handle the concepts of tracks, media

and media players.

134

ß
4

135

Figure 44 USC Playing media tasks

Group 1 makes an explicit reference to the media playing device object, but does not relate the media

object (such as a CD) to the device itself through any loading action and implicitly refers to a media

'track'25 (not an explicit object). Conversely, group 4 makes explicit references to media and track

objects but implicitly refers to a media-playing device (see Figure 44). In both cases, the treatment of the

playing device was light; no considerations were made as to the state of the device before the interaction

commences (the device could already be playing). However, Group 4 describes a task model that

ameliorates this problem to some degree by including an `eject' action at the end of the task sequence.

Both groups identified a stop-iterate condition on the play action for this task in which iteration stops

upon a track reaching a `stopped' state.

2.1.2 MIxING

In sharp contrast to group 4, group 1 is highly simplistic and relates only to localised actions taken by the

DJ. Group 4 refer to two types of mixing - that performed by both the DJ or producer (who may also act

as a DJ) in task group T3 and that of `mastering', managing the output from other DJs to `air'.

25 In fact, a single reference to a track is made in stop-iterate condition 1, but during the elicitation this was not further expanded.

136

a
0
Q
u

i

i
i

S

¬;

8ý

f8r
3 I'

n

C"

IT
a
0 L

u

Py ýý

ýý ýý
e

a Tj
tl Na

O

N

rO

s

z g

N

Lý

Nä 1
F

LL <

Ö
T
N

Figure 45 USC Mixing tasks

ýý
ýeIIý

m ̀ý ý
ýý <

N

iý

8

8

8

s

8
ýa t Ö

T
N

137

It becomes apparent that within the `mixing' task, each group relies on a number of complex concepts

which, whilst understood by the design team at an informal level, are implicit and difficult to express

within the ISML framework. Notably, these include `audio sources' (found in both groups) and being `on

air' - neither of these concepts is explicitly expressed in the task summary. The `air' and ̀ audio sources'

are intangible and yet important concepts to the USC project. The use of audio sources in this task also
implies the channelling of audio data from one distinct entity to another. For group 1, their design

determined this as transmission from the media player devices to the mixer desk, group 4 do not make

any explicit reference to an object here (see chapter 5). Mixing is extended to mixing DJ transmissions to

air (the producer's role), referred to as ̀ mastering' by group 4, see Figure 45. This sub-model outlines the

process for the producer, however the actions of notification and DJ `activation' and `de-activation' are

not `unpacked'.

2.1.3 PLAY LIST

A new problem in the expression of tasks within the ISML framework begins to emerge with the

specification of the use of the `play list'; the symptom arises in both groups' model however group 4 is

helpful in expressing it in their task description. Specifically, the songs or tracks to be played are

references to other objects within the task environment and are not readily considered as objects in their

own right.

138

5

a�> 0
Üý

Mý
S

NN
e

N

6_^a

0 U
"

Figure 46 USC Play list tasks

139

This is apparent in the node descriptions from group 4 in which track `names' are manipulated, rather

than the tracks themselves, see Figure 46. At this point, the concept of `track' also requires re-

examination since, as seen in chapter 5, a track in the context of the USC is more an abstract object than a

physically tangible one. Particularly, songs or tracks are observed and manipulated in the DJ

environment through interaction with other devices - so the track object has more than just a single

relationship with the physical media with which it ordinarily associated.

Although identified in the meta-object model, the source of tracks in both groups remains unspecified in

the task view. A number of stop-iterate conditions have been applied in both cases, giving clues as to

some of the potential attributes of the play list object including a containment set (group 1: condition 3

and group 4: condition 6). Maximum `play time' or track count property for the list (group 1: condition 2

and group 4: condition 3) is also specified. Group 4 makes more extensive use of stop-iterate conditions

to describe the task group, although their application implies more detail than is explicitly stated.
Conditions 4 and 5 in T2.2 terminate an ambiguous ̀ execute' task not expanded any further in this model.
A trailing node, T2.8 in this model is the result of the removal of an extraneous ̀shuffle' sub-task during

the verification exercise.

2.1.4 DJ COMMUNICATION

The problems encountered in the mixing task group re-emerge in DJ communication: `air' and `voice

channels' appear in the model developed by group 1 whilst no explicit medium through which DJs

communicate with each other is expressed by group 4.

140

1-4

0 L

u

is

ä

8
E

141

Figure 47 USC DJ communication tasks

A failure in object verification becomes apparent in the summary given by group I as a microphone is in

use in the task model, but fails to be ratified in the task inventory. In contrast to group 4, the microphone
has a volume property (although no further details are given) rather than a binary on or off state. In both

cases, the engagement with another DJ is highly ambiguous - involving either ̀ chat initiation' and `visual

signals' (group 4) or `directing voice channel' (group 1), see Figure 47. DJs in both designs use the

microphone to communicate verbally and it was. recognised by both groups that the need to avoid
broadcasting unwanted chatter had to be addressed. Group 4 specified a perhaps more succinct model in

that the microphone is `off-air' (to avoid unwanted broadcasts) is ensured through action (T4.4) rather
than a condition (group 1, T4.12). Some attempts to qualify the behaviour of the DJ and producer is

made using stop-iterate conditions (references 7 and 8 in the summary). However the combination of
implicit references to audio sources and the complexity of real-world gestures defeats expression in
ISML.

2.2 Meta-object

Once again, the summary interactively reached with each group is incomplete and requires further post-
interview analysis before a formal ISML meta-object specification can be developed. Discussion of the

metaphor design was at a high and informal level (see chapter 5 regarding the elicitation method) but

guided by the structures needed for ISML development. The result of the meta-object elicitation strategy
is an inventory of objects, actions and consequences of those actions with respect to the metaphor design

only, see appendix L for a summary.

The elicitation of the metaphor design marks the beginning of significant divergence between the design

groups with respect to diversity and completeness of the proposed metaphor environment. Group 4

maintained a focus specifically on the 'core features on the environment - the DJs, media objects and the

play list, whilst group 1 broadened their design remit to include advertisement and other miscellaneous

objects.

2.2.1 TRACK

The track entity specified by both groups is simple and with the exception of the editing state, expressed
by group 4, is a passive object - see Figure 48. Changes to the track's title are effected through the play
list meta-object (see section 2.2.4) and implemented through the higher level interactor specification.

26 A stop-iterate condition testing the state of the microphone would have been appropriate here, but this was not developed
during design discussions.

142

UU

ö

W

ý1 a

t
A

Qý

U

e
0

O

T

CD

'4 TQ
d

d

W

,
-Z

Y
Cý

H

=z

e

hm
F

Qvn CO

E
.2 Ü

a

d

S
z

0

. 54 &Z -E E
N C 0

vý g <
c` c p

le I-M 0 Z
zä

16
2

W n Qvi (n

Figure 48 USC Track model

143

_ý
ZZ zo

Np

ýF

z-
anM

VA
NV

t
12 z
0

U

uä
"a ý

"t

11 1

h V.

yu

yz

Nu
N

Z

IRr

CL
0
V

a
0
0 L

V

With the insights to the nature of the track object discussed in chapter 5, it is not surprising to find that,

for group 1, the track entity does not feature in the media player object or that, for group 4, its relationship

within summary of the media player is unspecified.

2.2.2 MEDIA PLAYER

Treatment of the media playing object by each group is illustrative of the hierarchical design of group 1

versus the `encapsulated complexity' strategy of group 4- this is also apparent in the mixer and play list

objects.

144

Metaphor Object: Hi-Fl
Houses CD, Tape, and Mini Disc (physical) devices

HTA links
1.3-1.8,1.10,1.11

Efferent Actions
Name Sources) I Suhordinalefocusobject(s) Consequence(s)
Sect DJ Media Plava Device Amused

Attributes

None

States

ýIL. O

m ve st
S2: Alive

Sets
MediaPlayaDevica

Metaphor Object: Media player device
Encapsulation of a sped 5c media playing device

HTA links

Unspecified

Efferent Actions

Name Source(s) Subordinate focus object(s) Coin uenc a
Nones shed

Attributes

None

States
None

Sets
MediaPaiel

Metaphor Object: Media player device panel
Operational interface to media players (CD, Mmi Disc, Tape)

HTA links

Unspecified

Efferent Actions

Name Source(s) Subordinate focus object(s) CO equence(s)
P lay Di Play button Local play

top DJ Stop button Sto k>®I play
Pause DJ Pause button Una afted
Skip DJ Skip button Uns ofied

Attributes

None

States

St -Stopped Tt -ACTION May
S2-Playing T2 - ACTION Stop
S3- Paused T3 - Transient

T4 - ACTION Pause
T5 - ACTION Pause

Sets

B°"onkerm Figure 49 USC Group 1 Media device model

145

Group 1 describes a relatively empty hierarchy in which a 'Hi-Fi' object maintains a set of media player
devices, which in turn contain a set of media panels, see Figure 49. Each panel is then used as an
interface for the playing of media objects such as a CD or mini-disc. This model is incomplete in that not

all the consequences of actions are addressed and as a result of these admissions: the state model can only
be partially completed. The concept of `local play' (which must be clarified through recourse to the

interview data) refers to non-streamed audio playback (i. e., the player device in this case is not sending

audio to the producer).

146

Metaphor Object: Media Player
Playing and manipulating media tracks

HTA links
1.1-1.3,2.2

Efferent Actions
Name Source(s) Subordinate focus object(s) Consequence(s)
Play DJ Play button Device Plays
Stop DJ Stop button Device Stops
Pause DJ Pause button Device Paused
Skip Forward DJ Forward button Device Winds forward
Skip Backward DJ Backward button Device Winds backward

Attributes
None

States

S1 = Stopped T1= ACTION Play
S2 = Playing T2 = ACTION Stop
S3 = Paused T3 = Transient
S4 = Wind To Start T4 = ACTION Pause
S5 = Winding Forward T5 = ACTION Pause
S6 = Winding Backward T6 = ACTION Skip Backward

T7 = ACTION Play
T8 = ACTION Skip Forward
T9 = ACTION Pla

Sets
currentTrack
mediaButtons

Figure 50 USC Group 4 Media player model

147

Comparatively, group 4 describes a more abstract version of the media player that makes no reference to

the real-world concepts or structure that group I employs, see Figure 50. A relatively close mapping
between the actions executed upon the object and its resultant state is specified. A `media buttons' set

maintains the collection of subordinate control objects for this version of the media player, whilst a
`current track' set is used to hold the track object being played.

2.2.3 MIXER

The marked difference in specification style continues for the mixer object, although the mixer design

developed by group 1 would appear superficially more complicated since it has more subordinate parts,
two of the objects captured in the summary documentation appear to be little more than affectations (see

Figure 51). Group 4 suggested a mixer design that comprises of only one parent meta-object and three

slider children (see Figure 52).

148

<cý
zz 0c FF
ut
A

rM HF

N

is I

II

ý' i

'O
FF

H
c
-

eE
pO

ß
.ý
,pý o

c
o

ÖE mo
t , Q

eä
rn E E>

f
pg m -o

ä
J

Q

Yu
Ca

G

daaa

aVVVN

c
W

`ý

YuE
Cau

u

Z

N

D d <z

5
f"

S
~

ZZZ yu b° Qä
:=E ~ 11

c r uA
N

mu X
S .7

W1 fn
z 44

Q co z z
W. , 7W S

M-
Qz o h mv

i fQ

YY

äc

as

u
Öý t

6
C

c .E
v r

EE ° L

K
U .ý

E EE
4 r

b bc ö

Rý
4
ý

L
ý
O

6 rn Z
u

y

yE
n
e

°8
mm

Q mm
v 0

m K

_ ý ä rr o

o N
ö

t5
6Ö

u4 Eä m gý
i; oö '

ö

ä C
C

wEu
daaas

-f oö
J. iy Is

Ö
Cd

me
Yu

Q m
N

E = aÜV VV
ayi öößÜ mä cß

d
v ä

a"'i -
C

v
yö

F '^ w y «.
'k-'ý mö yüU 'c ä dy H ý wR

U 2H
W

rn aQZZZZ
fn Z

p
(n ý Uýý "ý < SU WZ ä QZ V)

Figure 51 USC Group 1 Mixer model

mu
Wö
(n Z

149

Metaphor Object: DJ Mixer
Changes audio OUT properties

HTA links
3.1,3.2,3.4

Efferent Actions
Name Source(s) Subordinate focus object(s) Consequence(s)
Drag Vertical DJ Volume/Bass/Treble Slider Modified Power

Attributes
INTEGER volumePower
INTEGER bassPower
INTEGER treblePower

States
None

Sets
SliderSet

Metaphor Object: Slider
HTA links
None specified

Efferent Actions
Name Source(s) Subordinate focus object(s) Consequence(s)
Drag Vertical DJ Mixer

Master Mixer
None Modified YPosition

Attributes
INTEGER yMinimum
INTEGER yMaximum
INTEGER yPosition

States
None

Sets
None

Figure 52 USC Group 4 Mixer model

150

In both cases, values for each of the audio volume inputs are stored as attributes whilst subordinate slider

meta-objects independently maintain relative local values. Similarly, both mixer objects receive slide

actions from the DJ and pass them on to the contained sliders.

Whilst both groups define audio volume values within the main mixer object and identify a constraint on

slider manipulation ranges, only group 4 explicitly defines a relationship between the slider's value and

the audio values belonging to the mixer.

2.2.4 PLAY LIST

The number of objects used to model the play list is of a similar ratio to that used for the mixer. In this

case, group 1 makes two distinctions to their abstraction of the play list; the first (the MP3 rack) describes

likeness to an object, the second (inventory and play list) describes function. The MP3 rack acts

primarily as a parent object containing the two track lists in a set called `lists' - see Figure 53. From the

summary elicitation, it is unclear as to what relationship the rack's state of activation is to the child list

object it maintains (this requires refinement, see section 3).

151

Metaphor Object MP3-Rack
Holds a list of songs in otdertha ate modifiable and tha the DJ plays.

HTA links

Not! peäfwd

Efferent Actions

5121ur"(s) bale Focus Rs
Aaw e None None
D®arvae DJ None None

Attributes

ATTRIBUTEmp3Count

States

TI
S1 S2

T2

SI =Naraccve TI =ACTION Aavaoe
S? =Atiive T? =A T1OND®ctivau

Sets

Lisa

Metaphor Object Inventory List

Sts iclistofMP3 objeas

HTA links

1.1-1.2,1.7,1.9

Efferent Actions

Sew D1 MP3

Attributes

None

States

csrcn3

S1 - No W3 deaed TI : ACTION Sekt
S2 unseleet last 173 T2 Trans imt
S3=SdeaedMP3

1

T3 -ACTION Select

Sets

MP3Ymn
SdeaedMP3
LalSelecoedMP3

Metaphor Object: Play Est

Ordered list of MP3 objeas

HTA links

3.1-3.3

Efferent Actions

MPI
Add DJ None Added Item
Remove Dl None Removed hem

Attributes

INTEGER playListCount

States

TI C

S2

72

S

SI -Empty TI -ACTION Add
S2 -Non-espy T2 -ACTION Remove
S3 - No MP3 selected T3 -ACTION Select
S4 - Deselect last MP3 T4 - Tram ient

S. Sdeard I

Sets

IP3hat
SdeuedMP3
LaiSelectedMP3

Figure 53 USC Group May list model

152

In modelling their play list, group 1 makes an important distinction between a source of track objects (the

inventory list) to choose from and the final selection (the play list proper). Both lists contain a set of MP3

items (track objects), the contents of which change as ̀ select' actions are passed to potentially selectable

MP3 objects contained within each list. Once again, this model is only partially specified by the elicited

summary and requires refinement (see section 3).

Group 4 build a play list model (see Figure 54) that whilst being more sophisticated also exposes some

fundamental problems with metaphor model construction using the ISML framework (see chapter 5).

153

Metaphor Object: Play list
Encapsulation of tracks, with order

HTA links
1.1,2.1-2.3

Efferent Actions
Name Source(s) Subordinate focus object(s) Consequence(s)
Add Track DJ none - abstraction problem Track Added
Remove Track DJ Button Track Removed
Move Up DJ Button Track Moved Up
Move Down DJ Button Track Moved Down
Hi-light DJ Track None
Edit DJ Track None

Attributes
INTEGER totalNumberOfrracks

States
T1

S1 S2
T2

Si = No track items
S2 = Track items available
S3 = No track selected
S4 = Unselected last play list item
S5 = Selected play list item
S6 = Play list item moved up
S7 = Play list item down

TI = ATTRIBUTE totalNumberOfTrack >0
T2 = ATTRIBUTE totalNumberOfTrack <1
T3 = ACTION Hi-light
T4 = Transient
T5 = ACTION Hi-light
T6 = ACTION Move Up
T7 = Transient
T8 = ACTION Move Down

Sets
playList
sel ec tedP layLi stItem
l astSel ec tedPl ayLis tl tem
playListButtons

Figure 54 USC Group 4 play list model

154

The play list described here uses two parallel state models to specify the availability of tracks for

manipulation within the list (Si and S2) as well as the effect hi-light and movement actions have on the

track items maintained by the `list' sets (see section 3 for refinement). Two unusual features appear in the

abstraction of the play list developed by group 4: 1) the group could not specify how tracks became added

to the list in this part of the ISML framework and 2) `buttons' appear to be a component part of this

(metaphorical) object. The reason for the absence of a source of tracks from which a DJ can construct

his/her play list was revealed later in the interactor elicitation stage (see chapter 5).

2.2.5 OUTSTANDING OBJECTS

Each group developed their designs in unique directions that can be seen, in part, by the outstanding

objects included in the summary:

Group 1 Group 4
Bookshelf DJ Object/Profile
Book Microphone
Advert Microphone stand
Time line Master mixer
Monitor

Table 16 USC Outstanding objects

2.2.5.1 Group 1 outstanding objects

Unlike their sister team, group 1 addressed advertisement management in their design and, consistent

with their specification style, developed a hierarchical collection of metaphor objects - see Figure 55. In

addition to the development of advertisement objects, group 1 also declared a `monitor' object which was

not sufficiently developed further in the meta-object summary and so will not be considered further here.

155

e
E

m

d

a
I:!

!.

3Qý

V6
S v.

a " ý IL
F O

F ß_qä a Oý
5

an
e ýL°

i Bbd 'C
ý_ d V

Z0
Z 11 I yý

Ö- _N
ý3

ýj

ffi
L` F6 }ý

yp

aýZ dN
S

Y 05
NNN

I
.,

] iWS5W to
N 05

N

hIm°IäI 1G IiIäIs

V

ýz

ýý

Ilu

ý
y
C N

~ q
ý

C
C

N

N N O D ý"L
N m M M

Öj <e '' 5
lm 2

"N "l
i

ffi

äýe

G Tt C b
N Z

11
! %

ES x- W ýZN
NN

Q
ýy

ý
N7 Z; yý

N < 1' }ý
VJ NN VI

Y

Figure 55 Group 1 Advertisement model

ýe ýý

156

In their advertisement model, a bookshelf maintains a collection of books - each book contains a `time

line' object (in set ̀ time line') and a selection of `advert' objects (stored in the `advert items' set). The

specification of the book is very similar to that of the play list group: the book behaves like the inventory

list whilst the time-line mimics the play list. However, subtle differences can be found between these two

models. The MP3 rack acts as a parent object to the two lists but does not specify any further relationship
between the two. However, the book is effectively a list type object that itself contains a further list-like

object: the time-line (both book and time-line maintain a list of advert objects).

157

2.2.5.2 Group 4 outstanding objects

During the metaphor model elicitation, group 4 enthusiastically pursued the producer's metaphor model
(Figure 56).

^c

o.
ä'

LS D'

15 0.1

G) -Z F

. xzG

m
2

.0 -V or
"73

. 0st In
o
LC'

aL
_C ýO L

Q
V1

2< X4

UW

W

äk-

a
yNy

NZ NZ

Iwo
N
m

C

tSý = ý

O

» os ̀ äv
. y

y
ýYý

X
Y

y ý yq

Gy S W < ýL

N

ö8
ý ää

_ä8
g

sloz

c`o

UBUZ ýC
W~Y

N F
ýýar a M

N
M

fW y
,
pg

Qh7 X. Z N FF fRG

Figure S6 USC Group 4 producer model

M

N1T Ni

ILI,
a)

QV

ý =z

I

<ý 5z

ý5
ý, °'
ýý

158

The four objects in this group interact with each other to provide the producer with basic audio control
facilities, however without recourse to the qualitative analysis the summary does not reveal sufficient
detail to understand the model. Each DJ interacting with the USC prototype has an associated

metaphorical DJ object representing their presence within the virtual broadcast environment (not

explicitly stated in the documentation). Also within this environment is a microphone and stand object;

removing the microphone from the stand and giving it to a particular DJ gives him/her `the air' to the

exclusion of all other DJs. Replacing the microphone on the stand removes all access to the air from all
DJs. The summary for this model partially describes this: the stand maintains a set of all DJs in the studio

and receives `all off air' actions from the microphone. A user acting as a producer may drag the

microphone around the environment.

During elicitation, group 4 identifies not only changes in attribute properties, but also consequences of

actions for the DJ, microphone and stand that can be later translated into state changes, mapping-

constraints sets (and operations on them). However, the detail of these mechanisms through which the

placing on and taking off of DJs from the air through the microphone is unclear and requires refinement.

The main reason for this uncertainty is that only the `efferent' actions are summarised for each object and

so only provides a partial description of the complete model. Later discussion in the elicitation for the

interactor model makes this mechanism (also used in a similar fashion by the master mixer, although not

explicitly captured) significantly clearer, see section 2.4.

2.3 Devices and components

Relatively little time was spent focused on the details regarding the device and component parts of ISML

since these details can be extracted from the initial project proposal and implemented prototypes

respectively. The expected hardware for the USC prototype was an Intel compatible, networked,

multimedia PC running Microsoft WindowsTM. No special input or output devices were required and in

both groups' design of the DJ/Producer environment, only a standard keyboard and single button mouse

are needed for user input. For this reason, the screen and mouse device previously defined in chapter 4

will be re-used for USC and to it, added a keyboard device:

<DEPipeDeclaration Name-"keyboardDevice">
<PipeAttrCaps>

<AttrCap Name="Key">

<Type Type="STRING"/>

<Access Type="RO"/>

</AttrCap>
</PipeAttrCaps>
<PipeFuncCaps>

<FuncCap Caps="PIPE KEYS" FuncName="GetKeyInfo"/>
c/PipeFuncCaps>

</DEPipeDeclaration>

159

The use of input devices was verified during the interactor elicitation process (see section 2.4). Having

established the supporting devices for the USC prototype, a set of compatible components must be

created to deliver the appropriate `look and feel' for each group's desigm. An examination of the

technical implementation of the graphical components used to implement those objects covered in the

elicitation follows to isolate the requirements.

Figure 57 shows examples from both groups' prototype systems. To a limited extent, the interactive

objects graphically reflect the metaphorical domain developed during the design process. ISML

components only partially complete the metaphor specification as a whole (mostly in the visual sense)

and so it is the graphical requirements of the interactive elements that are of principal concern here.

m

J! ýll 1tJ'i Jl'1

,;,

-- -. _.....,.
IL :"

___________ ::
Figure 57 USC Prototype s_yývteni scr-eens'hoots

º, ý
,". ýýýI

ý.

n

ýý ýU

i

160

It is clear from both image sets that basic bitmap drawing capabilities are required. In addition to

projecting passive graphical images, a series of components must be created that mimic the standard

Microsoft WindowsTM controls, including:

0 Buttons (flat or radio or bitmapped)

" Text boxes

0 Scroll bars

Simplest of all is the button, which has three basic states (armed, unarmed and in-focus) and may be

qualified to appear as a radio button through the use of a Boolean flag. The rendering of text is more

complex since it requires an algorithm to translate alphanumeric data into typographic imagery, displayed

within a constrained two-dimensional box. The appearance of the scroll bar may be automatically

generated from parameters determining its orientation, minimum and maximum extent and current

position.

2.4 Interactor

This section will focus on the interactor implementation of objects already discussed by each group in

previous meta-object elicitation stage. Preliminary screenshots were used as the basis for verification of

the implementation of the metaphor objects elicited from previous meetings (see

Figure 58 for examples). In conducting this exercise, the interactive parts of the interface screenshots

were identified and mapped to both the metaphor and task parts of the ISML framework. The known

behaviours of the interface widgets used in each prototype implementation (Visual Basic or Borland C++

Builder) provide specific details regarding how the abstract metaphor design would be actualised. This

review is to be used as a guide for the design of the interactor part of the ISML specification, rather than

as an inventory of Microsoft Windows interface controls to be mimicked. It is worth noting that a

considerable proportion of the screen space used in both prototypes is given over to the presentation of

passive graphics that are intended to illustrate the virtual environment to the user.

161

Group I

1 racks

PYAVL/ST

s
um oe:: M ae e> iýý ý

Baeyes me Gne+. ý, ..
;

mMb/ SMA. 0 Mö IMa lop

Track Inccnwro

Group 4

T
Plat/ 1s1

1

ýýr uE,

7

Croup 4 y

4;

Finne 58 USC Play list and niixcr 1! l! (I u(v� \

'10L, o 1°
VIII

PrýAuccr Mixer

MASTER

uWWWLW
PrýAuccr Mixer

The implementation of the underlying metaphor reveals the greatest amount of design divergence

between the two design groups. Only two common meta-objects remain relatively consistent and

comparable between groups the play list and the sliders used on the mixers. However, even here

disparities can be seen in both the implementation and their interaction styles. "Track objects appear in all

cases as text boxes in higher level container and dialogue components. The arrangement of text boxes in

these various grids is a considerable challenge to the overall USC specification since the highly specific

features of these components (largely particular to the Microsoft Windows environment) do not fit well

with the USC metaphor.

Group I

-- t- �-�

C=l

JL1 ýý

T Mixing deskplms music

Group 4

(ommun media player term?

Ili- fi plays Jingle%

Fi,; nn-e 59 USC Media plai, er- until jiingle iiitceructo,

I surt<s.
_ý

IIrl riplcti pIa Ii i

162

Buttons and slider bars are common implementation features of the mixing desk (see Figure 59); both

groups modify the behaviour of standard button controls made available to them in their respective

development environments. However, whilst group 4 implement smooth slide movements for all their

sliders, group 1 only allow this type of interaction for the master volume slider all other sliders

effectively act as switches (clicking on the button moves the slider to maximum or minimum directly).

Group I

Figure 60 USC Producer environments

DJ environment

Producer environment

Group 4

For both prototypes, media playing operations are very simple and only functional for MP3 files

registered within the system. Group 1 uses the binary function of sliders to play and stop either music

tracks or jingles (the two are exclusive -- flipping one slider up drops the other down) from their

independent play lists. Other potential audio sources are indicated on the mixer desk, but are non-

functional. As well as media playing operations, a numeric counter indicates elapsed track time; a

left/right audio balance changes the stereo reproduction of sound'' and a radio button couple control DJ

broadcast signal to the producer. A small circular button labelled `DJ' in Figure 60 changes the context

2' Arguably, this could be described as mixing but only in a very weak sense.

163

DJ Produccr cmironmcnt

from a 1)J to a producing role. In contrast, group 4 does not present the user with controls for multiple

sources but instead uses a standard set of buttons, with familiar icons, to interact with an otherwise

metaphorically `invisible' media player.

Changing the environment from the DJ to the producer reveals further interactive objects. The

mechanism for this change of context for group I is the clicking of a small button labelled 'DJ' on the

mixer desk, the effect of which is to change the desk into a producer's mixer. A change in context in the

prototype developed by group 4 actually changes the entire interface - the user clicks on the door to

'walk' into another room. Group 4 introduces the interactive 'DJ Object'28 within the producer's

environment -a bitmap graphic that is used in conjunction with a microphone and slider bar which both

'snap' to the DJ object in order to effect broadcasting ability and a change to the volume of their output.

A! 1 L? fi IS

L

r s. tr m. ý.
ýý

9i

ýJ
y

. s. '
9ny

Nlli'. V-r

MEMO

,. ýý{ Y

..,

f;

`

Figure 61 USC Group I Advertisement book interactor

Group I implements a yellow book form to support advertisement management, see Figure 61. A 3x2

array of embedded windows containing a bitmap and short text description acts as the source of adverts.

Each advert image may be dragged from its position over to the time-line (a form group labelled 'new

set'), the effect of which is to place the advert at the end of the line. Standard buttons allow the user to

naviuate between pages, causing changes in the array or timeline as 'pages' are turned or the view along

the line shifts.

164

In the tables below, each group's core meta-objects are listed against the interactor objects used to

implement them.

MetaObject Potential interactors
Track Text box
Play list Bitmap, text box, grid layout, button
Media player' Bitmaps, text box, button (standard and radio)
Sliders Bitmap, button
Book" Bitma , text box, button, grid layout
Advert Bitmap, text box
Time line Text box, grid layout

Group 1 Interactors

MetaObject Potential interactors
Track Text box
Play list File dialogue, form dialogue, button
Media player Button
Mixer Bitmap, button
Sliders Bitmap, button
DJ Object Bitmap
Microphone Bitmap
Stand Bitmap

Group 4 Interactors

Table 17 USC Interactor summary

Whilst all interactive objects used to implement the USC prototype used API-specific `forms' to project

bitmaps and contain other elements, the additional functionality normally associated with the form

component31 was hidden from the user. Other redundant complexity can also be found in various

dialogue boxes used by group 4; comparatively few of the interactive parts that make up these dialogues

were traced back to the metaphor design. For this reason, in refining the USC model, simple interactors

that only support the interactions required for the design will be specified.

' In fact, this same graphic is also visible in the DPs room, however it is a non-interactive object.
29 Appears as a mixing desk
30 Scroll bars appear in this implementation - these were in fact not desired by the design team and so will not be included here.
31 Including form decorations and implicit menus

165

2.5 Summary

The piece-wise examination of data collected identifies those design features that could be expressed

within the ISML framework and those that could not. This comparison is based on the design features

documented in the ISML data and a) the features discussed during the design meetings and b) the final

USC implementations.

Captured Missi
Devices Keyboard and mouse None
Components Bitmaps, text boxes, buttons, scroll bars None
Metaphor Partial features of core objects, using Track abstraction does not relate to

hierarchical or composite views. media objects

Some mappings and constraints to Some play list operations
describe relationships between objects.

Explicit support for object re-use
Action-events affected by the DJ.

DJ-to-air mechanism (afferent actions
missing)

Interactors Basic equivalence of meta-objects to Detailed display and controller part
interactors definitions

User interactions with interactors Interface technology specific Interactor
WIMP appearance and behaviours

Tasks Hierarchical view of tasks Some task objects not included

Basic task objects Complex concrete and abstract features
of the DJ environment

A few conditions for task execution
Communication between DJs

Table 18 ISML Design capture summary

The specification of both devices and components was relatively simple since both groups'
implementations did not use complex user interface technologies.

Two distinct styles of metaphor construction emerged between teams. Group I chose to pursue objects

and structures that were analogous to real-world counter-parts, whilst group 4 `broke' real-world concepts

and synthesised them into new designs. In both cases, the specification framework was capable of

expressing the basic features of each design and each group was able to specify actions and a few

mappings and constraints. Problems with the abstract nature of the track object (already discussed in

chapter 5) are reflected in the specification of the metaphor. A track object is a data file in reality, and

this important distinction finds no place in the metaphor model. For the same reason, group 4's

specification does not address the actions of file retrieval from a dialogue box that is essential for the play
list operation. There is evidence for the need for an explicit re-use mechanism in ISML in the similarities

between group 1's play list and advertisement book - this does not exist. Finally, although the groups

identify many of the core objects, structures, mappings and action-events, there is a lack of afferent action

166

detail. This is an important omission, particularly with respect to inter-object communication. Group 4's

air model is a clear example of this, in which a mechanism for placing of DJs to and from the air cannot

be specified without further communication between the DJ, the microphone and the stand.

An enumeration of objects and interactions through the use of preliminary screen-shots provides general

mappings between meta-objects and actions to interactor equivalents. Explicit details regarding mappings

between specific meta-object attributes and their implementation as display parts was not elicited due to

time constraints. Conversely, the details peculiar to the components used for implementation are not

captured and so cannot be mapped to the metaphor mode132.

The most serious omissions are to be found in the task model, which include the absence of important

real-world objects, concepts and interactions. It is clear that ISML is very weak in this area and that a

rich description of a real radio broadcast environment is far beyond that which an ISML specification can

express. Specifically, these problems occur in describing abstract or non-concrete concepts and

communication behaviours. At present, the data collected from either group consists only of a task

hierarchy, a simple enumeration of objects (and associated task actions), coupled with a handful of stop-

iterate conditions.

3. The unified USC meta-object model

Having examined each group's model data, the following sections attempt to unify the core tasks

addressed by both teams through the synthesis of a media, play list, mixer and air model. This will be

achieved by looking to each team's design strengths and addressing, if possible, missing aspects of the

meta-object model through recourse to the design meeting transcriptions.

Overall, group l's modelling strategy took a broad and hierarchical approach, which echoes a

conventional understanding of the radio broadcasting environment. However, whilst their model had

greater coverage than group 4's, with respect to the number of objects included, it suffers from weak

internal modelling and redundancy. Conversely, group 4 describes a more compact model that focuses

primarily on the playing of tracks, play list assembly and air management. This narrowness of design

sacrifices the broader perspective on the metaphor however, leaving incomplete or wholly missing

supporting conceptual models; the incomplete play list meta-object and missing media player task object

32 However, since these are largely superfluous to the metaphor, this is not a major concern.

167

are examples of this. Both groups were able to use concepts known to them from the real world and

creatively generate a metaphor model used to support DJ activities in USC.

Group I Group 4
Media model Real-world media player hierarchy
Play list model Inventory and schedule list
Mixer model Mixer desk hierarchy Mixer desk hierarchy
Air model - Microphone and stand
Room model DJ model

Table 19 USC unified meta-object features

The synthesis of the USC meta-models is summarised above; in addition to the four main models, a-
`room' model is added to improve completeness (this is discussed in section 3.2.5). For a complete

specification of the unified meta-object model, see appendix H.

3.1 Unified task model

The limitations of the data describing tasks result in a relatively static and high-level model. Objects used

within the task model are mostly derived from group l's task data, which have a broader (but not
detailed) range of objects (see Figure 62). All actions are afferent and executed by the DJ, however, no

underlying state model has been specified to support their execution. A simple container-class mapping-

constraint describes subordinate objects in media objects, the media player, mixer desk and play list.

168

CDIMn-D x' ane'Mr'?

Almb. - lrx.

SeIKI

Srr mGd el

Mena Pwf+ (CDYMni oro

.- Media AD

Actuate

Load

,. moýNS
flay

Sicy+

Sk

F'. t^pule 5 Feld Item

eCt

load

jay

Sl ct

Scale m1 Sktp

Fje ct

Sý ne

Nall

Move

Aad

tOVC

Acl

T, &M

A! Ntr:: it w

mds SI*t

Figure 62 USC unijie'd task n wta-ohject model

Mý. s N..

tii wem .

169

The final task hierarchy, in Figure 63, synthesises task views from both USC design groups.

170

Figure 63 USC unified task model

3.2 Unified Core Meta-Objects

In this model outline, a number of simple graphical conventions are used to depict relationships between

objects. What follows are a number of model 'views' in which the active meta-objects are displayed with

the attributes, state models 33, mapping-constraints and action-events that are pertinent to that view. Solid

triangles next to attributes indicate accessibility:

write

rwd

whilst arrows on MCs and AEs show afferent and efferent status:

cffcrcnt action

--º -- aff'crcnt action

Lines connecting object boxes indicate the transmission and reception of AEs. A summary of the

communication systems used by the USC meta-objects is outlined first since they support the semantic

basis for the over-all design.

'' Only the state model name is gi%en, the complete model itself can he found in appendix H.

171

Equipment Media CONTAINER

Mixers CurrentDJs A simple set uticd to maintain objects bounded with a 2D

Lists Devices rec tan ee le.
S, < Ir < Sr+S"

Sliders 5, <h<. ti a +s'.

FloorSpace Air Holder RELATIONAL

Current DJ Current Track A simple set. Used to maintain non-spatial relationships, no

Owner Connects mappings or constraints.

Environment Tracks

Map Volume I AUDIO MAP

Map Treble Three mapping-, to spccific attnhutc of an object (volume.

Map Bass treble and bass)

+S- ,�

+s,,
s, - (s "t, ,,,.) +s,. .

N Holding I DM (Direct Manipulation)

Attached A set of mappings that displace the (x. i) position ofthc
target with some source offset.

1, = S, + .,.

ConstrainedButton SLIDE

A set of mappings that constrain the x position such that the
target may move vertically along a constrained ranive.

tr =Sr+Ss�rn

MC instances

....., cß.....,! 1, c,

A1((1 s(, -Ipt! ull

Figure 64 USC Unilied ntupping carstr uitrt srrrrrrrrurý

172

Five basic mapping-constraint hypes used in the unified model are described in

Figure 64; boxes on the left indicate specific MC instances used by the objects in the specification.

Unlike mapping-constraints, objects may only use one instance of an action-event (even though their

specification name may be renamed). For this reason, the models summarised here only use the

definition boxes shown in Figure 65. Action-events without a sender parameter are those events that are

called during system initialisation and do not have any `source' with respect to other model entities.

Pick

PickCopy

Drop

Own

Release

Select

Load

Stop

Forward

Back

Slide

SetToAir

AddTrack

RequestTracks

CopyTracks

AddMixer

Room

F_' Leave Room

ConnectRoom

RegisterDJ

UnRegisterDJ

(SET sender, INT x, INT y)

(SET sender, INT x, INT y)

(SET sender, SET holding, INT x, INTy)

(SET sender, SET toOwn)

(SET sender, SET toRelease)

(SET sender, INT x, INT y)

(SET sender, SET holding, INT x, INTy)

(SET sender, INT x, INT y)

(SET sender, INT x, INT y)

(SET sender, INT x, NT y)

(SET sender, INT x, NT y)

(SET sender, INT x, NT y)

(SET sender, INT x, INT y)

(SET sender, SET dj)

(SET track)

(SET sender)

(SET sender, SET tracks)

(SET mixer)

(SET sender, STR roomType)

(SET sender, SET equipment)

(SET sender)

(SET room)

(SET sender, SET dj)

(SET sender, SET dj)

Action-Event AC parameter-,

Figure 65 USC unified action-event sunnnlatl'

173

3.2.1 UNIFIED MEDIA MODEL

DJ

Attributes Environment

... Holding

Pick

Drop

Own

State models Release

Holding Load

Ej ed

Play

Stop

Forward

Back

Media Player

Attributes Devices

Int x, y, w, h
Load

Eject

Play

Stop it -111--

State models Forward

-IJ Back

Media Device

Attributes Media

Str DevType CurrentTrack
Int TrackSelect

I nt xyw Load

Eject

Play

State models Stop

PlayState Forward
41 4-

Back

RequestTracks

CopyTracks

Own

Release

Figure 66 U. S(rinr/i (I lilt irr nýý, d, /

174

The media model presented in Figure 66 expresses much of the hierarchical model initially described by

group 1 before subsequent ̀mangling' whilst at the same time adding two new entities: the media object

and the media inventory object. This new inventory object should not be confused with the inventory list,

which is specified in section 3.2.2. During system initialisation, tracks are added to media objects via the

6 add track' action; each fully populated media object is then ̀ released' into the media inventory34.

Every DJ maintains an MC environment that contains objects for his/her use - in this case a media player

object and media inventory. The former contains specific player devices, whilst the latter contains media

objects. During interaction, the DJ may hold a media object through the successful exchange of pick,
drop and own AEs (the basic mechanism for which is described in chapter 4). Once held, the media

object can be loaded into the appropriate media device (cascaded from the media player). Attempts to

load a media object into an inappropriate device result in a release action, returning the object to the DJ;

this release mechanism is used for eject actions. Play, stop, forward and back media operations are

cascaded to the appropriate device in the same way. Upon successfully loading a media object, track

objects are copied to the player device (maintained in the `media' MC) whilst the currently selected track

is contained in the `current track' MC. All tracks are ̀ flushed' upon an eject action.

3a Technical note: here, the sender is specified as 'NULL'

175

3.2.2 UNIFIED PLAY LIST MODEL

DJ

Attributes Environment

Holding

Pick

Drop

State models

Manipulation

NAC' Own

Release

Forward

Back

Select

Track Inventory

Attributes Tracks

Int x, y, w, h

Pick

PickCopy

Drop

State models Own

Contents Release

CopyTrack

Track

Attributes E Owner

Int x, y, w, h

Pick

PickCopy

State models
61 -0

Own
W Release --0

Select

Figure 67 (. SC unified plan li%i Fn u1(-l

176

For both the sake of clarity and also as an acknowledgement of group l's inventory model, the play list

object is a composite of two list-like objects (the track inventory and schedule) - see Figure 67. During

initialisation, all media objects copy their tracks into the track inventory. In this way, the extended media

model (see section 3.2.1) can co-exist with the strong track and play list associations developed by both

USC groups. The principal difference between the unified USC model and those developed by each

group is that the unified model only uses the play list as a guide, rather than as a media playing device in

its own right. Implementation of the latter model would only require two minor changes: 1) only one

media object need be created in which all tracks reside and 2) a single media device would copy tracks

from the schedule list, rather than from the loaded media object (see section 3.2.1). However, the unified

model is proposed since it provides a more comprehensible metaphor.

In creating the schedule, the DJ executes a pick action that is then translated into a `pick copy' action by

the track inventory, thus ensuring that the inventory remains static. Tracks are dropped onto the schedule

list using the pick-drop-own model and manipulated through a focusing action called `select' followed by

forward and backward actions.

177

3.2.3 UNIFIED MIXER MODEL

Fi in c' 08 ('S(' tnti/i(-cl mi <<v- murlrl

178

Compared to other views, the mixer model is very simple, see Figure 68. System initialisation creates

and hands over management of slider objects via the `add mixer' action-event. Slide actions are cascaded

through the object hierarchy (mixer desk, audio mixer or DJ mixer, slider and finally button). Values for

the appropriate audio properties are mapped through mapping-constraints.

179

Figure 69 USC Unified Air 'node/

180

3.2.4 UNIFIED AIR MODEL

The unified air model (Figure 69) appears to indicate recursion in the pick-drop-own action model,

however, this is not the case but rather the result of a compact representation of both the actions of the

DJs and the producer acting within the producer's environment. To understand this model, it is necessary

to be reminded that a) the actions of the DJ discussed here are viewed as those carried out by the user

acting as a producer and b) other DJs sharing this environment also send and receive actions (but these

are not the actual actions of said user).

From the producer's point of view, the environment contains a stand and mixer desk (the microphone is

initially held by the stand). The producer is located within the producer's room (via the `connects' MC,

not detailed here, see section 3.2.5) through which `pick' and ̀ drop' actions may be effected to reach the

currently connected DJs. Picking up and replacing the microphone from the stand are achieved using the

pick-drop-own mechanism (see section 3.2.4). Placing a DJ on air means picking up the microphone and

attaching it to one of the available DJ objects - these actions are passed through the `producer room'

object to the DJs contained in `current DJs'. A DJ receiving a microphone sends a release action to the

producer object, that then sends a `set to air' action (referring to the DJ as a parameter) to the mixer

desk35, which passes on this information to the DJ mixing object.

35 The unified model does not attach mixer desks to DJs, but rather keeps them static in the room.

181

3.2.5 UNIT IF: I) ROOM MODI L

Lobby Room

Attributes Connects

IntDJRoomTotal

I DJN R
FloorSpace -jo

nt ext oom

State models
TryDoor

Lobby
U Enter Room -. 0

ConnectRoom

Leave Room

RegisterDJ

UnRegisterDJ

DJ Room

Attributes Connects

Int floorMax FloorS pace

Int x, y, w, h Equipment

TryDoor

Enter Room

State models Leave Room

Occupancy Jtj ConnectRoom

RegisterDJ

UnRegisterDJ

Figure 70 USC Unified room model

The notion of rooms with DJs resident is an implicit and tacit assumption evident in both USC group

prototypes although this aspect of the design was not explored. However, rooms are an important part of

the meta-object model since whether explicitly presented in the design (such as with group 4) or not, DJs

operate within rooms that are private.

In developing the room model (Figure 70), the behaviour of both USC prototype `log-in' systems was

examined and combined with a commonly used `lobby room' metaphor (this is explicitly modelled in

182

Microsoft's multi-user network layer, DireciPlay). At initialisation, all potential DJs and rooms are

created - DJs are contained within the room's `floor space' whilst all rooms are maintained within the

`connects' mapping-constraint. DJs may then attempt to join the shared environment by trying a door

(the parameter of the `try door' AE determines whether it is a producer's room or a DJ room). If a free

door is available, the free abode sends an ̀ enter room' AE back to the lobby, which in turn passes it to the

DJ. Additionally, if the newly occupied room is a DJ habitat, a `register DJ' action is sent to the lobby

which is then passed on to the producer room such that a list of connected DJs can be maintained. If the

DJ wishes to leave any room, this action is passed to the room he/she is currently inhabiting (maintained

using the `floor space' MC) and a similar `un-register' AE is cascaded through the system, eventually

completely with the DJ returning to the lobby floor space.

3.3 Interactor layers for the unified model

In the following sections, potential mappings to interactors for each of the meta-object abstractions

defined are described. In each case, all DJ actions are implemented using mouse button clicks, this is

discussed further in section 3.3.6.

3.3.1 MEDIA PLAYER IMPLEMENTATION

The unified meta-object media playing model was extended to reinstate the media object and player

concepts recognised by both groups, but subsequently dropped due to implementation concerns (see

chapter 5). This model needs only to be partially used in either group's realisation of the media player

only one media object is required, containing all the available tracks (effectively, this represents all the

MP3 files on the PC hard disk).

183

Media Device

Attributes Media

Sir DevType CurrentTrack
Int TrackSelect

Int x. y, w, h Load

Eject

Play

State models Stop
Ix 4--

PlayState Forward Ct 4--

Back it 4-

RequestTracks It(

CopyTracks it 4--

Own -101

Release 41

E=l

'ý Iurr. ý/.. r

o

IL

"0r , /-

DI
Figure 71 Media planer implementations

In Figure 71, the interactor for media player is derived from the media device meta-object - all other

objects from the metaphor abstraction whilst instantiated are not graphically represented in either design.

Group I implements their media player to appear and behave like a mixing desk - this is confusing. It is

important to note that the superficial appearance and behaviour of the graphical object is mapped to the

runderlºying media device. This group's interactor implements two display parts - one to display the

background slider and light, and the second to display the position of the slider button. This interactor

behaves as a glorified switch, calling the plus AE when thrown up or calling the stop and forward AEs

when thrown down (in accordance to prototype behaviour).

Group 4's player implements six display parts, although, in their prototype, the forward and back buttons

arc not functional. I lore, the mapping to meta-object action is simpler: each button calls the appropriate

action-event.

3.3.2 Pl AY LIST IMPLEMENTATION

The realisation of the play list presents difficult challenges for the separation of metaphor from

implementation for a number of reasons. Strong WIMP designs can he found in both groups' prototype

designs which 'overload' the metaphor abstraction of copying, a track item from a source to a target. In

184

addition to this, group I re -uses the play list nuulcl for their advertisement hook in which :+ dircrt-

manipulation model that more explicitly represents these actions is applied.

Track Inventory

Attributes Tracks

Int x, y, w, h

Pick

Pi ckCopy

Drop

State models Own

Contents Release

CopyTrack

Track

Attributes 5 Owner

Str name

Int Duration

Int x, y, w, h

State models Pick

...
PickCopy

Own

Release

<

Schedule List

Attributes Trecký

Int trackCount \

Int x, y. w, h

State models Pick

Contents Drop V ý1

Release

Forward

Back

Fiýin c71 I)/, Il. list ü»plc'mrnthntiuns

4

4

lgý

Linking these designs to the underlying metaphor model is inelegant and problematic; the metaphor

actions must be split across the WIMP components rather than enacted using direct manipulation. To do

this, the pick-drop action sequence described in the metaphor model must be broken at the interactor

level. Rather than affecting the usual drag-and-drop sequence: mouse button down, mouse move, mouse

button up, two separate mouse clicks are required to perform this action. The first, a mouse click on the

track object executes the pick AE. To drop the track, the user must click the Add (group 1) or Open

(group 4) buttons, which are part of the schedule list object, rather than the play list.

3.3.3 MIXER IMPLEMENTATION

Of all the concrete instances of the metaphor model, the mixer implementation is the most direct, see
Figure 73

Slider

Attributes Constrained Button

Int value

Int min, max

Int x, y, w, h

State models

Slide

eh nýIN

6s/airý

Lirbr b4r

Slider Li JJJJJIIJI

type 1"""""u
s var

Slider type 2

Button

Attributes

Int x, y, w, h

Slide State models Lff

Slider
type 2

Vol bass treu mit

1
Figure 73 Mixer iniplementatiations

Group I must derive two types of interactor slider from the meta-object definition - one that acts as a

switch (slider type I) that does not forward slide actions on to its constrained button, but instead simply

changes its appearance from down to up (or visa-versa). Slider type 2, used by both groups for

continuous movement of audio parameters does pass on the slide action-event to its child, constrained

button, which alters its position accordingly.

186

3.3.4 Air implementation

In this implementation, the same air model is used in its most simplistic terms 1,01 croup I, and in a

sophisticated sense for group 4. The former group's design represents 1). ls within the producers r00111 as

sliders on a nixing desk.

<

Mixer Desk

Attributes ; Mixers

Intx, y, w, h -----------------

State models w Slide -0

AddMixer 4 4--

SetToAir

DJ Mixer

Attributes Sliders -01

Int volume MapVolume
Int x. y, w, h

CurrentDJ

State models Slide

SetToAir

-,

ý,

4-

Figure 74 Group I Air- irºr[)lonci1týrtion

For the group 1 interactor solution, much of the underlying air metaphor model is unused. The l)J object

(represente(I as a slider, but not derived from a meta-object sliders°) behaves in the same hinar) fashion

described for group 1's media player. However rather than issuing play AE. s. the set-to-air Al- is called

on a mouse click event, placing a reference to the current DJ object in the 1)J mixer (see section 3.2.5).

This is an important distinction; the D1 object for group I looks like, but does not engage in slider hcha\ iour.

187

Microphone

Attributes Air Holder

Int x, y, w, h Owner

Pick 1 4-

State models Own

Air Release

SetToAir
z

4-

Stand

Attributes Molding

Int x, y, w, h

Pick

State models Drop KI 4-

Release

DJ

Attributes Equipment

Str Name Holding

Str Style

Int x. y. w. h
Attached

FloorS pace

State models Pick

Lobbying Drop

Manipulation Sa oAir
Air

State models Slide

SetToAir

Figure 75 Group 4 air implemenlutiun

188

"Connect¢dbJ"

The unified air model was developed to support group 4's more interesting microphone manipulation.

Here, an interactor for each meta-object is directly derived, implementing simple display parts throughout

(see Figure 75, noting producer actions are shown). Mouse up and down events initiate the pick, drop and

slide action-events.

3.3.5 ROOM IMPLEMENTATION

A view of the room implementation is exceptional in that it is not generated from the USC case study

data. Despite this, there is a need for a room model since a) rooms are implied by both groups during

discussions and b) rooms that contain DJs and equipment improve the coherency of the USC metaphor

model. In fact, the principal role for the room interactors is to serve as graphical containers for the other

interactive objects. Both DJ and producer room interactor objects derive directly from the meta-object

abstraction. Each has only one display part, providing a final rendering target for all the other objects, so

that they are all displayed within one environment (see chapter 4, section 6.5.1 for a description of the re-

targeting mechanism).

3.3.6 SEMANTIC DETERMINATION PROBLEM

It has been possible to show mappings between the metaphor and interactor layers. However, a problem

arises in determining which particular metaphor action is to be executed by the user, acting as a DJ.

Interaction in the USC prototype is primarily mouse-based, using simple click and dragging actions. This

results in the problem that, with the model specified so far, no mechanism exists that will determine

whether a mouse click executes a pick action or play action, for example. To solve this problem, an

additional pair of action-events must be included with every interactor object definition that will furnish

the DJ abstraction with the appropriate action to send, these are:

GetSemantic(SET sender, INTEGER x, INTEGER y)

and

ReturnSemantic(SET sender, STR context)

The GetSemantic AE must be cascaded through the object hierarchy until the focus of a mouse click is

determined, where upon the target interactor returns a string value to the DJ (the sender), detailing the

appropriate associated metaphor action. Once established, the normal cascade of meta-object action-

events can then proceed.

189

3.4 Summary

The mapping of the metaphor model to various interactor designs achieves varying degrees of success. It
is clear that where interactions enact the actions of the metaphor, the translation to implementation is

reasonably simple. Problems arise where components signify these actions rather than allowing the user
to enact them - the play list implementation exemplifies this problem. The semantic determination

problem is a `fly-in-the-ointment' that the USC case study has brought into focus. Whilst this problem is

not catastrophic to the explicit separation and treatment of a metaphor model, it does highlight that, at
present, only a partial de-coupling is possible. The implication of this is that specifying metaphor

abstractions using ISML seems to lead, as the USC case study has already shown, to implementation

considerations where it is undesirable to do so.

4. Discussion

The findings from the examination of the model data from both groups and the application of a unified

metaphor model to potential interactor designs shows that the application of the ISML framework to the
USC project has experienced successes and failures in specific areas. For the specification of the unified

metaphor model, interactor examples and task hierarchy, see appendix H.

4.1 Analysis question 2, part 1

Part 1 asked the question: What aspects of design did ISML capture and what was missed? Core actions

performed by the user are all mouse-based actions requiring only a single button so in this respect, ISML

captures the required devices easily. However, this is also a weakness in the evaluation since nothing can
be said regarding problems in which other input devices are required. Specifying bitmap, button and text-
box components is also relatively trivial, since they only need provide basic graphical display services to

the bound display parts.

Perhaps as a consequence of the progressively narrowing focus on the design of the system as the case

study progressed, many of salient features of the core metaphor model could be documented. However,

two metaphor complexity problems, either a) difficulty of expression or b) difficulty in management

occur for both groups' specification. The abstract nature of the track and play list illustrates this problem

most clearly within the case study. Although not as serious, currently ISML does not provide any

mechanism for re-use of common objects and behaviours, resulting in unnecessary additional modelling.

190

Many of the interactors used by each group were instances of relatively simple components (see above)

that are easily implemented within an interactor abstraction. However, a small number of more complex,

API-specific components would require a significant library of additional interactor designs to mimic the

behaviour of the Microsoft WindowsTM environment. Whilst these extra behaviours are largely irrelevant

to the behaviour of the system, they do represent aspects of the final design which are missing from the

specification. This raises a serious scalability issue for ISML; a large proportion of software applications

run using Microsoft WindowsTM components (or those like them). For ISML to become useful to the

broader software engineering community, large libraries of such components would have to be created

and managed - at present there is no support for this.

The task models described in this chapter, even after refinement, remain somewhat limited. Inherent

complexities within the radio broadcasting domain did not translate well into a formal model: both the

elicitation constraints and ISML framework are significantly under-powered to capture this information

satisfactorily. Consequently, the unified task model is a static assignment of basic objects and their

permissible actions towards one another coupled with a relatively inflexible, hierarchical task tree.

4.2 Analysis question 2, part 2

Part 2 asked the question: To what extent can the ISML abstract the USC metaphor? A partial separation

of a metaphor model from a final implementation has been possible under the current ISML framework.

It has been demonstrated that in implementations of the metaphor where there is a relatively direct

correspondence of user interaction with metaphor behaviour, mappings are achievable. Play list

implementations by both groups demanded that the interactor layer subvert the underlying meta-object

model in order to achieve the same effect.

This finding may go some way to explain some of the design behaviours explored in chapter 5 in the

following respect: each team was constrained, to a degree, by what was technically possible both in terms

of the GUI components available to them and with respect to their engineering capabilities. As a result,

the enactment of metaphor-level actions on objects was very difficult for them to engineer for their

implementation (indeed, group 4 mentions such technical constraints; see chapter 5, section 5.2.6.2). To

ameliorate this problem, each group reduced the sophistication of their design.

Finally, the semantic determination problem demonstrates that some of the properties of the metaphor

model must be retained within the interactor solution. Both design groups were asked to specify their

designs within the ISML framework without knowing that this would be an important problem to solve

and it is perhaps for this reason that they found describing the abstract metaphor difficult

191

5. Summary and conclusions

This chapter has analysed the high-level ISML models generated by each group for the USC case study

and proposed a unified meta-object specification that partially supports both groups' design views.
Analysis of the model data from each group revealed aspects of design that ISML could capture as well as

those that it could not. Specifically, the design aspects captured can be characterised as those that are

visual and direct: devices, the USC metaphor objects (and some of their actions) along with their

representation at the user interface. Missing design aspects were predominantly those that were either too

large or complex to be easily managed, or those that were difficult to express. Examples of these include

non-concrete abstractions such as the track (and its relationships), the full specification of vendor-specific

graphical components, and the expression of complex interactions within the task model.

In deriving a unified model USC meta-object model, it has been possible to show that an explicit, abstract .
metaphor model can support two different design implementations. In attempting to separate metaphor
from implementation views, two important lessons have been learned. Firstly, the WIMP-based solutions

used by the groups have both led to aspects of the metaphor being `hidden' from the user. Secondly, the

emergence of the `semantic determination' problem has provided one possible reason for the problems

the groups encountered whilst trying to separate metaphor from implementation.

192

CHAPTER 7 Conclusions

1. Introduction

In this chapter a summary of the research carried out and its findings is presented. The research aim and

associated three objectives are reviewed, followed by a brief outline of the activities that supported them

at each stage. A discussion of the results of the USC case study points to a number of design issues

specific to ISML and suggests possible reasons for their occurrence and the implications for the wider,

MB-UID community. An evaluation of the research process and the decisions made during its execution

discusses the current position of ISML research. The chapter concludes with directions for further work

and the contribution this work has made to model-based, user interface design research.

2. Summary of research

This research has developed a novel specification framework to support metaphor models that can be

integrated with other user interface design views. At present, little work exists that makes an abstract

metaphor design explict and integrated with other model-based design notations or tools. Toward

achieving this aim, three research objectives were identified:

1. Identify extant HCI design models that might be extended to support metaphor abstractions

2. Develop a language that supports metaphor abstractions and integrates with models found in (1)

3. Evaluate the language developed by (2) with user interface designers/software engineers to assess

the application of an abstracted metaphor layer to the design of a GUI prototype

To identify potentially useful models for objective 1, a review of the theoretical design frameworks and

model-based views on user interface design was presented. This contrasted the perspectives on

development from a number of different methodologies found within the HCI research community. It

was also important to gain some understanding of the technical foundations that supported these various

design perspectives. A review of the literature revealed varying degrees of formal and tool-based support,

but very little that could be said to directly support metaphor abstractions. However, the range of design

views and architectural abstractions found in the literature had plenty to offer for extension to support of

metaphor design.

193

The ISML framework was then developed based on a limited range of model-based abstractions and

computational concepts; this limitation was necessary since the range of design views addressed by the

MB-UID community is broad. After the framework had been realised at a high level, it was considered

important to capture these concepts in a formal language so that it might lend itself to some form of

machine support. The first inception of ISML, based on a Lex and Yacc grammar Levine et al. (1992)

was abandoned due to the excessive code generation required to parse the language. Subsequent

migration to XML proved more successful since tools already existed to automatically verify and validate

the language.

A small-scale model was developed using ISML to make some initial explorations with the language; this

revealed numerous syntactic aberrations (subsequently corrected) as well as some insights into the use of

the framework to specify metaphor. A larger case study was then conducted to determine, in a more

realistic development scenario, how the framework might be used to specify novel, metaphorical,

graphical user interfaces. It was considered important to gather evidence for or against its application to

a real design problem; this would help validate (or not) the concept of a metaphor abstraction and the

mappings to other design views as prescribed in ISML. For this reason a qualitative approach was

selected, as it seemed likely to produce the richest data set for this question (for a discussion on selection

of methodology, see chapter 5, section 2).

The qualitative analysis focused on the elicitation of an ISML specification, interactively constructed by

the author and two, independent design groups. In fact, design meetings with each group were all

transcribed - however the length of the complete transcript set was too large to analyse within the scope

of the research time scale. A grounded-theory Glaser and Strauss (1967) approach was adopted since this

was the most flexible and generative method for analysis in the face of novel social behaviour (i. e.,

software engineers specifying designs using a new specification framework). Findings from the analysis

revealed a number of interesting design behaviours and responses from the teams that could be compared

with respect to the description of tasks, the metaphor model and the interactor implementation. This

prompted further analysis of the specification data produced by both groups to identify a) which aspects

of the design ISML had captured (or missed) and b) to what extent the metaphor abstraction could be

separated from other user interface design views.

194

3. Summary of findings

3.1 Objective 1

Carefully designed metaphors in user interface design are widely recognised as useful tools to help users
interact with a computer system. An initial review of the literature indicated that whilst interface

designers could look to psychological or formal accounts of metaphor, the effective use of these accounts

would require special training and so would not be easily accessible to many development teams.

Guidelines and case studies on the application of metaphor to UID potentially invest designers with useful
insights, but relatively little support can be found to explicitly specify and map metaphorical concepts to

other design views.

In order to raise the profile of metaphor design and relate it to other interface design considerations, a

review of the broader HCI literature then took place. Since this is a broad and inter-disciplinary area, it

was important to execute a focused and directed examination. To this end, it was decided that an

examination of some of the common notations and models within the HCI literature would be a good

approach for two reasons. The first, to identify potential abstractions to both extend or relate a metaphor

model and secondly, it would place this research within the context of the broader research community

without getting lost in numerous theories and methodologies.

The literature review outlined some of the design views that enjoy some form of model-based support,
including task, presentation, dialogue and domain oriented frameworks. It became clear that within this

field, a number of approaches to development and abstraction were shared between design views. The

concepts of communicating objects, abstracting small aspects of a larger design view was prevalent in

much of the literature. If an explicit metaphor model were to be useful, it would be necessary to map it to

existing formalisms, and it was on this basis that ISML was created.

195

3.2 Objective 2

The design views and architectural developments evaluated in chapters 2 and 3 led to the adoption of a

small selection of concepts and computational models that could be extended to support a metaphor

abstraction. Specifically, these were event-based communications and mappings between objects that

maintain `abstract' and `concrete' parts (variously applied in the literature) synthesised to address five

design views within the ISML framework:

1. Devices (simple, high-level abstractions of input-output hardware)

2. Components (collections of input `collectors' and output presentation units)

3. Meta-objects (includes syntactic and semantic definitions for a metaphor model)

4. Interactors (implementation of (3), realised with mappings to (2))

5. Tasks (simple, hierarchical task descriptions with mappings to (4) and subsequently (3))

A syntax and grammar for the ISML framework was expressed using XML. The small-scale

specification example given in chapter 4 highlights the features of the language and also some of its

inherent limitations, leading to predictions of scalability and metaphor separation problems for larger

scale projects.

3.2 Objective 3

The six-month USC case study was executed with two, independent software engineering teams of four

members each. Some high-level structure was needed to aid the analysis of ISML, and to this end, two

principal analysis questions were raised:

1. What are the reactions of developers to the use of ISML?

2. To what extent does ISML capture a design?

Data gathered for question one was a sub-set of the transcription of the seven design meetings that took

place over the course of the case study. An analysis of the transcripts resulted in comparable accounts of

196

how both teams specified their USC prototype designs using the ISML framework. Subsequent post-

project open-ended questions generated group reflections that show their perceptions of the utility and

practicality of the language. The ISML specifications generated by both teams were compared and

contrasted to evaluate the extent to which it reflected the USC design problem. A unified metaphor

model was then derived from within the scope of the concepts shared by both teams and potential

mappings to each team's implementation demonstrated.

3.2.1 QUESTION 1: WHAT ARE THE REACTIONS OF DEVELOPERS TO THE USE OF ISML?

Analysis of question one is further sub-divided into two parts:

Part 1: How is a user interface metaphor developed within the ISML framework?

Part 2: What is the perceived utility and practicality of the application of ISML to design?

Open coding of the design meetings was followed by a structured axial coding method, examining in turn

each of the 3 elicitation phases (task, meta-object and interactor) conducted during the case study. An

examination of the treatment of each of the phases highlighted the effects that the ISML framework had

on design expression (part 1). Group reflections on the specification process shed some light on the use

of the ISML framework during the case study (part 2).

3.2.1.1 The development of user interface metaphors within the ISML framework

Analysis of the case study design meeting transcriptions revealed a number of design behaviours:

9 Design reduction

" Non-concrete concepts

" Implementation bias

" Metaphor mangling

" Common models and re-use

The progressive reduction in design complexity and the `mangling of metaphor' that occurred as both

groups migrated from task descriptions to actual interactor solutions suggested that both groups

undertook strategies to manage the complexity and mappings between design views. In each case, there

are examples of a reduction (or elimination) of objects and their roles in order that they can be managed

in the implemented design.

197

Few software engineers would dispute that most software engineering projects will undergo some degree

of scope limitation of the problem in order to make a solution tenable Jackson (2001). Indeed, the

relatively short life span of the USC project (6 months) may partially account for this behaviour. Where

the complexity of the metaphor model became unmanageable, at least one of two strategies was taken:

either a) a return to conventional WIMP based solutions and/or b) the mangling of metaphor. The

strongest evidence for the former behaviour can be seen in the play list design and the reflections of group
4 explicitly state the complexity of the problem as their reasons for this recourse to conventional design.

Both groups also use iconic representation: metaphors are substituted for symbols to indicate, but not

enact, metaphorical concepts.

Metaphor mangling was an unexpected artefact of the mapping problem, resulting in both distorted and

serendipitous designs. Distortions are plainly evident in group l's prototype; here the expected behaviour

of one object was substituted for another. Ironically, whilst group I exhibited strong analogies to real-

world structures in their metaphor model which is subsequently mangled, group 4 did not adopt such a

strong analogical approach but managed to produce a more coherent implementation. This shows that a
de-coupled metaphor model does not necessarily lead to an interface design that reflects it; the potential

reasons for this are discussed in sections 3.2.2.2.

Further descriptive problems emerge as ̀ non-concrete concepts' - aspects of the environment which are

properly part of the domain but cannot be easily expressed using concrete metaphors. Each group found

it difficult to describe abstract properties of a metaphorical environment (such as the track or the

scheduling properties of the play list or show) within the ISML framework. Part of this problem was

almost certainly due to the novelty of ISML for the USC development teams. However, in developing

metaphors both groups sought, to varying degrees, to adopt objects and behaviours from the real world:

these do not always map to the features of the intended system. Alty and Knott (1999) refer to this as a

`S+M-V+' condition or an instance of metaphor inconsistency. This is a problem for the ISML

framework: conceptual abstracts appear to play at least as important part in the metaphor model as do the

existence of real world objects. It is possible that yet another form of abstraction is needed here to fill this

gap. Furtado et al. (2001) introduce an ontology-based model in which concepts, relations and attributes

are mapped to task, user and domain models. A higher-level of abstraction such as this might be a

suitable augmentation to ISML, expanding its expressive capability.

3.2.1.2 The perceived utility and practicality of the application of ISML to design

The reflections from both groups (conducted independently) were elicited using five open-ended

questions intended to allow each group to offer their views on the use of ISML as a generative framework

for discussion and also as a practical or useful tool for design. Responses from the groups reiterate some

198

of the problems experienced during development (outlined in part 1) and suggest that the ISML design

process is one that has expression limitations, but that can also reveal important features in the design of

metaphor.

Upon reflecting on issues such as the impact on their design and the practicality of the application of
ISML, the groups made three main points. Firstly, both groups suggested that their `kernel' ideas would

remain more or less the same but that the ISML process would help to `unlock' design ideas and reduce

repetition in the description of object behaviour. Stepping through the ISML specification process was
beneficial in an analytical sense and at the same time, this realisation also points to a potential
improvement in the ISML framework through the introduction of a more object-oriented approach to

object specification.

Secondly, it was difficult for the groups to separate the metaphor abstraction from implementation

concerns, which made ISML model building difficult - this is discussed further in section 3.2.2.2. The

USC groups' reflections on this matter also suggest improvements in the specification elicitation method

could be made by more clearly delimiting the scope of the metaphor model and expanding the expressive

power of the framework. Whilst the former might be addressed by improving the teams' understanding

of the ISML philosophy through extra training, the latter is a harder problem. Some of the metaphorical

relationships derived from the elicitation (such as ̀ containment' and relational mapping-constraints) are

very similar to image schemas identified by Lakoff (1992) in his psychological account of metaphor.
Benyon and Imaz (1999) argue that many aspects of HCI design to some degree utilise image-schemas to

describe ideas - the appliance of these psychological structures to the ISML elicitation process may
improve communicability of ideas.

Finally, both groups felt that the time required producing an ISML specification was substantial and that

the benefits from doing it would be maximised if it were conducted at the very beginning of the project.

This is not surprising since it is inevitable that the decisions made by each group earlier on in the project

with respect to the functional requirements of the system clearly have an effect on aspects of the interface

design. The challenge of a networked application, capable of playing media and designed with a view to

streaming audio37 in later revisions was not trivial. As such, the technical challenge of the project almost

certainly conflicted with the metaphorical designs developed by the teams.

37 Actual audio streaming was not required for the prototype. Nevertheless, group 4 did in fact implement this feature.

199

3.2.2 QUESTION 2: To WHAT EXTENT DOES ISML CAPTURE A DESIGN?

Subsequent to the USC qualitative analysis, analysis of question 2 is also sub-divided into two parts:

Part 1: What aspects of design did ISML capture and what was missed?

Part 2: To what extent can the ISML abstract the USC metaphor?

A critical examination of both group's design models summarised the design features identified within

the ISML framework during elicitation and highlighted those aspects which are either not adequately

addressed or missing (part 1). An analysis of the devices and components used by each group identified

the interactor requirements for the specification (part 1). Finally, a unified USC model was outlined,
identifying those aspects of the metaphor model that can be specified independently of any one group's
implementation (part 2).

3.2.2.1 Aspects of USC design captured and missed

An analysis of the models from both groups reflects the findings from the qualitative analysis. Much of
the richness of the task model is not adequately expressed using current ISML methods. The missing
features fall under either objects not considered important in the task model by the design group or highly

abstract concepts that are not easily expressed within the current framework. Based on the data from the

evaluation, it is clear that task modelling within ISML is under-powered and not fully exploited. If ISML

is to be a viable framework for GUI development, this must be addressed since without an adequate task

description the value of the model is substantially diminished.

Meta-object models fared better; ISML was able to support hierarchical and composite views of design

for both groups, both of which were able to make use of attributes, state models and action-events.

However, some of the action-event models were under-specified since only efferent actions were
documented. This points to a review of the elicitation process and the need to include steps to capture

and verify the communication mechanisms between meta-objects; indeed, some tool-based support for

this process would be highly desirable since it could potentially diagnose problems such as these.

The eventual components used by each group to implement their design challenged the ISML framework

in two important ways. The first challenge is that of scalability - this was predicted from the small-scale
desktop model specified earlier. Whilst many of the components used by the groups were relatively

simple to model at the abstract, interactor level, the potential number of `concrete' instances of the object

200

was very large simply because of the many software APIs available. This represents a scalability problem
for ISML since it demands an explicit rendering mechanism, in a similar fashion to the AUI model
Schneider and Cordy (2001). At present, the alternative is to delegate the rendering details to component

abstractions, such as in Luyten and Coninx (2001) and Mueller et al. (2001). Whilst this alternative

removes the scalability problem, it also reduces the expressive power of ISML by implicitly restricting
the range, appearance and behaviour of components to those dictated by the implementation target. There

is clearly a need for some kind of library abstraction here, in which sets of ISML components can be

independently developed and pooled.

A corollary of the first, the second challenge is that of metaphor complexity and scalability. Both teams

were forced to fall back to the ubiquitous desktop metaphor in some aspects of the implementation. More

complex objects (such as file dialogues) introduced the need to specify yet further models to support

concepts from the desktop and office. Again, ISML does not provide support for multiple metaphors (or

indeed recognise them as such) and so there is a clear need for management of concepts in this regard.

Again, some form of software-based support to manage the complexity of this problem is required - an

ISML elicitation and specification toolkit beckons.

3.2.2.2 The extent that ISML abstracts the USC metaphor

The unified model necessarily introduced additional design features (such as the DJ booth) to create a

coherent and self-contained model. Mapping the metaphor abstraction to the core implementation

features of each group was troublesome. Difficulties arose when the interactor-based solution did not

allow the user to enact actions upon objects contained within the metaphor. Media player and mixer

solutions resolve to relatively simple mappings, since their mappings are direct. However, where some

objects and actions were only partially visible or completely hidden in the implemented system, mapping

problems occurred. These resulted in an interactor model circumventing the underlying action and event

sequences in order to achieve the desired effect in the underlying metaphor model.

A further problem arises in linking the metaphor abstraction to the implementation layer, referred to as
`semantic determination'. The USC case study revealed this hitherto unrecognised problem because it

includes a wider range of action and objects within the scope of the specification. At present, it is

necessary to include additional logic within the interactor layer in order to determine the `meaning' of a

user action as it is directed toward an object represented at the interface.

201

These findings suggests two possible reason for some of the design behaviours exhibited by both groups:

1. Implementation constraints reduce metaphor ̀ visibility'

2. The current mappings between ISML meta-objects and interactors are problematic

The groups' choice of GUI component technology resulted in the hiding of some aspects of the

underlying metaphor - objects and actions were implicitly enacted ̀behind the scenes'. In other words,

the capabilities of the target hardware and software can be seen to affect the expressiveness of the design;

this problem is also identified in the construction of virtual environments Smith et al. (2000). Target

platforms that implement very constrained forms of interaction, such as the command line or menu

system, are likely to both poorly represent an underlying metaphor and also enact the actions associated

with it on behalf of the user.

The `semantic determination' problem (see chapter 6, section 3.3.6) could also be one of the reasons for

the groups' difficulty in making distinctions between the metaphor abstraction and an interactor solution

- the expression of a variety of actions are enacted only using the mouse. It is therefore not surprising

that group members often talked about their design in implementation terms.

Whilst these problems were solvable, this has shown that it is not entirely possible to separate
implementation details from the metaphor abstraction. Of course, there may be situations in which this

might be desirable (such as the use of batch information processing systems). Batch or automated

systems not withstanding, in situations where a user is unfamiliar with the operation of a system the

implementation of even the most effective underlying metaphor is likely to be of limited use since many

of the concepts are hidden from the user. Given this, it is not unreasonable to predict that ISML will

probably be more effective when used with technologies that provide greater degrees of freedom with

respect to user input and output technologies.

Finally, the experiences gained from the use of ISML offer lessons to the wider MB-UID community.

ISML is at an early stage of development - other model-based enterprises are considerably more

advanced. The case study in this research has shown that the complexity of the ISML framework causes

problems not only due to scalability issues but also because the mappings between different design views

are not always obvious or simple. ISML does not guarantee good metaphor design - simply being able to

202

describe a large problem space is not enough. A deeper understanding of the relationships between

different design views, in a real user interface design context, is also important.

4. Evaluation of research process

In this section an evaluation of this research is presented, outlining a number of the challenges that faced

its execution and the impact that they made on the eventual direction and position of the research. The

broad and inter-disciplinary nature of HCI presented this research with the problem of delimiting the

scope of HCI design methods and tools within which to search for a suitable platform to develop an

explicit metaphor model. Important design views such as psychological and organisational perspectives

were not included in ISML. Even within the scope of the model-based design methods limitations had to

be specified in an attempt to make the research tenable. Evidence from the ISML evaluation has

highlighted the problems that result as a consequence of these absences. Without these necessary

limitations however, it is likely that the mapping problems already discussed above would have been

exacerbated still further. Identification and management of mappings between design views is a large and

complex challenge that faces the MB-UID community Puerta and Eisenstein (1999), Vanderdonckt and

Berquin (1999) and it is clear that ISML is no exception to this problem. The case study has shown that

the mappings between the metaphor and interaction abstraction are difficult and not properly understood

by the design groups.

Similar decisions were made with respect to the architectures and technologies used to support ISML.

The tension between the high levels of abstraction and the practicality of a software-based toolkit proved
difficult to resolve for a number of reasons. On the one hand, a highly abstract formalism offers the

possibility of analysing metaphor models using mathematical methods, such as in Kuhn and Frank

(1991). However, as already stated, this is a hard exercise and difficult to communicate to designers. On

the other hand, forging ahead with the development of a complete software tool to support the ISML

framework would require a substantial engineering effort without proof-of-concept. Arguably, without a

proof-of-concept, a lot of design and engineering effort could have been wasted if, when eventually

released, developers found the concepts it embodied to be either difficult to work with, or worse, useless.

Therefore a middle ground was sought in the form of a specification language that encapsulated the ISML

framework. Originally, an extension of the C syntax to include notations for meta-objects, interactors and

tasks was developed. Although attractive because the initial grammar was relatively elegant and already

included logical and functional expressions (see appendix 0) this was later abandoned because of the

203

considerable development overhead required to produce a multi-stage parser. The subsequent XML

alternative proved to be more successful because, although more verbose and less elegant38, a number of

parsers and partial validation tools (such as Altova's XML Spy) already exist to support the specification

process.

Writing an ISML specification using the XML formalism has a number of advantages and disadvantages.

Positive features of this approach include some automatic verification and validation of the specification

and the potential for later transformation into other logical forms using the XSLT processor. These

translations may be either to other model-based specifications or to potential source code. Negative

aspects include very long specification documents that are laborious and difficult to read. In addition to

this, the logic of the model must be checked manually and it is for this reason that an executable tool is

highly desirable.

The evaluation of ISML therefore had to be suitable for the Ph. D. research, i. e., an examination of the

proof-of-concept of the framework. For this reason, a modestly sized case study with a qualitative

analysis method was chosen in order to assess how the design of a strongly metaphor-orientated project

might be captured using ISML. Working with two teams of software engineering degree students

presented many difficulties and confounding effects on the development of the USC prototypes. Both

teams had severe limitations upon their time both to the project itself and ISML project meetings. Ideally,

such a case study might better be conducted in a context where the designers were only focused on the

USC system and had more time during which to develop it. The realities of practical research dictated

otherwise, although it is arguable that there are few engineering projects where pressure on development

time and effort isn't going to be a problem.

Results from the evaluation yielded important insights into the treatment of an explicit metaphor model

and its relationships with other views of user interface design. The richness of the data collected in the

transcriptions was both the evaluation's saving grace and Achilles' heel. Identifying those aspects of the

design that ISML did and did not capture was possible with recourse to the transcripts, followed by a

comparison to each group's models. However, due to both the complexity of the problem and the length

of the transcripts covering the six-month project, only a limited data set could be realistically chosen from

within which to examine the ideas expressed by each group. It can be argued, therefore, that different

data and conclusions might have been drawn from the case study had the focus been elsewhere. Whilst

this argument affords some credence, ultimately the research had to concentrate on data from within the

38 The mark-up text makes XML verbose and difficult to read

204

ISML elicitation rather than casting a broader gaze over the more general features of a metaphorical user

interface prototype.

Overall, this research has been lead by necessary limitations and trade-offs in order to gain some insights

into one possible way of explicitly specifying the operation of a metaphor model within a graphical user

interface design. Along the way design and evaluation decisions that rejected some approaches have had

noticeable effects on the outcome of this research. This is not wholly unexpected and, arguably, it is

likely that if other trade-offs had been made other problems would have occurred as result of different

omissions. As such, the position of this research is by no means a panacea, but instead a useful starting

point from which to address the issues associated with the ISML design framework and grounding for

further research.

5. Further work

In many respects, the interface specification meta-language is still in its infancy. This research has

highlighted a number of problems not only in the assembly of the framework itself, but also in its

reception with USC design groups. Potential revisions to the language are many. The provision of re-use

through class inheritance for devices, components, meta-objects and interactors might well reduce

specification size. A re-working of the action-event mechanism such that calls return values and include

caller identification would also simplify design. More importantly, the provision of some degree of data

abstraction to support non-concrete aspects of the metaphor model and re-work of the framework to solve

the semantic determination problem would seem essential.

As a model-based user interface specification language, ISML is relatively broad and as a result, some of

the `periphery' elements are not well developed, particularly task modelling. This is a disappointing but

inevitable limitation of the scope of this work. The task layer in ISML is basic, expressively weak and has

no predictive power. As such, it can only really be used as a `documentary' device for linking idealised

task forms and their execution at the interface (through an interface metaphor). However, the ISML task

framework does reflect a number of important properties found in task modelling literature (hierarchy,

actions, objects, states and constraints) and so may well be amenable to extension and refinement.

For both of the USC design groups, separating the metaphor model from its implementation was not easy.

During the ISML elicitation, a number of important aspects of the metaphor were clarified when the

group discussed the visual aspects of their prototype system. Additionally, an ISML specification

expressed in XML is both very large and takes a long time to write. It would therefore be desirable to

provide tool-based support for ISML. At present, an ISML run-time kernel is under construction (the

205

meta-object kernel has already been partially constructed, see appendix I) that will support ISML designs.

In addition to this, a tool kit that automatically translates ISML into compilable code, based on XSLT

transformations, is also planned (see appendix J for a sample of work in progress).

6. Contribution to knowledge

Currently, the MB-UID community is challenged with the integration of a large number of design views
for the development of interactive systems for a wide range of computing platforms. Not surprisingly,

this is an enormous undertaking and one that is likely only to be accomplished in small, incremental steps
by the community as a whole. This research sought to develop an explicit metaphor model that could be

integrated into model-based user interface methods. The ISML framework, its application in the USC

case study and subsequent evaluation has shown one particular approach to the problem and demonstrated

some success in capturing metaphorical aspects of a novel user interface design. In addition, this research
has also uncovered important lessons with respect to the effect that the separation of metaphor from

implementation issues can have on user interface design and its wider implications for the model-based,

user interface design community.

206

Appendices
Appendix A- The USC project proposal

Appendix B- ISML elicitation programme

Appendix C- Open coding frequency chart

Appendix D- Axial coding charts

Appendix E- USC Analysis data

CD-ROM Contents

Appendix F- The XML expression of ISML

Appendix G-A small ISML specification

Appendix H- Unified USC specification

Appendix I- Basic meta-object kernel (in development)

Appendix J- Sample XSLT transformation

Appendix K- USC Transcripts

Appendix L- USC model summaries

Appendix M- Group 1 USC Prototype

Appendix N- Group 4 USC Prototype

Appendix 0- Early ISML grammar

Appendix P- Atlas. ti data files

207

BLANK IN ORIGINAL

Appendix A- The USC project proposal

SEM Final Year Group Project 2001-2002

Company: Media Cool Inc.

Product: Urban Shout Cast

Customers: Simon Crowle, Jim Craven

Monday, 24 September 2001
PRODUCT BRIEF

Broadband Internet connectivity will soon be an affordable reality for many households in the UK.
Combined with powerful, multimedia home PCs, there will soon exist an unprecedented opportunity for
individuals to broadcast their own media shows to a wider Internet community. Media Cool is a
multimedia innovation company that seeks to develop and license powerful, easy-to-use multimedia
broadcast solutions.

Our first step is to design a virtual radio broadcasting room and develop a prototype that can be used to
test proof-of-concept. If successful, this design will be used as the basis for the development of the
product proper by our own in-house software engineers. Basic broadcasting and streaming technologies
already exist (WinAmp/ShoutCast; Microsoft NetShow technologies) but Media Cool envisages much
more:

> Innovative and intuitive GUI for server and client
> Multiple, remotely linked DJs sharing the virtual broadcast environment
> Virtual mixing desk
> Advertisement management
> Client music request service

We expect the prototype to run on current, entry-level, Intel-compatible computers running Microsoft
Windows 9x, ME, 2000 or XP over an ADSUCable or other LAN Internet connection. Developers of the
prototype will work closely with Media Cool's own software lead (Simon Crowle) during the
requirements, specification and design stages. The successful prototype development team will be
imaginative and innovative, producing a prototype that will appeal to the anticipated early adopters of this
technology.

209

BLANK IN ORIGINAL

Appendix B- ISML elicitation programme

Introduction
Thanks
This is not a test of any kind!
Not a design assessment exercise
Do ask questions or add comments at any stage during the meeting

TASK

Real world task description
Based on a hierarchical task model (logical breaking down of tasks)
May include `plan' parts
Stop description when we get to an action-object reference

HTA
Create task hierarchy; top down

Iteration condition
Per task, identify any iteration condition
If one exists, list condition [create MC]

ENUMERATE TASK ACTIONS
Create task actions (referring from HTA)
Per action, link actions with HTA
List actions

ENUMERATE TASK OBJECTS
Create task objects (referring from HTA)
Per object, verify efferent task actions
Per object, link with HTA
List objects

MC Verification
Per object, verify MCs
Per MC, validate conditional parts (attributes, states) against objects
List MCs

Products:
Action List
Object List
MC List
Hierarchical task model
Iteration stop conditions (mapping-constraints)
Task objects (summary form only)
Task actions (summary form only)

211

META-OBJECT

Abstract description of the virtual/metaphorical environment
Looking for descriptions of the objects, their behaviours and actions
Not looking for physical descriptions of interactions (like mouse clicks)

HIGH-LEVEL OBJECT ENUMERATION
List all objects
Per object, create brief object description [create Object]
Per object, suggest potential metaphor links with task HTA

EFFERENT ACTION ENUMERATION
Per object, specify all efferent actions
Per efferent action, [create Action]
Per object/action, specify any focus on sub-ordinate object parts
Per object/action, specify source of action
Per object/action, specify any consequences [create MC]
Per object/action, add MC conditional parts to object description

ACTION VERIFICATION
List all actions
Per action, verify sources and targets
Per action, suggest potential metaphor links with task HTA
Consequences of action
Per action, consider consequences for source [create MCJ
Per action, verify consequences for all targets

OBJECT ENUMERATION PART II
Per object, verify attributes/states
Per object, verify afferent/efferent actions
Sub-ordinate relationships
Create brief object description [create Object]
Per sub-object, specify relationship ('is contained by' etc) with super-object [create MC]
Per sub-object, specify focused efferent actions from super-object
Per sub-object, specify consequences of efferent actions [create MCI

MC CLEAN-UP
List all MCs

Products:
MO Object list
MO Action list
MO MC list
MO Object descriptions
MO Action descriptions
MO Mapping-constraint descriptions

212

INTERACTOR

This section describes the implementation descriptions of the virtual/metaphor environment
Don't worry if this is incomplete!

INPUT/OUTPUT DEVICES
Informal device enumeration
Per input device, describe the number of data inputs and their types
Per output device, describe data output types and (informal) rendering capabilities
List devices

HIGH-LEVEL INTERACTOR OBJECT ENUMERATION
Per MO object, [create super interactor]
Listinteractors

HIGH-LEVEL INTERACTOR ACTION ENUMERATION
Per MO action, specify input device ̀ actions' [create device action description]
List input device action descriptions

SUPER INTERACTOR DIFFERENTIATION
Efferent action focusing
Per input device action description, identify sub-interactor focal parts [create sub-interactor]
Link sub-interactors to their super-interactor
Add sub-interactor to interactor list

Products:
Device List
Interactor list
Device action list
Device descriptions
Interactor descriptions
Device action descriptions

DE-BRIEFING

Many thanks
Honest feedback
Questionnaire

213

BLANK IN ORIGINAL

Appendix C- Open coding frequency chart

The graph above indicates co-occurrences of noun groups with noun phrases. and visa v er`a

Qs

soö
E' uni E

Uö

r-.. ý. ý. ýeoe
ý

ý. . rnG

An., ý

Ab ,ý .t 0n

., c tomb

:., kr SM'

1,.. ý�'
",,
.. mý. a

In the

following quotation (8: 1019):

"But the track itself, no, it's not. When you play the track, that's just reading some data from a file. v011 kneww.
it's not the actual WAV file itself, so no, it's not. "

There are three programºning nouns (underlined) and two mc'clia nouns (emphasised). The quotation is

classed as a media phrase, since it primarily discusses a media concept.

215

PAGE
NUMBERING
AS ORIGINAL

Group I

31-

21714
i tßr

{NTIIY Imý"try Omlyl }
ý, II"- T1)IS

3 1167

2
)=. f ___f

FNIITV'Mrarf üvy 1.
__

)OM
21ß0 ` 2111.1

'

\" 21161
) T, lfi".

yyp
"J1,54'

' 2173Y

TINtITV'IYýyr CMpp1

'"`1

)IIN
2114 211M "J t16l.

ýI

`)Il.) 6
"" iý.. T tY4 .""` 2160 F�])10

21W
,

"" ý"'_
-1`_r

ýI

TIIM fENTITY7Yv Wr GI-I-.

I

ENTITY 9mlirM (}qp 1

'211VI 21-
2-1

' `

ýINS' a1_}, ib`_ - ", .. "
J-"

" `
I

y ýt)6l

=
=c

. " T11. T
WC f- 1 rEMITYpf Crgqt =1 SEN mvn. y a. w. r bwvC

"EN ITV CD
l

I

"_ , }1! 1
TFNIIIYTIwo'(ilayl

``"

- . EMITV'GD'O1a91 :) 38 `
21/61

___"?
IKl fl rENTITYHP G -l

IFNLIIY YmCIrc'Olagt ýý

I" _ _" _ _ý ____ 2V14
- Tt)en IýI"ýJ FMIITYi- O1ap

y ,, -_` >s\

T)

`"T
1)56 , ENTITY '/uf Cmlp 1

)t IY ýI - . 31111
] 1161:

_

71111
111 /l

_' t 6, '- ß
]l17ß

2

'`ýý`_
"21)11

" -___!
'

ýFNf11Y 1Lf CwuD1
` 1

ENTITV'Ir fio t

'

0

"I`
]1161 f ENTITY lol p'

" f1
__

ýFNTIIY1-C. luryl ". 211

T 1130). N T 1735 21110 T1IY

T<X

Group 4

ENlilyNrum 1�o. ql

e ,)N
1817-, ,r

! 91!
,,

,
"tN1iTV iAmrq tMýWee/Cwo, pý

., 1ý e,: f00

_
! M1 61797

81799

____. _. _ ;I ENTm 9f *(f V4
-__"i

II
8731. i"

/ l84o ý
`!

'

an ! 855 ~"/

yip. r! I a"
`r

"8 1781

`ý

____"
ENTITY IYJs' hupe

, ,'

rJ

rr
`)r

` 8847

L \

r,
/ 15a

ý'

rte'
Y ý1

7853
el

B 17Ba
e17eP 6179,

r

e 178
"

'

=-

1
a, `'-

E179n
! 1765 r

Euc

eNTM WGu --_`_

i]D]_

- GI

=1

-- "tNTm wr. c+aoý - 1ex _ _r 1n!
a us

FNTITY'SYJef (irpp 4' 7959

J +

,
l1 Y,

"
ý9'ý 8170;

e 1761
FNTI-9 l w1 G4 , r 1796 -, 1

'' 81]7! r Liý ",
. ` LI L1

,
5,7e5o '

8179]
e 1701 79% '

ENrIrv SIW Gey+4

r . 601117 990 108 ' . rdrp 4,

/
1651

8779+

875 ell '

N'lrv l, r, tw, rr,

Meta-Object nodes

218

w1ýU. " " 4414 J

Group 1 ' 99 `
5 4054 we 4.. I

-_, " 41NR
"J NAIV tiNW'fy

' ' '

wpl

ýENiIT V Mýdy plpgt --

-. A1!

.l
ct

49M y,

I w7

' 4961 -ý--___- -"

" - -`i
ENTnY {+yY yrf oyýl -

_ 1 4yyý
4

` ``ý

rLMIIIYDi (YOpl

-_
ýCýý_ lit),

"
ýyRt J ENTITY 11.4*C. I

_
"" I-_

1 LNTRY' y L(ü

aJL --_

ouD 1
!,
LI

_
J ENTITY V"3 (and 1 4 ýl

--

4FENiItt'E9. lw0rug1
', J 1441110 Cr ay (Y5"1

' 2-1 il LI

"y1". ' "1 9Re . 915 . 9141

. 4111 "'--. 9l.

f56111044*1(,1

L

4912 -- 4914

4411
(Pt

Group 4 f ENTITV'Player G, oup4

8 1305
9433.81306 81326

8 1375

_
1 ý

ENTITY'Meoli Group 4___ f ENTITY Tr4c4' Group 4
9 4 31

9439
8 1308'

''",
,'8

1309

EN Tin 'Munp 0.94M, - Groot 4

81312
ENTrrY 4149991 Group4

e 1307

LI ""1
ENTITY All Group 4 L

9436

9437 9435 f 1314

'9
f

94] - >. 9 =1
7 .

- ____E
NTITVp, 1 Grpq 4.8 13 15 '

81311
LI

-8358
LI

_-- LI -' 1--
=1
= 7 944

8.1313 9442

1 81319
1 81]18

9 4 '

ý

' ENTITY'PlNdOC9rGroup4 -____ _-- - X1317
8 E

"' JJ E NT1 TV `5yf9r Grpup 4

ENTITV'MlcrophofeGroup4
{{

,_-__ 1 -------

1 8 1320

9115 01321 ' 81]74 L
yL

81323
8 1322

Interactor nodes

219

BLANK IN ORIGINAL

Appendix E- USC Analysis data

THE DJ

The DJ directs the microphone 'channel' (1: 1330),
this is done through a slider (1: 1323). The DJ is

also responsible for adverts. A stop-iterate
condition is identified for the playing of media -
an action of the DJ. The playlist is also
established as a guide for the playing of media for
the DJ (of which there may be different types of
play list) - (1: 1304).

The DJ (and producer) have different types of
mixer (2: 1759) (2: 1762). DJ messaging not really
covered - not part of the mixing desk (2: 1767) and
only hinted at through the appearance of letters
(2: 1766). Media items playable by the DJ are
held in the CD rack (2: 1761). Manipulation of the
play list is done by the DJ (2: 1763). A hierarchy
of music to air responsibility is given in (3: 1160).

The DJ and Producer have different mixing desks
(4: 960). Listener clients have access to some
tracks found in the DJ's inventory (3: 1174). An
additional design feature (not MO'd) is a 'note'
with which the DJ can make notes for him/herself
(4: 959). When a DJ logs on to the system, their
name appears in a label under a slider (4: 957).

Suggested by the interviwer the DJ manipulates audio
sources in the real world (5: 1439) - agreed by the
group, but this is not part of their design. More
analogical descriptions regarding the media and
playlist found in (5: 1438) (6: 564). A vague stop-
iterate condition is considered by the group with
regard to DJ behaviour (5: 230). DJs may be put on
and off 'ale and have volume (5: 1434) (5: 1436) and
has a certain amount of time related to the showlist
(5: 1428). The DJ sits within a hierarchy (5: 404) that
may dictate some of the properties of his 'output'.
There is some discussion regarding whether or not the
DJ may be able to play music to him/herself, but the
Dlav list is taken rather literally (6: 564)

manipulable by the producer such that he/she can be
placed on or off air and manipulate their audio
properties. ALSO, the DJ has access to a mixer (8: 26)
that allows him/her the ability to change some audio
properties of the sound output. His 'profile' is
manipulable, such that his 'visual representation'
changes (7: 159) - some tech design talk here - some
of the actions initially identified were not verified. The
idea of a visual representation is futher re-inforced
with the description of volume change (8: 1301). The
relationship between the DJ object and the profile is
discussed in (7: 117) - the visual presentation of the DJ
object is informed by the profile (8: 231). A DJ has a
name (7: 854) which is part of their profile, and a 'style'
(part of their profile) which is selectable from a list
(7: 853). Group 4 suggest that the DJ object and the
profile could conceptually be the same thing (7: 852)
(8: 1299 in detail) and it is only at implementation time
that this distinction is made (8: 1300). A DJ can be a
producer as well (7: 125).
Interactor phase
A DJ object appears interactively in the producer
booth and'passively' in the DJ booth (8: 1316) (8: 358)
(8: 1321) - however, it "does not exist" in the DJ booth
found in (9: 440) it is only a 'representation'. More
contention on this subject - (8: 1317) - the profile and
DJ object are combined. This DJ object forms a part
of an abstract (MO) visual queue (8: 1319). Whilst in
the producer, a red box provides feedback specifying
whether an object is droppable (8: 1311) - once on air,
his name turns red to indicate he is on-air. A similar
effect is described for the floating volume slider
(8: 1314), strongly in 'windows' terms. The 'profile' of
the DJ is accessed via an icon (9: 439) - it's
manipulation is discussed in (8: 1318). The DJ has
sliders that he/she may use to manipulate audio
(8: 1315).

221

THE PRODUCER
Group I Group 4
Task phase Task phase

The producer has a 'browser' for playlists from
other DJs (5: 1424), which have slots in time
(5: 1441). The producer puts DJs on and off air
(5: 1435)(5: 497) -a mechanism of notification is
discussed in (5: 1437) and (5: 1443) for this. The
producer'recruits' DJs for his show (5: 1444). The
producer is above the DJ in a hierarchy - the
audio properties of the DJ are superseded by the
producer (5: 404). Communication between
producer and DJ identified as possible gestures
(5: 1001) and suggests that the group have a
model of DJs being physically separated in
different rooms (5: 1440). A producer creates a
list for his show consisting of DJs (6: 565).

Meta-object phase Meta-object phase
A producer may also be a DJ (7: 125). The
producer has two mixing 'boards' (7: 137), one for
master output (7: 858) and another which he uses
to change the audio output of DJ objects
(representing the DJs) (7: 136) - this includes
volume (7: 159) as 'output' from the DJ (7: 856) as
opposed to a property of the DJ him/herself
(8: 1301 in detail). This is manipulated using a
slider (8: 1302) in the producer's environment.
The producer puts DJs objects on and off air
(7: 859) using the microphone (7: 850) (8: 1298).

Interactor phase Interactorphase
If a DJ is a producer as well, two rooms are
presented to the user -a DJ booth and a
producer booth - which are navigable (6: 358) via
a door and are considered 'virtual' (8: 1322). DJ
objects appear in the producer's booth (8: 1316).
In discussing the appearance of DJ objects in the
room (MO discussion), a'visual' queue is
considered to represent the order in which DJs
are to appear on air (8: 1319) - the use of 'space'
in metaphor is interesting here. The producer
'edits' the DJ's volume via his/her slider (8: 1320)
which 'floats' and attaches to the DJ.

222

MEDIA AND MEDIA OBJECTS

Media is selectable from a *conection, - two types
of selection are given - from a media object or
from the playlist (1: 16). Actions include play, stop
and choose. Actions such as'stop' are the
playing devices affecting the media (1: 1320). A
track is something that can be found in a certain
'position' on a media device (1: 1302); this is
resovled later in discussing the role of choosing
media with a device (1: 1316).

Media can be listened to locally (using the Hi-Fi,
(2: 1732)) or sent out to the producer through the
use of the mixer desk (2: 1730). Media are
confirmed as objects such as CDs during the
selection and playing of media (2: 1734), however
the role of these objects diminishes as design
discussion continues (2: 1735).

is piayaoie, sioppaoie ana pausaDie to: 14uu,
5: 1412); the media can be ejected - the CD object
is used as an example (5: 1411) this Implies a
playing device. Media is said to be Included In a
list (as tracks) which cannot be deviated from
(6: 115). Playing the media only occurs in tasks if
it appears in the play list. (6: 561). Selecting
media (such as a record) is closely tied to the
creation of the play list (5: 1423) - your selection is
recorded on the playlist (5: 1423). Selecting
media is choosing a media object and it's tracks
(5: 1410)(6: 558) - the media object Is a collection
of tracks (6: 560). In playing media, the actual
focus is on playing, stopping etc the track (6: 104)
- but does this lead to problems with the play list?
Where does the track belong? In the task world,
it belonqs to the media obiect (6: 92).

(8: 1283)

The CD object is used to represent the playlist
(2: 1742) both as an'array' of CDs and also as a
visual article (this is interesting). This gets
developed into a 'CD RACK' object (2: 1738) -
although group 1 suggests it is difficult to 'align'
the metaphor. This is hinted at further in (2: 1776)
since picking up CDs from a rack isn't what is
aoino on - it's looking at the play list really.

Ivu rruvv -11 lurnwl w Niayu IV iii uia, I IVI

important", but in implementation (4: 951).
MAPPING task actions to media associated
sliders (push not used as no button implemented)
(4: 948) see also (4: 946) (4: 950). MAPPING -
playing media is associated with the mixer desk
(4: 952) and also MAPPING the play list (4: 953),
although only as selection of MP3s (4: 950).

these are icons - MAPPING from media player
MO to icons (9: 433). No'actual' media player
exists in their design claim group 4 (8: 1306) -
rather there is just the track operations by the
virtual media player.

ON THE'CD'
A CD is used to represent all the tracks as a
playlist (!!) (3: 1173).

223

THE PLAY LIST

4

creation of the list, adding and removing songs;
these are suggested as write and erase actions
although the analogy is not very strong here
(1: 1296). 'Shuffling' is broken down into separate
write and erase actions. One team member
prefers to resort to considering the
implementation design. This view is emphasised
by the initial definition of'displaying MP3s'
(1: 1304).

The play list is considered as an object - the term
'script' is suggested as a means of
anthropomorphising. Time attributes are
discussed - the play list is considered to relate to
the'show'. The 'voice' of the DJ is not something
that could easily be accomodated (1: 1308). Other
assertions are made that the play list is a list of
MP3s (1: 1303) or a device itself (1: 1298).
Creating the play list is considered to be
associated with 'planning' the play list (1: 1305).

Some'stop-iterate'conditions are explored here
in describing the use of the play list in the task
model (1: 1310 -1: 1311).

An initial definition of the playlist is a schedule for
the DJ (5: 1422). An anlogical explanation can be
found as the playlist as a 'box' of media objects
(5: 1438). Later this list contains is a compiled list
of'tracks' (contained by'media') (6: 115) and the
tracks appearing there are the ones that are
played (6: 561). Playing media and the use of the
playlist are suggested to 'over lap' (5: 1408).
During the creation of the playlist, media is
selected and made into a 'collection' for the show
(5: 302) (5: 1423) (5: 1413) - in fact it's the tracks
that are selected, not the media itself (6: 558)
(6: 560). Creation of the playlist has nothing to do
with selecting media objects, but selecting 'tracks'
(6: 562). How does this 'track object' relate to the
playlist (it belongs to the media object (6: 92) - it
(not the name) it's a property that gets
'transferred' (6: 566) - this sounds like
implementation talk. Tracks can be shuffled or
moved around in the playlist (5: 1447). Tracks in
the playlist are ordered (5: 312). The playlist
seemed to be an object to which constraints could
be applied to (5: 1420) (5: 1430) (5: 451) (5: 1429)
(5: 1427) (5: 1428). Removing an entity from the
playlist is not considered - the play list is a guide
(5: 1414).

ON THE INVENTORY
The "inventory list" noun name is suggested by
the interviewer (2; 1745) since group 4 have
difficulty finding a noun to describe the source of
MP3 objects to choose from (although this object
is referred to as "the actual list of songs in 2: 1744
and emerges as a concept in (2: 1763)) - this is
because the MP3 object belongs in the computer
domain already (they suggest). Interviewer then
suggests 'possession' by the DJ, in effect holding
(2: 1746) - the group goes along with this, but
does not add to the model.

224

THE PLAY LIST (continued)

The playlist begins to develop along two separate
lines - in it's own terms and also as a 'CD rack'
(2: 1738) (2: 1731) (2: 1741)(2: 1742). It is
suggested that parts of the playlist are 'copied' to
the monitor object (3: 1176) (3: 1154), but it was
realised that this "wouldn't work". Objects can be
selected, added and removed from this object
(3: 1159) - but with qualifications (2: 1763) - an
inventory list concept emerges. Difficulty with
'dynamic' aspects of the show (sources of media)
are discussed in relation to the playlist and other
media objects (3: 1154) - is the playlist just
becoming a holder for MP3 objects? I think so.
Songs in the play list have order (2: 1743)
(2: 1748) and may be removed (2: 1747) but not
from the inventory (2: 1744). MP3 objects are
'copied' from the inventory to the playlist (3: 1158)

- this is done abstractly but not 'represented' as a
copy (see context). Some consequences of
action are suggested by the group here (2; 1749),
but they are ambiguous and not embedded in the
metaphor model.

The primary role of the play list is to encapsulate
tracks the DJ will be playing in an order (7: 844).
Tracks can be added and removed from the play
list (7: 847) as well as moved and possibly edited
(7: 204) (7: 848). Actually adding tracks to the
playlist is a problem since the metaphor design
breaks down (7: 845) (8: 1285). 'Files' are
selected from the windows dialogue and
represented as tracks in the playlist
(8: 1290)(8: 1287). Buttons are said to move
tracks up and down the play list in order (7: 847).
Adding, removing and moving are 'editing' actions
(8: 1291). A playlist was not considered a
'moveable' object (8: 1293) although it is as such
in the implementation.

ON THE CD RACK
The development of the CD RACK (2: 1776)
(2: 1738)(2: 1731)(2: 1742). A description of the
rack is very similar to the playlist (2: 1761)
(2: 1740). The rack object is used as a
metaphorical 'representation' (2: 1741) - and is
associated with the playlist; it's graphical nature is
described in terms of implementation. The rack
comprises of two objects the inventory list and the
olav list (2: 1749).

Clicking on the hi-fi object brings up the play list
(4: 967). This has a playlist and inventory list
(3: 1168) with various buttons to add and remove
songs (3: 1170) (3: 1169) (3: 1172). Although a play
list can be activated/deactivated, group 1 suggest
little interaction other than putting it back on the
shelf (?!) (3: 1173) *quick trip back to meta-objects
suggests object representations here*. The mixer
desk is 'connected' to the monitor which displays
the currently playing track (4: 962), which is the
top track, *removed* from the playlist. The play
list is associated with selection of MP3 objects to
be played (4: 950) rather than actual playing. A
'hide' action is suggested for the MO (3: 1172).

Interactor
i ne piayust is viewat)ie, via an icon (u: iiur).
Tracks can be found in the play list (8: 1308) and
are added to the playlist via a file dialogue
(8: 1325). MAPPING adding/removing/moving
tracks (9: 435) from the tasks (9: 438) - some
difficulty, only a few parts mapped to tasks. A
play list is 'movable' but only because it has been
developed within the MS windowing system
(8: 1309).

ON THE HI-FI
The hi-fi is no longer associated with playing
media (4: 494) task model, and used instead to
play jingles (adverts) - the reasons for this are
given in (3: 1171) - implementation problems.
The hi-fi brings up the 'play list' - *reused* to
display jingles (4: 967)(4: 949) and MAPPING is
only used for selecting MP3s (4: 950). The
disappearance of the playing media function of
the hi-fi is discussed in (4: 954) as a 'massive

225

PLAYER DEVICES

Devices are media players (include MP3 and CO
as examples); the user chooses a device which
may contain media objects (1: 1301). In
discussing the selection of media and the role of
the device, some clarity is resolved in that a
device selects the 'position' on the tape that is of
interest (1: 1316,1: 1302,1: 1320) - the action for
doing this is 'skip' (1: 1317) which allows the user
to find the track they are interested in. A device
may be 'activated', played (1: 924,1: 1320).
Devices also considered as part of delivering
adverts (1: 1300).

We see the start of the disambiguation between
media (and specialisation of media types such as
CDs) and media playing devices in (2: 1733). The
'device' object (a media player object) is
associated with the mixer desk and an implied
slider action (2: 1752). The choice of media object
(in playing media) determines which device will
be 'activated' (2: 1754).

Task phase
Very little is mentioned of devices with regard to
media objects. These are either implied
(5: 1411)(6: 560)(6: 92) or suggested by the
interviewer (5: 1432).

Group 4 argue that the media player was only
ever conceived to play 'soft media' types (8: 1282).
(8: 1287) the media player does not really exist in
their metaphor design - the tracks 'play
themselves', although a graphical part of the
prototype is identified as part of it - the current
track information (8: 1284) and also as a'trigger'
for the track object to play itself (8: 1287) - an
underlying functional part?

ON THE 'HI-F! '
The 'player' turns into a Hi-Fi (2: 1732) since it
plays various media objects - the refinement of
this partial model is discussed (2: 1736). The term
'device' and'player are used inter-changeably
when discussing player objects (2: 1753). The
implied association with the mixer and slider is
introduced in (2: 1755) in discussing the operation
of the Hi-fi - the slider determines whether sound
is output to air. Panels are established as having
panels (for interaction) for the appropriate devices
(3: 1162) - these are activated (see context for
broader discussion and 2: 1754). IMPORTANT
(?) (3: 1157) - the actions on these panels for
playing devices are linked to physical hardware
on the computer, however whilst these design
ideas are recognised they are rejected as not a
part of the implementation (2: 1735) (3: 1163).

The mixing desk now assumes
(4: 950).

A virtual media player is identified (8: 1305) -
these are icons - MAPPING from media player
MO to icons (9: 433). No'actual' media player
exists in their design claim group 4 (8: 1306) -
rather there is just the track operations by the
virtual media player.

226

THE TRACK

These are media objects 'stored' in the playlist
(1: 1299) -a technical point of view. MP3s are
also considered as tracks or playlists (1: 1303) -
here there is some confusion and a need to clarify
is identified.

Track information is sourced from different media
objects (CD, minidisc, MP3) and appears in
different places too (monitor, the playlist)(3: 1176)
(3: 1154). The nature of the track is identified as
problematic. Jingles are "mini disc" tracks.

Selecting tracks is in effect seiecting an mF
object (4: 953) (see also context after 3: 1171).
Tracks are displayed on the monitor (4: 962) -
playing a track involves 'flicking up' the slider,
which removes the track from the playlist and
'dumps' the details into the monitor. Tracks are
found by selecting an MP3, added and removed
(songs), whilst separate in the MO, tracks and
jingle playing have been joined in implementation
(4: 334).

ON MP3
The play list is associated with *selection* of MP3
objects to be played (4: 950) (4: 953) (4: 954) rather
than actual playing. An MP3 and 'track' are more
or less synominous (4: 334) (4: 950).

A track is contained in media (6: 115) (6: 563)
(6: 121) (6: 560) and is contained within the playlis
and is movable. This is discussed a great deal
with respect to playing media objects. Tracks are
put on the playlist, not media objects (6: 558)

The nature of track is discussed as an entity
(8: 1289) - Information parts of it (also described
as a profile, like the DJ 'profile' 8: 446) are visible
in the environment but not easily pinned down as
one single object. Track information can be
edited (7: 204) (7: 848) whilst in the play list. A
richer metaphor picture was discussed in (8: 1292)
but shelved because of Flash technology
problems. The track is an entity (8: 1283) that can
be played, stopped, paused, hi-lighted and added
and removed from the play list.

The source of tracks is a problem and not
consided by Group 4 (7: 846) - In (7: 845) the
group resort to referring to their desktop
implementation to explain track location, as
'stored media' on the PC. Although they
recognise that this should not be important to the
user. (8: 1285) (7: 842) (7: 840) - the group explain
they have to resort to the desktop metaphor -
work effort. 'Files' are selected from the windows
dialogue and represented as tracks in the playlist
(8: 1290) - these are lines of text (8: 1286). The
problem of the track as an important yet
intangible object is explained by group 4 in
(7: 841) - the play list was created to display
descriptive information about the invisible 'track'
objects.

During manipulation in the play list, tracks are
'high-lighted (7: 847) indicating'seleciton'. Tracks
also 'play' themselves (8: 1287) - no media player
really exists - this is explained as in terms of
code.

Tracks are 'manipulated' (actions like play, stop
etc identified in implementation in (9: 436)) -a
focus of this originally was the media player
(8: 1306). Tracks exist in a list in the playlist
(8: 1308) can be selected (8: 1326) and moved
with UP/DOWN arrows. Tracks are added to the
playlist via a file dialogue (8: 1325).

227

THE MIXER OBJECT

The mixer desk controls the audio output to 'air
(an 'up' slider determines broadcast, 1: 246). The
mixer object uses sliders to control the mit
(multiple instances) output going out to air
(1: 1323,1: 1333 and 1: 1322), a number of sliders
belong to a number of different DJs in different
'rooms'. Buttons are considered as operators
here too. The slider model is then challenged
with choosing the device to use to play the media
(1: 1318) -a qualifier to the action. The moving of
sliders is considered as the mixing of audio
'sources' (1: 1315), each of which is related to a
player device (1: 376). However, some hint to
implementation is given in (1: 1322) where the
sliders literally operate the 'play' and 'stop' actions
of the media devices.

i wo types OT mixer aesK exist (1: 1(b i) one Tor
the DJ and one for the producer (2: 1759). Media
can be listened to locally or sent out to the
producer through the use of the mixer desk
(2: 1730) - this is a select and (slide up action -
implicit) (2: 1752)(2: 1755) - more explicitly stated
in as sliders for particular playing devices in
(2: 1756), slide and push actions suggested for
this (2: 1762); clarified in (2: 1771) - buttons used
to determine whether the audio is going to air
(ambiguous before). 'Audio channels' and
chatting not a part of the mixing desk (2: 1767).

ON THE SLIDER
The slider develops as both an indicator of a
particular media device (including microphones
and MP3s fl3: 1155)), and as a attenuator of
volume for that device (2: 1755), but not air space
(2: 1756) (2: 1771), CONTRADICTED (2: 1730)
and later in (3: 1160). The DJ operates these
objects (2: 1762). The state of the slider
determines what goes on air and also what gets
displayed on the monitor (3: 1161). An interesting
XOR model of the slider behaviour on the mixer
desk is described in (2: 1770) - some state
modelling occurs here and also in (2: 1739) in
describing slide actions. Another function for the
button (and 'light') to indicate queued audio

Task phase
Has buttons (5: 1431) and is the source of audio
for mixing (5: 1445) - in the'real world' these have
'hundreds' of parameters (5: 1446).

A 'DJ mixer allows the DJ to change his/her audio
output (8: 26) (8: 1327: interesting - see context
- the group identify constraints with the
parameters of the slider) - through the
manipulation of an associated slider (7: 843). The
producer has two types of mixing board, one of
which is used in a 'drag-and-drop' sense to
control the output of a DJ object (7: 137) - see
(8: 1302) to explain manipulating the DJ's volume
- the slider is in fact 'attached' to the DJ (7: 857).

ON THE SLIDER
Sliders are used to manipulate the audio
properties of a DJ (7: 843) - this object can be
attached to the DJ (7: 857) (8: 1302). It is the
property of the audio ouput of the DJ (8: 1301)
which is changed here, this is a separate effect to
the master volume slider (7: 137) (7: 858).
Constraints of the slider object are identified by
group 4 (8: 1327).

228

THE MIXER OBJECT (continued)

Interactor phase Interactorp hase
MAPPING - playing media is associated with the Sliders vary in use. The DJ has some sliders for
mixer desk (4: 952) but no'mixing' as such is manipulating his/her audio (8: 1315) whilst the
implemented, sliders are associated with DJs producer has the same, and a volume
from the producer's point of view (4: 960). The manipulator for the audio output from the DJ
mixer desk is'connected' to the monitor which (8: 1314) (9: 441)(9: 443). Sliders are MAPPED to
displays the currently playing track (4: 962), which mixing (9: 444). Their Implementation is
is the top track, *removed* from the playlist. Only component based and re-used for different audio
one slider may be up for a media source at any properties (8: 1323) and used across booths
one time (4: 947) - each source is labelled (4: 960). (8: 1324)(8: 1320) - other than master audio.
DJ labelling occurs on the producer desk when a
new DJ logs in (4: 957). A button on the mixing
desk changes it from a DJ desk to a producer
desk (4: 956).

ON THE SLIDER
MAPPING task actions to media associated
sliders (push not used as no button implemented)
(4: 948). Sliders are 'clicked' and they "pop up to
the top" (a binary state system (4: 960)) (4: 946)
(4: 962) - with the mouse (4: 947) - only one slider
may be up at any one time. MAPPING: slide
action used for slider (4: 948). Sliders associate
with media player objects and volume (4: 963);
only one of the media sliders may be up at any
one time. The volume slider DOES have sliding,
continuous motion (4: 964), MAPPING as drag
action (4: 965). MAPPING: fading in and out is
really a switch (4: 966) when adjusting sliders.

229

THE MICROPHONE AND AIR

Task phase
The microphone is considered as either on or off
air, with a volume value (adjustable on the mixer
desk, 1: 1333) and as a 'source' (1: 1315). The
output of the microphone is a 'channel' which is
directed (1: 1325,1: 1326). These actions are
associated with the slider and the mixer desk
(1: 1323). Sources are identified as'input' to the
mixer desk (1: 1334).

It's output to air has volume (2: 1758), an
associated slider (3: 1155) and can be seen
through the monitor (3: 276).

ON AIR
Sound output to 'air' is determined by the
associated slider object on the mixer desk
(2: 1755) and can be viewed on the monitor
(3: 1175) (3: 276) and is determined by the button
or slider (2: 1771) (2: 1756) (3: 1161) - this is
contentious - this is controlled by the DJ or
producer

The microphone is a media 'source' (5: 325),
which has volume (5: 358) and that can be on or
off (5: 113).

ON AIR
May have DJs 'put on' and 'taken off it and
considered part of 'mixing' task done by the
producer (5: 497X5: 1442X5: 1443) - the
procedure for this is discussed in 5: 1437.

A producer 'drags and drops' the microphone
onto the DJ to put them on air. (8: 1298) (also
referred as 'activating' (7: 849)) - the microphone
is 'attached' to the DJ (7: 850), putting him on air
(8: 23). The states of DJ objects are linked with
microphone manipulation and the use of the
stand identified as taking all DJs off air (8: 25)
(7: 851).

ON AIR
DJs may be on or off air (7: 136) (7: 859). Placing
the mit on the stand removes all DJs from the air
(7: 851) (8: 25).
Interactor phase

Snapping behaviour of microphone to DJs and
stand discussed in (8: 1311) (includes visual
feedback) - the microphone stand is a 'holder'.
Task MAPPING (9: 442) for microphone drag and
drop - used by the producer (9: 115).

ON AIR
Light reference is a button and status graphic
determining whether the DJ is on air (8: 1312).
The interaction mechanism for placing a DJ on air
(including feedback) detailed in 8: 1311 - 'snapping' of microphone to either stand or DJ
discussed.

230

THE ADVERT

Group 1
Task phase
Considered as audible and visual. These entities belong to media objects and playing an advert is
part of choosing a media object and appropriate player (discussed in 1: 310 and refined In 1: 1300) -
done by the DJ 1: 341).
Meta-object phase
Early inspection of the actions for the advert suggest an advert inventory (2: 367) (2: 1774) and later
(3: 1167). Adverts are contained within a book object (3: 1164) (3: 1167) and can be added to a
'queue'. In the 'real world' these adverts would appear on tapes (2: 1757) (2: 1772) - but this was not
considered further. The book sits of a shelf (3: 1165), can be activated, and also contains a 'timeline'
(3: 1165) which appears both in the book and on the wall at the same time (some reference to
implementation here). The timeline also acts as a point of delivery for the DJ to send an advert
(3: 1166). Some rather odd references to adverts being a part of the bookshelf, rather than the book
(2: 1775 and 2: 1773 and 2: 1765) {possible interview influence here). In discussing the placing of
adverts from the inventory to the timeline, the group associate the mouse with the metaphor of a hand
(3: 1159) - but its NOT important to the design.

Is similar to the play list (2: 563) (2: 1737) (3: 1167) (2: 1751) - actions for the advert are mapped back to
the play list. Objects can be selected, added and removed from this object (3: 1159). The'copying'
model for the adverts from the inventory to the time line is mapped back to the playlist (2: 1751). It
was difficult for group 1 to think of a metaphor for the time line, although they agreed that with
expansion, it could behave like a calendar or diary (2: 1750).
Interactor phase
The advert is somewhat under developed in the MO, but comes out in detail here)... Adverts are

draggable (although no interaction is claimed in (4: 978)) from an inventory part to a 'timeline' in a
'book' (4: 975) (4: 972) - detailed in (4: 970) and (4: 969). Adverts exist in pages which can be navigated
through via buttons (4: 976), although this was not implemented (4: 974). Duplicity in the
advert/timeline development is identified by group 1 (4: 973). MAPPING: tasks for the advert and time
line identified as being analogous to the playlist (4: 979). Some MO discussion of the advert/time-line
is found in (4: 971).

THE SHOW

Group 4
Task phase
The show is considered to consist of a list of DJs (5: 1424) (5: 376) (5: 1428) very much like the playlist
and also be associated with a collection of 'media' (5: 302). An analogy of the'show list' is that of a
schedule (5: 1441) in which DJs are assigned a slot and a time. Some discussion for a stop-iterate
condition in the showlist with regard to DJ presence (5: 1421) - difficult to model since the mechanics
of the show are not fully worked out. The creation of the playlist is suggested first as working with
paper, and then moved onto computer support (6: 565) - expanded more in 5: 1425 - DJs can be
ordered.
Meta-object phase
In fact the show list is under-developed and has little relevance to group 4 (8: 1294) but a brief
description is given ... The'show list' is like a playlist in which DJs are ordered in turn of being placed
on air (8: 1296) - at least "that's the plan". The producer organises the list - DJs appear one after
another in order of connection - this mechanism is virtually identical to the playlist and also "like a note
board" - DJ profile information is manipulated (8: 1295). DJ objects arranged in a 'visual queue"
suggest an alternative show list model (8: 1319).

THE ROOM

Group 1 Group 4
Task phase Task phase
DJs are physically located in separate rooms
(1: 1286)

DJs are physically separated by rooms (5: 1440).

Meta-object phase Meta-object phase
The DJ has a 'booth' (8: 1303)

231

BLANK IN ORIGINAL

References

ACCOT, J., CHATTY, S., MAURY, S. AND PALANQUE, P., 1998. Formal Transducers: Models of
Devices and Building Bricks for the Design of Highly Interactive Systems. In: 4th Eurographics
Workshop on Design, Specification and Verification of Interactive Systems, Markopoulos, P. AND
Johnson, P., Eds. Granada, Spain, Springer-Verlag, pp 143-159

ACCOT, J., CHATTY, S. AND PALANQUE, P., 1996. A Formal Description of Low Level Interaction
and its Application to Multimodal Interactive Systems. In: 3rd International Eurographics Workshop on
Design, Specification, and Verif cation of Interactive Systems, Bodart, F. AND Vanderdonckt, J., Eds.
Namur, Belgium, Springer-Verlag, pp 92-104

ADAMS, S. S., 1988. MetaMethods: The MVC Paradigm. Hoopla!, 1 (4).

AKOUMIANAKIS, D. AND STEPHANIDIS, C., 2000. Multiple Metaphor Environments: Architectural
premises for continuous interactions. In: "Continuity in Human Computer Interaction", Workshop in the
context of the Conference on Human Factors in Computing Systems (CHI 2000 - The Future is Here),,
Turner, T., Szwillus, G. AND Czerwinkski, M., Eds. The Hague, The Netherlands, ACM Press, pp 6

ALENCAR, P. S. C., COWAN, D. D., LUCENA, C. J. P. AND NOVA, L. C. M., 1995. Specification of
Application and Interface Objects for Reuse. University of Waterloo

ALTY, J. L. AND KNOTT, R. P., 1999. Metaphor and human computer interaction: a model based
approach. In: Proceedings of Computation for Metaphors, Analogy and Agents: An International
Workshop, Nehaniv, C. L., Eds. Springer-Verlag, pp 307-321

ALTY, J. L., KNOTT, R. P., ANDERSON, B. AND SMYTH, M., 2000. A framework for engineering
metaphor at the user interface. Interacting with Computers, 13 (2), pp 301-322

ANNETT, J. AND DUNCAN, K., 1967. Task Analysis and Training Design. Occupational Psychology,
41 pp 211-227

ARK, W., DRYER, D. C., SELKER, T. AND ZHAI, S., 1998. Representation Matters: the Effect of 3D
Objects and a Spatial Metaphor in a Graphical User Interface. In: Proceedings of HC198, the Conference
on Human-Computer Interaction, Johnson, H., Nigay, L. AND Roast, C., Eds. Springer, pp 209-219

ATKINSON, B., 1987. HyperCard Apple Computer

AVISON, D., LAU, F., MYERS, M. AND NIELSEN, P. A., 1999. Action research. Communications of
the Acm, 42 (1), pp 94-97

233

BARNARD, P. J. AND MAY, J., 1999. Representing cognitive activity in complex tasks. Human-
Computer Interaction, 14 (1-2), pp 93-158

BASS, A., ASPINALL, J., WALTERS, G. AND STANTON, N., 1995. A Software Toolkit for
Hierarchical Task-Analysis. Applied Ergonomics, 26 (2), pp 147-151

BASTIDE, R. AND PALANQUE, P., 1999. A visual and formal glue between application and
interaction. Journal of Visual Languages and Computing, 10 (5), pp 481-507

BASTIDE, R., PALANQUE, P., LE, D. AND MUNOZ, J., 1998. Integrating rendering specifications
into a formalism for the design of interactive systems. In: DSV-IS'98: 5th International Eurographics
Workshop on Design, Specification and Verification of Interactive Systems, Markopoulos, P. AND
Johnson, P., Eds. Abingdon, UK, Springer, pp 171-190

BAUMEISTER, L. K., JOHN, B. E. AND BYRNE, M. D., 2000. A Comparison of Tools for Building
GOMS models. In: Proceedings of CHI 2000 Conference on Human Factors in Computing Systems,
Turner, T., Szwillus, G. AND Czerwinkski, M., Eds. The Hague, The Netherlands, pp 502-509

BEARD, D. V., ENTRIKIN, S., CONROY, P., WINGERT, N. C., SCHOU, C. D., SMITH, D. K. AND
DENELSBECK, K. M., 1997. Quick GOMS: A Visual Software Engineering Tool for Simple Rapid
Time-Motion Modeling. Interactions, 4 (3), pp 31-36

BENYON, D., 1996 Domain Models for User Interface Design. In: Critical Issues in User Interface
Systems Engineering, Benyon, D. AND Palanque, P. Eds. Springer-Verlag, pp 3-20.

BENYON, D. AND IMAZ, M., 1999. Metaphors and Models: Conceptual Foundations of
Representations in Interactive Systems Development. Human-Computer Interaction, 14 pp 159-189

BENYON, D. AND MACAULAY, C., 2002. Scenarios and the HCI-SE design problem. Interacting with
Computers, 14 (4), pp 397-405

BLANDFORD, A. E. AND DUKE, D. J., 1997. Integrating user and computer system concerns in the
design of interactive systems. International Journal of Human-Computer Studies, 46 (5), pp 653-679

BODART, F., HENNEBERT, A., LEHEUREUX, J., PROVOT, I. AND VANDERDONCKT, J., 1994. A
Model-Based Approach to Presentation: A Continuum from Task Analysis to Prototype. In:
Eurographics Workshop on Design, Specification, and Verification of Interactive Systems, Eds. Bocca di
Magra, Italy, pp 25-39

BOLOGNESI, T. AND BRINKSMA, E., 1987. Introduction to the Iso Specification Language Lotos.
Computer Networks and Isdn Systems, 14 (1), pp 25-59

BORLAND, 2001. C++ Builder 4. Borland Software Corporation

BRADLEY, N., 1998. The XML companion, 3rd. Addison Wesley

234

BRAIN, M., 1992. Motif Programming: The Essentials... and More, Digital Press

BREEDVELT-SCHOUTEN, I., PATERNÖ, F. AND SEVERIINS, C., 1997. Reusable Structures in Task
Models. In: 4th International Eurographics Workshop on Design, Specification, and Verification of
Interactive Systems, Torres, J. C., Eds. Granada, Spain, Springer, pp 225-239

BROWN, J., GRAHAM, T. C. N. AND WRIGHT, T., 1998. The Vista Environment for the
Coevoluntionary Design of User Interfaces. In: CHI '98: ACM SIGCHI Conference on Human Factors in
Computing Systems, Karat, C., Karat, J. AND Horrocks, I., Eds. Los Angeles, USA, ACM Press, pp 376-
383

BRUN, P. AND BEAUDOUIN-LAFON, M., 1995. A Taxonomy and Evaluation of Formalisms for the
Specification of Interactive Systems. In: Proceedings of the HCI'95 Conference, People and Computers
X, Kirby, M. A. R., Dix, A. J. AND Finlay, J. E., Eds. Cambridge University Press, pp 197-212

BUTTERWORTH, R., BLANDFORD, A. AND DUKE, D., 1999. Using Formal Models to Explore
Display-Based Usability Issues. Journal of Visual Languages and Computing, 10 pp 455-479

CABRERA, M., TORRES, J. C. AND GEA, M., 1999. Towards User Interfaces Prototyping from
Algebraic Specification. In: 6th International Eurographics Workshop on Design, Specification and
Verification of Interactive Systems, Duke, D. J. AND Puerta, A., Eds. Braga, Portugal, Springer, pp 67-81

CALVARY, G., COUTAZ, J. AND NIGAY, L., 1997. From Single-User Architectural Design to PAC*:
a Generic Software Architecture Model for CSCW. In: CHI '97: Conference on Human Factors in
Computing Systems, Pemberton, S., Eds. Atlanta, Georgia, USA, ACM Press, pp 242-249

CAMPOS, J. C. AND HARRISON, M. D., 1997. Formally Verifying Interactive Systems: A review. In:
4th International Eurographics Workshop on Design, Specification, and Verification of Interactive
Systems, Harrison, M. D. AND Torres, J. C., Eds. Granada, Spain, pp 109-124

CANTER, M., 1988. Director Macromedia

CARD, S. K., MACKINLAY, J. D. AND SHNEIDERMAN, B., 1999. Readings in Information
Visualization: Using Vision to Think, San Francisco, CA, Morgan Kaufmann Publishers

CARD, S. K., MORAN, T. P. AND NEWELL, A., 1983. The Psychology of Human-Computer
Interaction, New Jersey, Lawrence Erlbaum Associates, Inc.

CARR, D., 1997 Interaction Object Graphs: An Executable Graphical Notation for Specifying User
Interfaces. In: Formal Methods for Computer-Human Interaction, Palanque, P. AND Patern6, F. Eds.
Springer-Verlag, pp 141-156.

CARR, D. A., 1996. Toward more understandable user interface specifications. In: 3rd International
Eurographics Workshop on Design, Specification, and Verification of Interactive Systems, Bodart, F.
AND Vanderdonckt, J., Eds. Namur, Belgium, Springer, pp 141-161

235

CARROLL, J. M., 1997. Human-Computer Interaction: Psychology as a Science of Design. Human-
Computer Studies, 46 pp 501 - 522

CARROLL, J. M., 2002. Making use is more than a matter of task analysis. Interacting with Computers,
14 (5), pp 619-627

CATTELL, R. G. G., BARRY, D. K., BARTELS, D., BERLER, M., EASTMAN, J., GAMERMAN, S.,
JORDAN, D., SPRINGER, A., STRICKLAND, H. AND WADE, D. 1997 The Object Database
Standard. - ODMG 2.0, Morgan Kaufmann

CHUNG, C. M. AND SHIN, T. K., 1997. On automatic generation of multimedia presentations.
Information Sciences, 97 (3-4), pp 293-321

COUTAZ, J., NIGAY, L. AND SALBER, D., 1995 Agent-Based Architecture Modelling for Interactive
Systems. In. Critical Issues in User Interface Engineering, Palanque, P. AND Benyon, D. Eds. Springer-
Verlag, pp 191-209.

CROWLE, S. AND HOLE, L., 2001. Seeing the wood for the trees: A framework for the specification of
metaphor in interface design. In: Workshop on Integrating Multimedia, Metaphors and Multimodality, in
PC-HC[2001: Human Computer Interaction 2001, Eds. Patras, Greece, Typorama Publishers, pp 19-24

CROWLE, S. AND HOLE, L., 2003. An Interface Specification Meta-Language. In. DSV-IS 2003 :
Issues in Designing New-generation Interactive Systems Proceedings of the Tenth Workshop on the
Design, Specification and Verification of Interactive Systems, Jorge, J. A., Nunes, N. J. AND Cunha, J.
F., Eds. Funchal, Madeira Island, Portugal, Springer, pp 381.396

DA SILVA, P. P., 2000. User interface declarative models and development environments: A survey. In:
Interactive Systems. Design, Specification, and Verification, 7th International Workshop, DSV-IS 2000,
Palanque, P. AND Patern6, F., Eds. Limerick, Ireland, Springer, pp 207.226

DA SILVA, P. P., 2001. User interface declarative models and development environments: A survey. In:
Interactive Systems. Design, Specification, and Verification, 8th International Workshop, DSV-IS 2001,
Johnson, C., Eds. Glasgow, Scotland, Springer-Verlag Berlin, pp 207-226

DA SILVA, P. P., GRIFFITHS, T. AND PATON, N. W., 2000. Generating User Interface Code in a
Model-Based User Interface Development Environment. In: Advanced Visual Interfaces, di Gesa, V.,
Levialdi, S. AND Tarantino, L., Eds. Palermo, Italy, ACM Press, pp 155-160

DA SILVA, P. P. AND PATON, N. W., 2000. UMLi: The Unified Modeling Language for Interactive
Applications. Uml 2000 - the Unified Modeling Language, Proceedings, 1939 pp 117-132

DEARDEN, A. M. AND HARRISON, M. D., 1997. Abstract models for IHCI. International Journal of
Human-Computer Studies, 46 (1), pp 153-178

DEGENER, J. 1995, http"//www lysator liu. se/c/ANSI-C-grammar-Y. html, 18th April, 2003

236

DIAPER, D. 1989 Task Analysis for Human-Computer Interaction, Ellis Horwood Limited

DIAPER, D., 2002. Scenarios and task analysis. Interacting with Computers, 14 (4), pp 379-395

DIAPER, D. AND STANTON, N. A. 2003 - in press The handbook of task analysis for human-computer
interaction, Lawrence Erlbaum Associates

DIEBERGER, A. AND FRANK, A. U., 1998. A city metaphor to support navigation in complex
information spaces. Journal of Visual Languages and Computing, 9 (6), pp 597-622

DIX, A. J., 1991. Formal methods for interactive systems, Academic Press

DIX, A. J., FINLAY, J. E., ABOWD, G. D. AND BEALE, R., 1998. Human-Computer Interaction, 2nd.
Prentice Hall

DOHERTY, G. AND HARRISON, M. D., 1997. A Representational Approach to the Specification of
Presentations. In: 4th International Eurographics Workshop on Design, Specification, and Verification of
Interactive Systems, Harrison, M. D. AND Torres, J. C., Eds. Granada, Spain, Springer, pp 273-290

DOWELL, J. AND LONG, J., 1989. Towards a conception for an engineering discipline of human
factors. Ergonomics, 32 (11), pp 1513-1535

DU, M. AND ENGLAND, D., 2001. Temporal Patterns for Complex Interaction Design. In.. Design,
Specification and Verification of Interactive Systems: 2001, Johnson, C., Eds. Glasgow, Scotland,
Springer, pp 114-127

DUKE, D. AND HARRISON, M., 1993. Abstract Interaction Objects. Computer Graphics Forum, 12 pp
25-36

DUKE, R., ROSE, G. AND SMITH, G., 1995. Object-Z -a Specification Language Advocated for the
Description of Standards. Computer Standards & Interfaces, 17 (5-6), pp 511-533

EDMONDS, E., 1992 The Emergence of the Separable User Interface. In: The Separable User Interface,
Edmonds, E. Eds. Academic Press, pp 5- 17.

ELSAID, M. G., FISCHER, G., GAMALELDIN, S. A. AND ZAKI, M., 1997. ADDI: A tool for

automating the design of visual interfaces. Computers & Graphics, 21 (1), pp 79-87

FAULKNER, X. AND CULWIN, F., 2000. Enter the usability engineer: integrating HCI and software
engineering. In: Annual Joint Conference Integrating Technology into Computer Science Education:
Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSEconference on Innovation and technology in
computer science education, Eds. Helsinki, Finland, ACM Press, pp 61-64

237

FIELDING, N. G. AND LEE, R. M. 1998 Computer Analysis and Qualitative Research, Sage
Publications

FILHO, D. S. AND LIESENBERG, K. E., 1999. Capturing Computer-Human Interaction Design via the
Protagonist Action Notation. In: Proceedings of the 18th Brazilian Computer Society Annual Conference,
Eds. Belo Horizonte, MG, Brazil, pp 276-296

FINNE, S. AND JONES, S. P., 1995. Pictures: A simple structured graphics model. In: Glasgow
Functional Programming Workshop, Eds. U1lapool, pp 1-20

FORBRIG, P., 1999. Task- and Object-Oriented Development of Interactive Systems - How many
models are necessary? In: Proceedings of the Eurographics Workshop on Design, Specification and
Verification of Interactive Systems '99, Duke, D. J. AND Puerta, A., Eds. Braga, Portugal, Springer, pp
225-237

FOWLER, M. AND SCOTT, K., 2000. UML Distilled, 2. Booch, G., Jacobson, I. AND Rumbaugh, J.,
Addison-Wesley

FRANK, M. AND FOLEY, J. D., 1993. Model-based user interface design by example and by interview.
In: ACM Symposium on User Interface Software and Technology, Eds. Atlanta, Georgia, pp 129-137

FURTADO, E., FURTADO, J., SILVA, W., RODRIGUEZ, D., TADDEO, L., LIMBOURG, Q. AND
VANDERDONCKT, J., 2001. An Ontology-Based Method for Universal Design of User Interfaces. In:
IHM-HCI 2001: Interaction without frontiers, Eds. Lille, France

GARLAND, A., RYALL, K. AND RICH, C., 2001. Learning Hierarchical Task Models by Defining and
Refining Examples. In: First International Conference on Knowledge Capture K -CAP 2001, Eds.
Victoria, B. C., Cananda, ACM, pp 44-51

GENTNER, D., BOWDLE, B., WOLFF, P. AND BORONAT, C., 2001 Metaphor is like analogy. In:
The analogical mind: Perspectives from cognitive science, Gentner, D., Holyoak, K. J. AND Kokinov, B.
N. Eds. MIT Press, pp 199-253.

GILLAN, D. J. AND BIAS, R. G., 1994. Use and Abuse of Metaphor in Human-Computer Interaction.
In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Eds. San
Antonio, pp 1434-1439

GLASER, B. G. AND STRAUSS, A. L., 1967. The discovery of grounded theory; strategies for
qualitative research, New York, Aldine de Gruyter

GOLOVCHINSKY, G. AND CHIGNELL, M. H., 1997. The newspaper as an information exploration
metaphor. Information Processing & Management, 33 (5), pp 663-683

GRAHAM, T. C. N., MORTON, C. A. AND URNES, T., 1996. Clockworks: Visual programming of
component-based software architectures. Journal of Visual Languages and Computing, 7 (2), pp 175-196

238

GRAHAM, T. C. N. AND URNES, T., 1996. Linguistic support for the evolutionary design of software
architectures. In: 18th International Conference on Software Engineering (ICSE '96), Eds. Berlin,
Germany, IEEE Computer Society Press, pp 418-427

GRAM, C. AND COCKTON, G. 1996 Design Principles for Interactive Software, Chapman and Hall

GRAY, P. D., ENGLAND, D. AND MCGOWAN, S., 1994. XUAN: Enhancing the UAN to capture
temporal relationships among Actions. In: Proceedings of the BCS HCI '94, Cockton, G., Draper, S. W.
AND Weir, G. R. S., Eds. Glasgow, UK, Cambridge University Press, pp 26-49

GREEN, M., 1983 Report on Dialogue Specification Tools. In: User Interface Management Systems,
Pfaff, G. Eds. Springer-Verlag, pp 9-20.

GRIFFITHS, T., BARCLAY, P. J., PATON, N. W., MCKIRDY, J., KENNEDY, J., GRAY, P. D.,
COOPER, R., GOBLE, C. A. AND DA SILVA, P. P., 2001. Teallach: a model-based user interface
development environment for object databases. Interacting with Computers, 14 (1), pp 31-68

HALASZ, F. AND MORAN, T., 1982. Analogy Considered Harmful. In: Human Factors in Computer
Systems Conference, 1982, Eds. NBS, pp 383-386

HALL, A., 1990. Seven Myths of Formal Methods. IEEE Software, 7 (5). September

HAREL, D., 1987. Statecharts -a Visual Formalism for Complex Systems. Science of Computer
Programming, 8 (3), pp 231-274

HARTSON, H. R., SIOCHI, A. C. AND HIX, D., 1990. The Uan -a User-Oriented Representation for
Direct Manipulation Interface Designs. Acm Transactions on Information Systems, 8 (3), pp 181-203

HIX, D. AND HARTSON, H. R., 1993. Developing User Interfaces : Ensuring Usability Through
Product & Process, John Wiley and Sons

HOARE, C. A. R., 1985. Communicating Sequential Processes, Hoare, C. A. R., Prentice Hall

HOLE, L., CROWLE, S. AND MILLARD, N., 1998. The Motivational User Interface. In: Human-
Computer Interaction '98, May, J., Siddiqi, J. AND Wilkinson, J., Eds. Sheffield Hallam University, UK,
pp 68-69

HORROCKS, I., 1999. Constructing the User Interface with Statecharts, Addison-Wesley

HUDSON, S. E., 1994. User Interface Specification Using an Enhanced Spreadsheet Model. ACM
Transactions on Graphics, 13 (3), pp 209-239

HUSSEY, A., 2000. Formal Object-Oriented User-Interface Design. In: 2000 Australian Software
Engineering Conference, Douglas, D. D., Eds. Gold Coast, Queensland, Australia, IEEE, pp 129-137

239

HUSSEY, A. AND CARRINGTON, D., 1997. Comparing the MVC and PAC Architectures: a Formal
Perspective. JEE Proceedings of Software Engineering, 144 (4), pp 224-236

HUSSEY, A. AND CARRINGTON, D., 1998. Which widgets? Deriving implementations from formal
user-interface specifications. In: DSV-IS '98: 5th International Eurographics Workshop on Design,
Specification and Verification of Interactive Systems, Markopoulos, P. AND Johnson, P., Eds. Abingdon,
UK, Springer, pp 206-224

HUSSEY, A. AND CARRINGTON, D., 1999. Platform Independent Graphical User Interface Design.
Software Verification Research Centre, University of Queensland

INDURKHYA, B., 1986. Constrained Semantic Transference -a Formal Theory of Metaphors. Synthese,
68 (3), pp 515-551

ISO, 1986.8879: 1986 Information Processing -- Text and Office Systems -- Standard Generalized
Markup Language (SGML). International Organisation for Standardization

JAAKSI, A., 1995. Object-Oriented Specification of User Interfaces. Software-Practice & Experience, 25
(11), pp 1203-1221

JACKSON, M., 2001. Problem Frames: Analyzing and structuring software development problems,
Addison-Wesley

JACOB, R J. K., 1985. A State Transition Diagram Language for Visual Programming. Computer, 18
(8), pp 51-59

JACOB, R. J. K., DELIGIANNIDIS, L. AND MORRISON, S., 1999. A Software Model and
Specification Language for Non-WIMP User Interfaces. ACM Transactions on Computer-Human
Interaction, 6 (1), pp 1-46

JACOBSON, I., CHRISTERSON, M., JONSSON, P. AND 6VERGAARD, G., 1992. Object-Oriented
Software Engineering: A Use Case Driven Approach, 1. Addison-Wesley

JAMBON, F., GIRARD, P. AND BOISDRON, Y., 1999. Dialogue Validation from Task Analysis. In:
Proceedings of the 6th International Eurographics Workshop of Design, Specification and Verification of
Interactive Systems '99, Duke, D. J. AND Puerta, A., Eds. Braga, Portugal, Springer, pp 205-224

JOHNSON, P., JOHNSON, H. AND WILSON, S., 1995 Rapid Prototyping of User Interfaces Driven by
Task Models. In: Scenario-based Design, Carroll, J. Eds. John Wiley and Son, pp 209-246.

JONES, C. B., 1986. Systematic software development using VDM, Hertfordshire, UK, Prentice Hall
International (UK) Ltd

KAHNEY, H. AND EISENSTADT, M., 1982. Programmers' mental models of their programming tasks.
In: Proceedings on the Fourth Annual Meeting of the Cognitive Science Societe, Eds. pp 143-145

240

KAY, J. 1999 User Modeling: Proceedings of the Seventh International Conference, UM99, Springer
Verlag

KELLE, U., 1995. Computer-Aided Qualitative Data Analysis : Theory, Methods and Practice, Sage
Publications

KHALIFA, M. AND KIRA, D., 1992. A Graphical Task Analysis Language (GTAL). INFOR, 31 (2), pp
65-79

KIERAS, D. E., 1988 Towards a Practical GOMS Model Methodology for User Interface Design. In:
Handbook of Human-Computer Interaction, Helander, M. Eds. Elsevier Science Publishers, B. V., pp 135-
157.

KIERAS, D. E. AND MEYER, D. E., 1997. An overview of the EPIC architecture for cognition and
performance with application to human-computer interaction. Human-Computer Interaction, 12 (4), pp
391-438

KIM, W. C. AND FOLEY, J. D., 1990. DON: user interface presentation design assistant. In: Symposium
on User Interface Software and Technology, Eds. Snowbird, Utah, United States, ACM Press, pp 10-20

KIRK, D., 2003. Graphics Architectures: The Dawn of Cinematic Computing. In: Proceedings of the Ist
international conference on Computer graphics and interactive techniques in Austalasia and South East
Asia, Adcock, M., Gwilt, I. AND Tsui, L. Y., Eds. Melbourne, Australia, ACM Press, pp 9

KRASNER, G. E. AND POPE, S. T., 1988. A Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1 (3), pp 26-49

KUHN, W. AND FRANK, A. U., 1991 A Formalization Of Metaphors And Image-Schemas In User
Interfaces. In: Cognitive and Linguistic Aspects of Geographic Space, Mark, D. AND Frank, A. U. Eds.
Kluwer, pp 419-434.

LAKOFF, G., 1992 The Contemporary Theory of Metaphor. In: Metaphor and Thought, Ortony, A. Eds.
Cambridge University Press, pp 202-251.

LAKOFF, G. AND JOHNSON, M., 1980. Metaphors We Live By, University of Chicago Press, Chicago

LANDAY, J. A. AND MYERS, B. A., 2001. Sketching interfaces: Toward more human interface design.
Computer, 34 (3), pp 56-64

LEVINE, J. R., MASON, T. AND BROWN, D., 1992. Lex & Yacc, 2. O'Reilly

LIMBOURG, Q., PRIBEANU, C. AND VANDERDONCKT, J., 2001. Towards Uniformed Task Models
in a Model-Based Approach. In: Interactive Systems. Design, Specification, and Verification, 8th
International Workshop, DSV-IS 2001, Johnson, C., Eds. Glasgow, Scotland, Springer, pp 164-182

241

LOHSE, J., 1991. A Cognitive Model for the Perception and Understanding of Graphs. In: Human
Factors in Computer Systems (CHI 91), Robertson, S. P., Olson, G. M. AND Olson, J. S., Eds. New
Orleans, The Association for Computing Machinery, Inc

Addison-Wesley Publishers Ltd, pp 137-144

LONG, J., 1997. Research and the Design of Human-Computer Interactions or'What Happend to
Validation? In. People and Computers XII, Proceedings of HCI 97, Thimbleby, H. W., O'Conaill, B.
AND Thomas, P., Eds. Springer, pp 223-243

LOVGREN, J., 1994. How to Choose Good Metaphors. leee Software, 11 (3), pp 86-88

LUO, P., SZEKELY, P. AND NECHES, R, 1993. Management of Interface Design in Humanoid. In:
Conference on Human Factors and Computing Systems, Eds. Amsterdam, The Netherlands, ACM Press,
pp 107-114

LUYTEN, K. AND CONINX, K., 2001. An XML-Based Runtime User Interface Description Language
for Mobile Computing Devices. In: Interactive Systems: Design, Specification and Verification, 8th
International Workshop, DSV-IS 2001, Johnson, C., Eds. Glasgow, Scotland, Springer, pp 1-15

MAGLIO, P. AND MATLOCK, T., 1998. Metaphors we surf the web by. In: Workshop on Personalized
and Social Navigation in Information Space, Eds. Stockholm, Sweden, pp 138-149

MARCUS, A., 1994. Metaphor mayhem: mismanaging expectation and surprise. interactions, 1 (1).
January 1994

MARKOPOULOS, P., 1995. On The Expression Of Interaction Properties Within An Interactor Model.
In: Design, Specification and Verification of Interactive Systems '95, Palanque, P. AND Bastide, R., Eds.
Toulouse, Springer-Wien, pp 294-311

MARKOPOULOS, P., 1997. A compositional model for the formal specification of user interface
software, Thesis Queen Mary and Westfield College, University of London.

MARKOPOULOS, P., 2001 Interactors: formal architectural models of user interface software. In:
Encyclopedia of Microcomputers, Kent, A. AND Williams, J. G. Eds. Marcel Dekker, pp 203-235.

MARKOPOULOS, P. AND MARIJNISSEN, P., 2000. UML as a representation for interaction design.
In: Proceedings of OZCHI 2000, Paris, C., Ozkan, N., Howard, S. AND Lu, S., Eds. pp 240-249

MARKOPOULOS, P., PAPATZANIS, P., JOHNSON, P. AND ROWSON, J., 1998. Validating semi-
formal specifications of interactors as design representations. In: DSV-IS '98: 5th International
Eurographics Workshop on Design, Specification and Verification of Interactive Systems, Markopoulos,
P. AND Johnson, J., Eds. Abingdon, UK, Springer, pp 102-116

242

MARKOPOULOS, P., SHRUBSOLE, P. AND DE VET, J., 1999. Refinement of the PAC model for the
component-based design and specification of television based interfaces. In: 6th International
Eurographics Workshop on Design, Specification and Verification of Interactive Systems, Duke, D. J.
AND Puerta, A., Eds. Braga, Portugal, Springer, pp 117-132

MASSINK, M., DUKE, D. AND SMITH, S., 1999. Towards Hybrid Interface Specification for Virtual
Environments. In: Interactive Systems. Design, Specification, and Verification, 6th International
Workshop, DSV-IS 1999, Eds. Braga, Portugal, Springer-Verlag, pp 30-51

METROWERKS, 2003. CodeWarrior 8. Metrowerks

MICROSOFT, 2001. Visual C++ Microsoft

MILLARD, N., HOLE, L. AND CROWLE, S., 1998. The Motivational User Interface. In. Human-
Computer Interaction '98, May, J., Siddiqi, J. AND Wilkinson, J., Eds. Sheffield, UK, pp 68-69

MORAN, T. P., 1980 A Framework for Studying Human-Computer Interaction. In: Methodology of
Interaction, Guedj, E. R. A., Hagen, P. t., Hopgood, F. R., Tucker, H. AND Duce, D. A. Eds. North
Holland Publishing Company, pp 293 - 301.

MORAN, T. P., 1983. Getting into a system: External-Internal Task mapping analysis. In: Proceedings of
CHI'83 Human Factors in Computing Systems, Eds. New York: Association for Computing Machinery,
pp 45-49

MUELLER, A., FORBRIG, P. AND CAP, C., 2001. Model-Based User Interface Design Using Markup
Concepts. In: Interactive Systems: Design, Specification, and Verification. The 8th International
Workshop, DSV-IS 2001., Johnson, C., Eds. Glasgow, Scotland, Springer, pp 16-27

MUHR, T., 2002. Atlas. ti 4.2. Scientific Software

MYERS, B. A., 1995. User Interface Software Tools. ACM Transactions on Computer-Human
Interaction, 2 (1), pp 64-103

NARDI, B. AND ZARMER, C., 1993. Beyond Models and Metaphors: Visual Formalisms in User
Interface Design. Journal of Visual Languages and Computing, 4 pp 5-33

NAUR, P., 1984. Citation Classic - Revised Report on the Algorithmic Language Algol-60. Current
Contents/Physical Chemical & Earth Sciences, (2), pp 16-16

NAVARRE, D., PALANQUE, P., PATERNÖ, F., SANTORO, C. AND BASTIDE, R., 2001. A Tool
Suite for Integrating Task and System Models through Scenarios. In: Interactive Systems. Design,
Specification, and Verification, 8th International Workshop, DSV-IS 2001, Johnson, C., Eds. Glasgow,
Scotland, Springer-Verlag, pp 88-113

243

NORMAN, D. A. AND DRAPER, S. W., 1986 Cognitive Engineering. In: User Centred System Design,
Norman, D. A. AND Draper, S. W. Eds. Lawrence Erlbaum Associates, pp 31 - 61.

PALANQUE, P., PATERNÖ, F., BASTIDE, R. AND MEZZANOTTE, M., 1996. Towards an integrated
proposal for Interactive Systems design based on TLIM and ICO. In: 3rd International Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems, Bodart, F. AND
Vanderdonckt, J., Eds. Namur, Belgium, Springer, pp 162-187

PATERN, F. AND MANCINI, C., 1999. Developing task models from informal scenarios. In.
Proceedings of ACM SIG CHI'99, Late Breaking Results, Eds. ACM Press, pp 228-229

PATERNO', F., 2000. Model-based design of interactive applications. Intelligence, 11 (4).

PAYNE, S. J., 1984. Task-Action Grammars. In: Human-Computer Interaction - INTERACT 84,
Shackel, B., Eds. Elsevier Science, pp 527-532

PENTLAND, A., 2000. Perceptual intelligence. Communications of the Acm, 43 (3), pp 35-44

PETERSON, J. L., 1981. Petri Net THeory and the Modeling of Systems, Prentice Hall PTR

PETZOLD, C., 1999. Programming Windows, The Definitive Guide to the Win32 APl, 5th. Microsoft
Press

PIDGEON, N., 1996 Grounded theory: theoretical background. In: Handbook of Qualitative Research
Methods for Psychology and the Social Sciences, Richardson, J. Eds. Kogan Page Ltd, pp 75-85.

PREECE, J., ROGERS, Y., SHARP, H., BENYON, D., HOLLAND, S. AND CAREY, T., 1994. Human-
Computer Interaction, Addison-Wesley

PREECE, J. AND ROMBACH, H. D., 1994. A Taxonomy for Combining Software Engineering and
Human-Computer Interaction Measurement Approaches - Towards a Common Framework. International
Journal of Human-Computer Studies, 41 (4), pp 553-583

PRIBEANU, C., LIMBOURG, Q. AND VANDERDONCKT, J., 2001. Task Modelling for Context-
Sensitive User Interfaces. In: Interactive Systems. Design, Specification, and Verification, 8th
International Workshop, DSV-IS 2001, Johnson, C., Eds. Glasgow, Scotland, Springer, pp 49-68

PUERTA, A., 1996 The Mecano Project: Comprehensive and Integrated Support for Model-Based
Interface Development. In: Computer-Aided Design of User Interfaces, Vanderdonckt, J. Eds. Presse
Universitaires de Namur, pp 19-25.

PUERTA, A., 1997. A Model-Based Interface Development Environment. IEEE Software, (July/August).

244

PUERTA, A., CHENG, E., OU, T. AND MIN, J., 1999. MOBILE: User-Centered Interface Building. In:
ACM Conference on Human Factors in Computing Systems, Eds. Pittsburgh, ACM, pp 426-433

PUERTA, A. AND EISENSTEIN, J., 1999. Towards a general computational framework for model-
based interface development systems. Knowledge-Based Systems, 12 (8), pp 433-442

PUERTA, A., ERIKSSON, H., GENNARI, J. AND MUSEN, M., 1994. Beyond Data Models for
Automated User Interface Generation. In: Proceedings of HCI '94: People and Computers IX, Cockton,
G., Draper, S. W. AND Weir, G. R. S., Eds. Glasgow, Cambridge University Press, pp 353-366

QSR, 2002. N6 6. QSR

RAJAGOPALA, M. G., HSIEH, S., SOTELINO, E. D. AND WHITE, D. W., 1997. MUIApp: an object-
oriented graphical user interface application framework. Engineering Computations, 14 (3), pp 256-280

RICHARDS, I. A., 1936. The Philosophy of Rhetoric, Oxford University Press

RICHARDSON, J., ORMEROD, T. C. AND SHEPHERD, A., 1998. The role of task analysis in

capturing requirements for interface design. Interacting with Computers, 9 (4), pp 367-384

RODRIGUEZ, F. G. AND SCAPIN, D. L., 1997. Editing MAD* task descriptions for specifying user
interfaces, at both semantic and presentation levels. In: 4th International Eurographics Workshop on
Design, Specification, and Verification of Interactive Systems, Harrison, M. D. AND Torres, J. C., Eds.
Granada, Spain, Springer, pp 193-208

ROSSON, M. B., 1999. Integrating development of task and object models. Communications of the ACM,
42 (1), pp 49-56

SAGE, M. AND JOHNSON, C., 1997a. Interacting with Haggis: Implementing Agent Based
Specifications in a Functional Style. In: Interact 1997, Howard, S., Hammond, J. AND Lindgaard, G.,
Eds. Sydney, Australia, Chapman and Hall, pp 126-133

SAGE, M. AND JOHNSON, C., 1997b. Interactors and Haggis: Executable specifications for interactive
systems. In: 4th International Eurographics Workshop on Design, Specification, and Verification of
Interactive Systems, Harrison, M. D. AND Tones, J. C., Eds. Granada, Spain, Springer, pp 93-108

SAGE, M. AND JOHNSON, C., 1998. Pragmatic Formal Design: A Case Study in Integrating Formal
Methods into the HCI Development Cycle. In: DSV-IS '98: 5th International Eurographics Workshop on
Design, Specification and Verification of Interactive Systems, Markopoulos, P. AND Johnson, P., Eds.
Abingdon, UK, Springer-Verlag, pp 134-154

SAVIDIS, A., STEPHANIDIS, C. AND AKOUMIANAKIS, D., 1998. Unifying Toolkit Programming
Layers: a Multi-purpose Toolkit Integration Module. In: Proceedings of the 5th Eurographics Workshop
on Design, Specification and Verification of Interactive Systems, Markopoulos, P. AND Johnson, P., Eds.
Abingdon, UK, Springer, pp 177-192

245

SCAPIN, D. L. AND PIERRET-GOLBREICH, C., 1989. Toward a method for task description: MAD.
In. Proceedings of Work with Display Units 89, Berlinquet, L. AND Berthelette, D., Eds. Elsevier
Science, pp 27-34

SCHNEIDER, K. A. AND CORDY, J. R., 2001. Abstract User Interfaces: A Model and Notation to
Support Plasticity in Interactive Systems. In: Interactive Systems: Design, Specification, and Verification,
the 8th International Workshop, DSV-IS 2001, Johnson, C., Eds. Glasgow, Scotland, Springer, pp 28-48

SCHREIBER, S., 1994. The BOSS System: Coupling Visual Programming with Model Based Interface
Design. In: Eurographics Workshop Design, Specification, and Verification of Interactive Systems,
Patern6, F., Eds. Carrara, Italy, Springer-Verlag, pp 161-179

SHNEIDERMAN, B., 1983. Direct manipulation: A step beyond programming languages. IEEE
Computer, 16 (8), pp 57-69

SHNEIDERMAN, B. AND MAYER, R., 1979. Syntactic/Semantic Interactions in Programmer
Behaviour. A Model and Experimental Results. International Journal of Computer Information Sciences,
8 (3), pp 219-239

SMALL, D., 1996. Navigating large bodies of text. IBM Systems Journal, 35 (3 & 4), pp 515-525

SMITH, D. C., IRBY, C., KIMBALL, R., VERPLANK, B. AND HARSLEM, E., 1982. Designing the
Star User Interface. Byte, 7 (4), pp 242-282

SMITH, S. P., DUKE, D. J. AND WILLANS, J. S., 2000. Designing world objects for usable virtual
environments. In: DSV-IS 2000: 7th International Workshop on Design, Specification and Verification of
Interactive Systems, Palanque, P. AND Patern, F., Eds. Limerick, Ireland, Springer, pp 309-319

SOMMERVILLE, I., 2001. Software Engineering, 6th. Addison-Wesley

SPENCE, R., 2001. Information Visualization, ACM Press

SPIVEY, J. M., 1989. The Z notation: a reference manual, Upper Saddle River, NJ, Prentice-Hall, Inc

STAMMERS, R. B., CAREY, M. S. AND ASTLEY, J. A., 1990 Task Analysis. In: Evaluation of Human
Work: A practical ergonomics methodology, Wilson, J. R. AND Corlett, E. N. Eds. pp 134-160.

STARY, C., VIDAKIS, N., MOHACSI, S. AND NAGELHOLZ, M., 1997. Workflow-Oriented
Prototyping for the Development of Interactive Software. In: COMPSAC'97 - 21st International
Computer Software and Applications Conference, Eds. IEEE, pp 530-535

STORRS, G., 1995. The Notion of Task in Human-Computer Interaction. In: People and Computers X
(HCI'95), Kirby, M. A. R., Dix, A. J. AND Finlay, J. E., Eds. Huddersfield, Cambridge University Press,

pp 357-365

246

SUTCLIFFE, A., 2000. On the effective use and reuse of HCI knowledge. ACM Transactions on
Computer-Human Interaction, 7 (2), pp 197-221

TOOK, R., 1992 The Active Medium: A Conceptual and Practical Architecture for Direct Manipulation.
In: Building Interactive Systems: Architecture and Tools (Workshops in Computing), Gray, P. AND
Took, R. Eds. Springer-Verlag, pp 6-21.

TORRES, J. C., GEA, F. L., GUITIERREZ, M., CABRERA, M. AND RODRIGUEZ, M., 1996.
GRALPLA: An Algebraic Specification Language For Interactive Graphic Systems. In: 3rd International
Eurographics Workshop on Design, Specification, and Verification of Interactive Systems, Bodart, F.
AND Vanderdonckt, J., Eds. Namur, Belgium, Springer, pp 272-291

TRIETTEBERG, H., 1998. Modelling direct manipulation with Referent Statecharts. In: DSV-IS '98: 5th
International Eurographics Workshop on Design, Specification and Verification of Interactive Systems,
Markopoulos, P. AND Johnson, P., Eds. Abingdon, UK, Spinger, pp 278-292

VAN DANTZICH, M., GOROKHOVSKY, V. AND ROBERTSON, G., 1999. Application redirection:
hosting Windows applications in 3D. In: Proceedings of the 1999 workshop on new paradigms in
information visualization and manipulation in conjunction with the eighth A CM internation conference
on Information and knowledge management, Eds. Kansas City, Missouri, USA, ACM Press, pp 87-91

VAN DER VEER, G. C. AND VAN WELIE, M., 1999. Groupware Task Analysis. In: Tutorial Notes for
the CH199 workshop "Task Analysis Meets Prototyping: Towards seamless UI Development". Eds.
Pittsburgh, Pennsylvania, USA, ACM, pp 1-15

VAN WELIE, M., VAN DER VEER, G. C. AND ELIENS, A., 1998. An Ontology for Task World
Models. In: Proceedings of the Eurographics Workshop on Design, Specification, and Verification of
Interactive Systems '98, Markopoulos, P. AND Johnson, P., Eds. Abingdon, UK, Springer, pp 57-70

VANDERDONCKT, J. AND BERQUIN, P., 1999. Towards a Very Large Model-Based Approach for
User Interface Development. In: Proceedings of the Ist International Workshop of User Interface to Data
Intensive Systems '99, Paton, N. W. AND Griffiths, T., Eds. Edinburgh, UK, IEEE Computer Society
Press, pp 76-85

VILLER, S. AND SOMMERVILLE, I., 1999. Coherence: An approach to representing ethnographic
analyses in systems design. Human-Computer Interaction, 14 (1-2), pp 9-41

VISUALEDGE, 1997. UIM/X 3.0 3. Visual Edge Software

WALLACE, M. D. AND ANDERSON, T. J., 1993. Approaches to Interface Design. Interacting with
Computers, 5 (3), pp 259-278

WASSERMAN, A. I., 1985. Extending State Transition Diagrams for the Specification of Human-
Computer Interaction. IEEE Transactions on Software Engineering, SE-11 (8), pp 699-713

247

WHITEFIELD, A. AND HILL, B., 1994. Comparative-Analysis of Task-Analysis Products. Interacting
with Computers, 6 (3), pp 289-309

WILLIAMS, P., 1992 Surface Interaction*: A paradigm for Object Communication. In. Building
Interactive Systems: Architecture and Tools (Workshops in Computing), Gray, P. AND Took, R. Eds.
Springer-Verlag, pp 23-33.

WINDSOR, P., 1990. An object-oriented framework for prototyping user interfaces. In: Human-
Computer Interaction - INTERACT '90, Diaper, D., Gilmore, D., Cockton, G. AND Shackel, B., Eds.
Elsevier Science, pp 309-314

WROBLEWSKI, D. A., 1991 The Construction of Human-Computer Interfaces Considered as a Craft.
In: Taking Software Design Seriously: Practical Techniques for Human-Computer Interaction Design,
Karat, J. Eds. Academic Press, pp 1-19.

YOURDON, E., 1994. Object- Oriented Systems Design: An Integrated Approach, Prentice-Hall
International, Inc.

ZAJICEK, M. P. AND WINDSOR, R., 1995. Using Mixed Metaphors to Enhance the usability of an
electronic multimedia document. In: IEE Colloquium 'Human-Computer Interface Design for Multimedw
Electronic Books, Eds., Washington, pp 21-27

248

