
Technical Report TR -NCCA-2008-03

 An Exact Representation of Polygonal Objects by

C1-continuous Scalar Fields Based on

Binary Space Partitioning

Oleg Fryazinov, Alexander Pasko, Valery Adzhiev

The National Centre for Computer Animation

Bournemouth Media School

Bournemouth University
Talbot Campus,

 Poole, Dorset BH12 5BB

United Kingdom

2008

Technical Report TR-NCCA-2008-03

ISBN: 1-85899-123-4

Title: An Exact Representation of Polygonal Objects by C1-continuous Scalar Fields Based on Binary Space

Partitioning

Authors: Oleg Fryazinov, Alexander Pasko, Valery Adzhiev

Key words and Phrases: Function representation, polygonal mesh, BRep, FRep, scalar fields, binary space partitionin, BSP,

exact conversion

Abstract:

The problem considered in this work is to find a dimension independent algorithm for the generation of signed scalar

fields exactly representing polygonal objects and satisfying the following requirements: the defining real function takes

zer o value exactl y at th e polygon al object boun dar y; n o extr a zer o-value isosur faces sh ould be gen er ated; C1 con tin uity

of the function in the entire domain. The proposed algorithms are based on the binary space partitioning (BSP) of the

object by the planes passing through the polygonal faces and are independent of the object genus, the number of disjoint

components, and holes in the initial polygonal mesh. Several extensions to the basic algorithm are proposed to satisfy

th e selected optimization cr iter ia. Th e gen er a ted BSP-fields allow for applyin g tech n iques of fun ction -based modellin g

to already existing legacy objects from CAD and computer animation areas, which is illustrated by several examples.

Report date: 13 October , 2008

Web site to download from: URL: http://eprints.bournemouth.ac.uk/

The authors’ e-mail addresses: ofryazinov@bournemouth.ac.uk, vadzhiev@bournemouth.ac.uk, pasko@acm.org

Supplementary Notes:

The National Centre for Computer Animation

Bournemouth Media School

Bournemouth University
Talbot Campus,

 Poole, Dorset BH12 5BB

United Kingdom

http://ncca.bournemouth.ac.uk/index.html

1

1. Introduction

Representations of geometric objects by continuous and dis-
crete (sampled) scalar fields have recently attracted a lot
of attention from both research and application points of
view. This is due to many useful properties of such objects.
They can undergo set operations with controllable blending,
offsetting, metamorphosis with arbitrarily changing topol-
ogy, sweeping, and other operations. Scalar field models are
quite suitable, for example, for the reconstruction from large
clouds of points [OBA∗03] and for the description of inter-
nal material distribution [BST04].

There is a large legacy of polygonal objects created
in CAD, computer animation, and other applications. The
availability of new modelling operations and application ar-
eas stimulates the search for methods for the conversion of
2D polygons and 3D polygonal objects to representations by
zero-level sets (2D contours and 3D isosurfaces) of scalar
fields.

Approximate and exact (up to the finite precision of com-
puting scalar field values) representations have to be distin-
guished. Several known approximations of polygonal ob-
jects by scalar field isosurfaces are suitable for visualiza-
tion, animation, re-meshing and other purposes. On the other
hand, approximation errors can be critical and even fatal
in some applications such as computer-aided manufacturing
and medical simulations [PTJ00].

An exact representation can be obtained using signed Eu-
clidean distance from a given point to the polygonal mesh
[PT92]. The main problem with this solution is that the Eu-
clidean distance has points with the derivatives discontinuity
(vanishing gradients) in its domain, which can cause appear-
ance of unexpected artefacts in further operations on the ob-
ject [BS04] [FPSM06].

A problem with some conversion methods is that they
generate not only the desired approximating zero-value iso-
surface but some additional isosurfaces inside or outside the
considered solid object. Such additional internal or exter-
nal zero-value points can be wrongly classified as object’s
boundary points and thus damage an application. Also ad-
ditional zero-value isosurfaces destroy the distance property
of the scalar field, which is important in further operations
on objects, for example, in blending and material properties
modelling.

A 2D polygon can be exactly described by a continuous
real function of two variables built using a monotone set-
theoretic formula (see details in the next section). This solu-
tion produces a function with zero values only at the polygon
edges and no additional internal or external zero-value con-
tours are generated. However, the monotone formula has no
direct extension to the 3D polygonal object case.

The problem considered here is to find an algorithm for
the generation of scalar fields describing 2D and 3D polyg-

onal objects with defining real functions satisfying the fol-
lowing requirements:

• real function of point coordinates takes zero value exactly
at the polygonal object boundary and has different signs
for internal and external points;

• no extra zero-value isosurfaces should be generated;
• C1 continuity of the function in the entire domain.

Taking into account existing difficulties with 3D exten-
sions of algorithms specifically designed for 2D polygons,
the best solution would be an algorithm with a dimension
independent formulation such that it can be directly applied
in 2D, 3D and higher dimensional space.

The main contributions of this paper are: 1) a new algo-
rithm for the construction of the set-theoretic expressionfor
the given polygonal object; 2) an algorithm for the procedu-
ral scalar field evaluation at the given point and 3) several
extensions to the basic algorithms to satisfy the optimization
criteria. The proposed algorithms are based on the binary
space partitioning (BSP) of the object by the planes pass-
ing through the polygonal faces. The constructed BSP-tree
structure is used to generate the set-theoretic expressionpro-
cedurally with one to four set operations assigned to each in-
ternal node of the tree, and a halfspace assigned to each tree
leaf corresponding to a partitioning plane. The scalar fieldis
generated when we use some type of R-functions in the tree
nodes and defining functions of halfspaces in the leaves. Due
to the nature of BSP, this algorithm is practically dimension
independent after the step of the BSP-tree construction for
the given polygonal object of arbitrary dimensionality. The
BSP-tree optimization is discussed and some extensions of
the basic tree construction algorithm are proposed. We also
provide several examples illustrating applications of BSP-
fields describing polygonal objects.

2. Previous works

We discuss in this section several classes of methods for the
conversion of polygonal objects to scalar field representa-
tions: continuous and discrete field approximations, exact
representations utilizing distance functions and different ver-
sions of set-theoretic expressions. Blobby models [Mur91],
radial-basis functions (RBF) [SPOK95] [YT02], and multi-
level partition of unity implicits (MPU) [OBA∗03] produce
a single isosurface which can approximate a given cloud of
polygonal mesh vertices. While highly complicated meshes
with huge number of vertices are well approximated, sim-
ple objects with the small number of vertices have rather big
approximation errors when distances to polygonal faces are
taken into account. The approximation with compactly sup-
ported radial basis functions (CSRBF) [MYR∗05] has prob-
lems of creating bumpy surfaces and additional unwanted
zero-value isosurfaces not passing through given vertices.
The polygonal mesh approximation method based on mov-
ing least squares (MLS) [SOS04] deals with undesirable os-

2

cillations by adding points with normal constraints across
the surface of each polygonal face.

The piecewise linear approximation of the signed distance
function [WK03] allows for a multiresolution representation
of the given mesh with the fast evaluation of the approxi-
mate distance. This method involves the binary space parti-
tioning in a way different from our approach. Another ap-
proximation method of the signed distance function for a
3D mesh interpolates between distance functions of its pla-
nar cross-sections [COSL98]. A pseudo-distance function is
used in the HybridTree [AGCA06], which allows for polyg-
onal meshes to act as implicit surface primitives in various
free-form modelling operations.

Discrete approximation methods sample signed distance
or some other continuous function at the nodes of a reg-
ular volumetric grid or an octree grid [FPRJ00] [Ju04]. A
physics-based level set method was used in [ZO02] to ap-
proximately reconstruct a given polygonal surface with nor-
mal constraints by a discrete scalar field sampled initially
with signed distance function values.

Continuous and discrete scalar field approximations of
polygonal meshes are useful for mesh repair, re-meshing,
rendering, object carving, animation, and metamorpho-
sis. However, errors inherent to approximation methods
are not acceptable in some critical applications such as
computer-aided manufacturing, material distribution mod-
elling [BST04], and medical simulations [PTJ00].

A polygonal mesh can be exactly represented by a zero-
level isosurface of the signed distance function from the
given point to the mesh polygons, which allows for offset-
ting, metamorphosis, smoothing, set operations and other
object manipulations [PT92]. The points of C1 distance
function discontinuity form curves and surfaces in space
that can cause appearance of unexpected edges in further
operations such as blending, additional areas of stresses in
strength analysis, and other problems.

Another general approach to the exact conversion is to
describe a solid object with the given polygonal boundary
using set-theoretic (or simply set) operations on the sup-
porting halfspaces bounded by planes (straight lines in 2D)
passing through polygonal faces (edges in 2D) and on some
additional planar halfspaces in the general case. The theo-
retical basis for this approach is given by the Beynon theo-
rem [Bey74], which implies that a piecewise linear function
defining a polyhedron can be expressed by applying point-
wise min and max operations to a finite set of linear func-
tions. When a set-theoretic expression is obtained, one can
formally define the scalar field by replacing the halfspaces
by their defining linear functions and using min/max (or
other R-functions as explained below) for the set-theoretic
operations (see [Sha07] for more details).

An object resulting from the set-theoretic operations has
the defining function expressed as follows:

f3 = f1∨α f2 for the union;
f3 = f1 ∧α f2 for the intersection, wheref1 and f2 are
defining functions of initial objects and∨α, ∧α are signs
of R-functions. One of the classes of R-functions is

f1∨1 f2 = max(f1, f2)
f1∧1 f2 = min(f1, f2)

(1)

These functions areC1 discontinuous at all points where
f1 = f2. R-functions of another class:

f1∨0 f2 = f1 + f2 +
√

f 2
1 + f 2

2

f1∧0 f2 = f1 + f2−
√

f 2
1 + f 2

2

(2)

have C1 discontinuity only at points where both arguments
are equal to zero. A recently proposed class of R-functions
called SARDF (Signed Approximate Real Distance Func-
tion) operations [FPSM06] provides smooth approximation
of the min/max operations and therefore of the signed dis-
tance functions for complex objects constructed using set-
theoretic operations on primitives defined by distance func-
tions. The distance property of a defining function is im-
portant in several applications such as rendering and shape
metamorphosis in computer graphics, aesthetic design, mod-
elling material properties of objects in layered manufactur-
ing, formulation of boundary conditions in engineering anal-
ysis, modelling offsets in computer-aided design, and oth-
ers [BS04].

There are several approaches to constructing set-theoretic
representations of a given polyhedron. A convex polyhedron
is an intersection of all supporting halfspaces. A concave
polyhedron has to be represented by set operations on spe-
cially selected convex polyhedra or its own supporting half-
spaces. The cell partition [SV93] results in the representa-
tion of a concave polyhedron as union of its convex parts
(cells). These convex cells share common faces inside the
initial polyhedron. When R-functions are applied to get the
polyhedron’s defining function, "internal zeroes" appear at
the points of all shared internal faces. Similar effects occur
when applying the more general BRep-CSG conversion al-
gorithm to the polygonal mesh [BC03].

In the convex decomposition of 2D polygons [WW82]
[TM84], a polygon is represented by its convex hull with
some inner regions subtracted. These inner regions are pro-
cessed recursively in the same manner to generate lower
levels of the convex decomposition. The application of
min/max or other R-functions to this representation leads to
the appearance of "external zeroes" at the edges of the nested
convex hulls with the disadvantages discussed earlier.

The optimal set-theoretic expression of a 2D polygon
called a monotone formula [Rva74] [Pet84] includes each
of the supporting halfplanes only once and does not include
any additional halfplane. An efficient algorithm for deriving

3

Figure 1: A simple polygon (green) constructed from three
planar halfspaces: A (grey) with the boundary line ST, B
(yellow and green left to the line ST), C (blue and green right
to the line ST).

this representation from an arbitrary given polygon was pro-
posed in [DGHS88]. The remarkable property of the mono-
tone formula is that it does not generate any internal or ex-
ternal zeroes when applying R-functions.

It is difficult to extend exact 2D conversion algorithms to
3D polyhedra. Unfortunately, an analogue of the monotone
formula for 3D polyhedra is not known. The convex decom-
position algorithms based on nested convex hulls can be ex-
tended to 3D space, but they do not converge for some types
of polyhedra [KW92]. There is a need of a dimension inde-
pendent conversion algorithm, which can be applied directly
to polygons in 2D, polyhedra in 3D and to higher dimen-
sional polytopes.

3. Scalar fields based on BSP-trees

In this section we present our approach to the exact conver-
sion. We suppose that the initial polygonal object is a closed
manifold and contains no degenerate boundary elements. If
these requirements are not satisfied, the resulting scalar field
will not be an exact representation in the general case.

First, we consider a set-theoretic construction of a 2D
polygon as a representative of the general case problem. We
show in subsection 3.1 that the existing methods are not sat-
isfactory in terms of the above requirements to the scalar
field. Then, we propose an original set-theoretic solution to
the given 2D problem (section 3.2) and the proposed solu-
tion is applied in section 3.3 to devise a basic dimension in-
dependent algorithm and its optimizations for the exact con-
version.

3.1. Construction of a scalar field for a simple 2D
polygon

As an introduction to our approach, let us consider the set-
theoretic construction of a simple polygon on a 2D plane
from three semi-infinite planar halfspaces as shown in Fig.
1. Three intersecting halfspaces a given as follows: A (shown
in grey in Fig. 1) with the boundary straight line ST, B (yel-
low and green left to the line ST) with the boundary DE-
FGHIJK, C (blue and green right to the line ST) with the
boundary LMNOPQR. The boundaries of B and C intersect
in the points S and T. The problem is to construct a defining
function f (x,y) for the simple polygon IJSMNOPQTEFGH
(shown in green in Fig.1) such that f (x,y) = 0 only at the
points of the polygon boundary,f (x,y) > 0 inside the poly-
gon, and f (x,y) < 0 outside the polygon. The function has
to be C1 continuous everywhere except the polygon bound-
ary, where onlyC0 continuity is allowed. Note that no inter-
nal or external non-boundary points are allowed to have zero
function value or zero function gradient value.

The presented 2D problem can be simply solved by us-
ing a monotone formula [Rva74] [Pet84] [DGHS88] men-
tioned above. However, as it was mentioned an extension of
the monotone formula construction algorithm to the case of
3D polyhedrons is problematic. Therefore, we are looking
for an alternative dimension independent solution.

Another approach is to apply a kind of cell partitioning
[BC03] to the polygon as shown in Fig.2. The boundaries
of two halfspaces (A∩ B) (left in Fig. 2) and (¬A∩C)
(middle) share the segment ST. After applying union to these
halfspaces we obtain the desired polygon (right in Fig.2).
The defining function constructed using the set-theoretic ex-
pression and R-functions is as follows:

fp = (fA∧α fB)∨α (− fA∧α fC) (3)

This defining function for the polygon takes zero values at
its boundaries. Additionally, the function takes zero values
at the internal segment ST, which becomes a set of points
with internal zeroes in respect to the polygon. The convex
decomposition approaches will generate external zeroes of
the function. Therefore, the cell partitioning and convex de-
composition do not satisfy the requirements to the solution.

3.2. Proposed solution

We propose to directly construct a set-theoretic expression
for the polygon in such way that the corresponding defining
function does not have internal or external zeroes.

The proposed steps of the set-theoretic construction of a
polygon with the defining function without non-boundary
zeroes are shown in Fig.3. At each step, the union or in-
tersection operation is applied to planar regions, which do
not share boundary elements inside or outside the desired
polygon. this guarantees the defining function without in-
ternal and external zeros. The defining function constructed

4

Figure 2: Cell partition of the polygon with internal zeroes
of the defining function at the points of the segment ST

Figure 3: Set-theoretic construction of the polygon with a
defining function without non-boundary zero points.

using the set-theoretic expression shown in Fig.3d and R-
functions is as follows:

fs = ((fA∨α fC)∧α fB)∨α (− fA∧α fC) (4)

In total, the evaluation of the functionfs requires apply-
ing four R-functions. This example was selected as a rep-
resentative of the general case and we can use the derived
defining function for any configuration involving two in-
tersecting halfspaces and a partitioning line (plane in 3D).
However, there can be an important particular case, when
the number of the required R-functions is reduced from four
to two. If the boundary of the halfspace B does not intersect
the boundary of C in the area right to the halfplane A (no in-
tersection of the ray JK with the segments MN and NO in the
above example), then the polygon can be described by a sim-
ple set-theoretic expression:(A∪C)∩B. Symmetrically, if
the boundary of the halfspace C does not intersect the bound-
ary of B in the area of the halfplane A (no intersection of the
ray QR with the segments EF and FG), then the polygon can
be described by another expression:(¬A∪B)∩C.

3.3. BSP-tree construction and function evaluation

In this section we describe our algorithm for the scalar field
generation for the given polygonal object. The presented in
the previous section set-theoretic description and the scalar
field generation for a 2D polygon reduces the problem to op-
erations on two parts of the polygon divided by a partitioning
straight line. If we select only supporting straight lines (con-
tinuations of polygon edges) for partitioning the polygon
and apply the described procedure to the both parts of the
polygon recursively, finally we can construct a set-theoretic
expression involving only supporting halfplanes. The data
structure corresponding to such a recursive procedure is the
binary space partitioning tree (BSP-tree) [FKN80]. Note that
the same procedure can be applied in 2D and 3D spaces
with very small modifications. There are two independent
parts in the scalar field generation based on BSP-trees: a pre-
processing step of the BSP-tree construction and the func-
tion evaluation at the given point utilizing the constructed
BSP-tree. In this section we present an algorithm for the con-
struction of BSP-tree in 3D case. The construction of BSP-
tree in the 2D case can be easily done in the similar way.

3.3.1. Basic BSP-tree construction

The construction of the BSP-tree is a recursive procedure
that contains the following main steps: selection of the base
polygon according to some criteria, construction of the par-
titioning plane containing the base polygon, division of the
rest of polygons into the "positive" and "negative" groups
based on the side of the partitioning plane, and recursive
processing of the "positive" set and the "negative" set. In our
approach we use the classic construction procedure of the
BSP-tree that has been formalized in [FKN80]. As BSP is a
dimension independent structure by its nature, the algorithm

5

is given for the case of a 3D input polyhedron with planar
polygons as its boundary faces, but can be directly applied
in 2D with reformulation for polygon edges and partitioning
straight lines. Each partitioning plane contains at least one
polygonal face. The algorithm for the BSP-tree construction
is as follows:

Build_Tree (polygon_list pl){
node current_node = Make_Node();
p0 = Select_Polygon(pl);
current_node.cut_plane = Make_Plane(p0);
polygon_list pos_list = 0;
polygon_list neg_list = 0;
for each polygon k in pl except p0
classify p[k] against cut_plane;
if (pl[k] is on the positive side)

Add(pl[k], pos_list);
else if (pl[k] is on the negative side)

Add(pl[k], neg_list);
else {

Split_Polygon(pl[k], cut_plane,
pos_parts, neg_parts);

Add (pos_parts, pos_list);
Add (neg_parts, neg_list);

}
if (pos_list is not empty)
current_node.pos_tree =

Build_Tree(pos_list);
else current_node.pos_tree = 0;
if (neg_list is not empty)
current_node.neg_tree =

Build_Tree(neg_list);
else current_node.neg_tree = 0;
return current_node;

}

Here "pos" refers to positive and "neg" refers to negative.
The BSP-tree building procedureBuild_Tree processes
the list pl of the input polygonal faces. At the first iteration
this list is a list of all faces in the input mesh. A polygon
that is selected by theSelect_Polygon function is the
base for a partitioning (cutting) planecut_plane passing
through it. The selection criteria for the polygon are dis-
cussed in subsection 3.3.3. The equation for this plane is
calculated by theMake_Plane procedure. The rest of the
polygons from the input list are classified against the parti-
tioning plane into two groups depending on which side of the
plane they are residing. We classify the polygon as positive,
if for any vertex Px from this polygon the next inequality is
satisfied:

(Px−P0)�n ≥ 0,
where P0 is a point on the base plane andn is the normal to
the plane. If some polygon intersects the partitioning plane,
it is split into two parts bySplit_Polygon, each of which
is added to the respective list. The polygons inpos_list
and inneg_list are processed recursively by the proce-
dureBuild_Tree to create positive and negative subtrees
of the created node. Finally a node of the BSP-tree is created

by Make_Node, which storescut_plane, pos_tree,
andneg_tree.

3.3.2. Function evaluation procedure

The set-theoretic expression and the corresponding func-
tional expression for a single partitioning plane (straight line
in 2D) were given in Section 3.2. In general, one needs to
build a corresponding Constructive Solid Geometry (CSG)
tree for the given polygonal object and then to apply R-
functions in its nodes to evaluate the entire scalar field. Inour
case, the constructed BSP-tree helps evaluate the scalar field
procedurally without building an equivalent CSG-tree. The
evaluation procedure for the scalar field at the given point
starts from the root of the BSP-tree and applies the follow-
ing functional expressions at the nodes recursively:

f (x) =















fa, pos_tree= 0,neg_tree= 0
fa∧α fb, pos_tree 6= 0,neg_tree= 0
fa∨α fc, pos_tree= 0,neg_tree 6= 0
((fa∨α fc)∧α fb)∨α (− fa∧α fc),otherwise

where for the given nodefa is a signed distance to the
partitioning plane of the current node,fb is a defining func-
tion for the positive subtree of the node, andfc is a defining
function for the negative subtree.

3.3.3. Optimization of BSP-trees

The selection of the base polygon and the partitioning plane
is the crucial part of the BSP-tree construction. Depend-
ing on criteria for the base polygon selection different BSP-
trees can be obtained. In our work we use two different ap-
proaches: "naive" selection, where the polygon is randomly
selected from the polygon list, and "optimized" selection.
The optimization means using selection criteria that allow
for obtaining a tree with the following properties:

• Minimization of polygon splitting operations to reduce
the total number of nodes and the number of operations
in the function evaluation

• Minimization of computational errors during the function
evaluation and BSP-tree construction;

• Balancing the BSP tree, i.e., minimization of difference
between positive and negative list for the minimization of
the depth of the tree.

To provide the generation of BSP-trees with these proper-
ties, we propose to use the following criteria:
For the given partitioning planeP and the list of polygons
F containing the list of verticesV:

Ksplit(P) = Nsplit

Kdist(P) = min
v∈V,v/∈P

(distance(v,P))

6

(a) (b)

(c) (d)

Figure 4: (a) 2D polygon and colour maps of the scalar
fields for its optimized BSP-tree with applied min/max func-
tion (b), R-functions of Eq. 2 (c), SARDF operations (d).

Kangle(P) = min
f∈F, f /∈P

(angle(n f ,n))

Ktree(P) =

{

Nf ront
Nback

,Nback> Nf ront
Nback
Nf ront

,otherwise

where Nf ront is a number of faces that lie in the positive
half-space of the planeP and Nback is a number of faces that
lie in the negative half space,Nsplit is a number of faces that
are split by the planeP and n is a normal toP. The mean-
ing of these criteria is the following: maximization ofKdist
and Kangleallows to avoid of degenerate faces after splitting
of the polygon, maximization ofKtree allows to balance the
tree and minimization ofKsplit allows to minimize the poly-
gon splitting operations.

We select the base polygon with the planeP, where one
of the following conditions is satisfied:

• Ksplit = 0
• K(P) = Kdist(P)∗Kangle(P)∗Ktree(P) is maximal

Fig. 4 shows examples of BSP-fields generated using an
optimized BSP-tree for a 2D polygon. The shown colour
maps illustrate the behaviour of different R-functions (from
left to right): min/max, R-functions with square roots (Eq.
2), and SARDF operations ("smooth min/max") [FPSM06].
Note that an exact representation of the polygon by a signed
scalar field is obtained in all cases. The min/max functions
do not provide a satisfactory field as it has lines with van-
ishing gradients of the defining function in the domain. The

(a) (b)

Figure 5: Table model

(a) (b)

Figure 6: Dolphin model

R-functions defined by Eq. 2 generate aC1-continuous
field, but it does not well approximate the distance func-
tion. The SARDF type of R-functions generate a scalar field,
which both is C1-continuous and provides better approxi-
mation of the distance function. On the other hand, min/max
operations provide the highest speed of calculations and
SARDF operations are the slowest. Therefore, the choice of
R-functions entirely depends on the requirements of the par-
ticular applications to the scalar field.

4. Experiments

We first discuss the results of our experiments with the ba-
sic and optimized BSP-tree construction algorithms. Then,
several operations employing the obtained scalar fields are
illustrated.

4.1. Exact conversion of polygonal objects with sharp
features and arbitrary topology

We did not make any assumption about objects geometry
features or its topology in the formulations of the BSP-tree
generation and the function evaluation algorithms. Here we
show how our method can be applied to objects that usually
cannot be easily converted using existing methods. Figs.5,
6 and 7 illustrate the conversion of polygonal models with
sharp features. These figures include the original mesh and a
colour map of a cross-section of the functionally represented

7

Non-optimized Optimized
Model Vertices Faces Planes Splittings Set operations Splittings Set operations

Block with hole 72 144 20 118 80 0 31
Table 64 124 59 56 113 0 68

Dolphin 282 562 562 1503 3249 572 1775
Rocker arm (low poly) 470 940 933 3253 6221 976 2828

Chain 768 1536 384 118 80 0 31

Table 1: Tests of the BSP-tree optimization

(a) (b)

Figure 7: Block with hole model

(a) (b)

Figure 8: Chain model

model that we obtain from the initial model. The colour dis-
tribution for each model is set up only to illustrate the be-
haviour of the defining function, not to compare models with
each other. For example, for the "Block with hole" model,
which has a quite small number of polygons, the approxi-
mation methods based on RBF and MPU [SPOK95] [YT02]
[OBA∗03] can only produce some oval shapes for the block
and for the hole, which is unacceptable in most applications.
Figures 7, 8 and 9 illustrate the conversion of polygonal

(a) (b)

Figure 9: Rocker arm model

(a) (b)

Figure 10: Model with missing polygons and BSP field

models with non-zero genus and objects with disjoint com-
ponents.

The main feature of the monotone formula for a 2D poly-
gon is the minimal number (N-1) of set-theoretic operations
on N supporting halfspaces of the polygon. The main pur-
pose of the BSP-tree optimization described above is to min-
imize the number of nodes in the BSP-tree and thus the to-
tal number of set-theoretic operations. Table 1 shows the re-
sults of testing the optimization. Here the number of planes
means the number of unique supporting halfspaces with pla-
nar boundaries (several mesh triangles can belong to one
plane). The main result is that we can achieve the drastic re-
duction of the number of polygon splitting operations. In the
case of low number of polygons the optimization leads to the
elimination of splitting and to the number of set-theoreticop-
erations very close to the number of planes (see "Block with
hole" and "Table"). For more complex models the number
of set-theoretic operations remains about three times larger
than the number of planes. Further research is necessary to
achieve the minimal number provided by the monotone for-
mula in 2D.

4.2. Conversion of incomplete meshes

As mentioned above, the input meshes should be closed
manifolds. However, if the mesh is not a closed manifold, the
BSP field can be created from the input mesh and in many
cases represent the model that topologically and geometri-
cally close to the original model. In figure10 we show how
our method can be applied to a model with missing poly-
gons. From the original mesh (see figure10a) we remove

8

(a) (b)

Figure 11: Offset

(a) (b)

Figure 12: Blend

25% of triangles (red colour in the figure) and create BSP
field from the rest of triangles (green colour). The result-
ing functionally represented model (see Fig.10b) is visually
close to the original, however some artefacts appeared. It
means that for the objects with incomplete boundaries the al-
gorithm is not guaranteed to produce the intuitively expected
exact representation.

4.3. Offsetting and blending of polygonal meshes

For some models the BSP-field is close to the monotonous
field. In this case the BSP-field has distance properties and
we can use an offset operation with simple modification of
the function: F(x,y,z)−d ≥ 0, where d is an offset value.
For example, in chain model (see Figure8) we have BSP-
field with distance properties for positive offset (see11b),
however we do not have distance properties for negative off-
set (see Fig.11a). Unfortunately, at present we cannot guar-
antee the distance properties for the generated BSP-field.
This can be the base for the future research on the BSP-tree
optimization. If the distance property is provided, we also
can apply a blending operation to two converted polygonal
objects. Fig.12shows a blending union with added material
between the Rabbit and the Table models.

4.4. Sweeping

Sweeping by a moving solid is one of the most impor-
tant operations in CAD. It can be applied in simulation of
numerically controlled machining, robot motion planning,
and maintainability simulation. In general, the operationis

(a) (b)

Figure 13: Phases of motion of the functionally represented
polygonal rocker arm along a helical trajectory (a), and the
solid sweep (b).

problematic for solids with complex topology, shape vary-
ing sweep generators, and sweeps with self intersections.
We have applied the algorithm for sweeping by a moving
solid [SP96] devised for function-based solid models. Its ad-
vantage is the generality of the approach resolving the above
difficulties. Fig. 13shows a sweep by the Rocker arm mod-
elwith non-zero genus moving along a helical trajectory. The
initial polygonal model was converted to a scalar field model
and the algorithm [SP96] was applied to obtain the scalar
field defining the final sweep.

4.5. Self-replicating

Self-replicating of solid objects represented by polygonal
meshes can easily be done if we have function representa-
tions of these objects. In this case we can apply any periodic
function to the function representation and obtain the needed
result. On figure14 we show how the Rabbit model can be
self-replicated by adding only several lines of code to the
original function.

5. Conclusions

We proposed, implemented and tested a new dimension in-
dependent algorithm for the conversion of a polygonal ob-
ject to a representation by a signed scalar field without van-
ishing gradients and extra zero-level isosurfaces. The algo-
rithm provides an exact representation of polygonal objects
including those with small number of vertices, sharp fea-
tures, missing polygons, non-zero genus, and several disjoint
components. Under exact representation we mean the theo-
retical model without taking into account the finite precision
of computing scalar field values.

The existing problems of input polygonal meshes such as
self-intersections, topological inconsistencies, largenumber
of holes, and triangles with very high aspect ratios influence
the quality of the obtained results. A robust conversion pro-
cedure requires special mesh pre-processing to provide an
input mesh as a closed manifold. The function evaluation
procedure is time consuming. For some applications it can
be reasonable to switch to continuous approximations of the

9

(a) (b)

(c)

Figure 14: Self-replicating of the Rabbit model: a) Orig-
inal model, b) Self-replicated model, c) Zoom of the self-
replicated model in the head area.

obtained scalar fields using B-splines or wavelets. However,
it would mean loosing the exact representation of the initial
polygonal object.

The proposed algorithm is in some aspects superior in
comparison with the monotone set-theoretic formula avail-
able for 2D polygons. For example, the monotone formula
is not directly applicable to objects with non-zero genus and
with disjoint components. The ultimate goal of this research
is to achieve for 3D polyhedra the property of the minimal
number of operations of the monotone formula. Although
the proposed optimizations of the basic algorithm have sig-
nificantly reduced the number of operations, the monotone
formula property has been achieved only for relatively sim-
ple objects with the low number of polygons. Further re-
search will be needed in this direction, for example, on the
detection of the special cases described in Section 3.2.

References

[AGCA06] ALLEGRE R., GALIN E., CHAINE R.,
AKKOUCHE S.: The HybridTree: Mixing skeletal im-
plicit surfaces, triangle meshes, and point sets in a free-
form modeling system.Graphical Models 68, 1 (January
2006), 42–64.

[BC03] BUCHELE S. F., CRAWFORD R. H.: Three-
dimensional halfspace constructive solid geometry tree
construction from implicit boundary representations. In

SM ’03: Proceedings of the eighth ACM symposium on
Solid modeling and applications(2003), ACM, pp. 135–
144.

[Bey74] BEYNON W. M.: Combinatorial aspects of
piecewise-linear maps.Journal of the London Mathemat-
ical Society 2, 7 (1974), 719–727.

[BS04] BISWAS A., SHAPIRO V.: Approximate distance
fields with non-vanishing gradients.Graph. Models 66, 3
(2004), 133–159.

[BST04] BISWAS A., SHAPIRO V., TSUKANOV I.: Het-
erogeneous material modeling with distance fields.Com-
put. Aided Geom. Des. 21, 3 (2004), 215–242.

[COSL98] COHEN-OR D., SOLOMOVIC A., LEVIN D.:
Three-dimensional distance field metamorphosis.ACM
Trans. Graph. 17, 2 (1998), 116–141.

[DGHS88] DOBKIN D., GUIBAS L., HERSHBERGERJ.,
SNOEYINK J.: An efficient algorithm for finding the csg
representation of a simple polygon.SIGGRAPH Comput.
Graph. 22, 4 (1988), 31–40.

[FKN80] FUCHS H., KEDEM Z. M., NAYLOR B. F.: On
visible surface generation by a priori tree structures. In
SIGGRAPH ’80: Proceedings of the 7th annual confer-
ence on Computer graphics and interactive techniques
(1980), ACM, pp. 124–133.

[FPRJ00] FRISKEN S. F., PERRY R. N., ROCKWOOD

A. P., JONES T. R.: Adaptively sampled distance fields:
a general representation of shape for computer graphics.
In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques
(2000), pp. 249–254.

[FPSM06] FAYOLLE P.-A., PASKO A., SCHMITT B.,
M IRENKOV N.: Constructive heterogeneous object mod-
eling using signed approximate real distance functions.
Journal of Computing and Information Science in Engi-
neering, ASME Transactions 6, 3 (2006), 221–229.

[Ju04] JU T.: Robust repair of polygonal models.ACM
Trans. Graph. 23, 3 (2004), 888–895.

[KW92] K IM Y. S., WILDE D. J.: A convex decom-
position using convex hulls and local cause of its non-
convergence.ASME Journal of Mechanical Design 114,
3 (Sept. 1992), 459–467.

[Mur91] MURAKI S.: Volumetric shape description of
range data using “blobby model”. InSIGGRAPH ’91:
Proceedings of the 18th annual conference on Com-
puter graphics and interactive techniques(1991), ACM,
pp. 227–235.

[MYR∗05] MORSE B. S., YOO T. S., RHEINGANS P.,
CHEN D. T., SUBRAMANIAN K. R.: Interpolating im-
plicit surfaces from scattered surface data using com-
pactly supported radial basis functions. InSIGGRAPH
’05: ACM SIGGRAPH 2005 Courses(2005), ACM, p. 78.

10

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK

G., SEIDEL H.-P.: Multi-level partition of unity implicits.
ACM Trans. Graph. 22, 3 (2003), 463–470.

[Pet84] PETERSOND.: Halfspace representation of ex-
trusions, solids of revolution, and pyramids. Tech. rep.,
Sandia National Laboratories, Albuquerque, NM, 1984.

[PT92] PAYNE B. A., TOGA A. W.: Distance field ma-
nipulation of surface models.IEEE Comput. Graph. Appl.
12, 1 (1992), 65–71.

[PTJ00] PETER J., TORNAI M., JASZCZAK R.: Analyt-
ical versus voxelized phantom representation for monte
carlo simulation in radiological imaging.Medical Imag-
ing, IEEE 19, 5 (2000), 556–564.

[Rva74] RVACHEV V.: Methods of the algebra of logic in
mathematical physics.Ukrainian Mathematical Journal
27, 4 (1974), 472–474.

[Sha07] SHAPIRO V.: Semi-analytic geometry with r-
functions.Acta Numerica 16(2007), 239–303.

[SOS04] SHEN C., O’BRIEN J. F., SHEWCHUK J. R.:
Interpolating and approximating implicit surfaces from
polygon soup. InSIGGRAPH ’04: ACM SIGGRAPH
2004 Papers (New York, NY, USA, 2004), ACM,
pp. 896–904.

[SP96] SOURIN A., PASKO A.: Function representation
for sweeping by a moving solid.IEEE Transactions on
Visualization and Computer Graphics 2, 1 (1996), 11–18.

[SPOK95] SAVCHENKO V. V., PASKO A., OKUNEV

O. G., KUNII T. L.: Function representation of solids
reconstructed from scattered surface points and contours.
Computer Graphics Forum 14(1995), 181–188.

[SV93] SHAPIRO V., VOSSLER D. L.: Separation for
boundary to csg conversion.ACM Trans. Graph. 12, 1
(1993), 35–55.

[TM84] TOR S. B., MIDDLEDITCH A. E.: Convex de-
composition of simple polygons.ACM Trans. Graph. 3, 4
(1984), 244–265.

[WK03] WU J., KOBBELT L.: Piecewise linear approxi-
mation of signed distance fields. InProceedings of Vision,
Modelling and Visualization 03(2003), pp. 513–520.

[WW82] WOODWARK J. R., WALLIS A. F.: Graphical
input to a boolean solid modeller.CAD 82(1982), 681–
688.

[YT02] Y NGVE G., TURK G.: Robust creation of implicit
surfaces from polygonal meshes.IEEE Transactions on
Visualization and Computer Graphics 8, 4 (2002), 346–
359.

[ZO02] ZHAO H., OSHERS.: Visualization, analysis and
shape reconstruction of unorganized data sets.Geomet-
ric Level Set Methods in Imaging, Vision and Graphics
(2002).

