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1. Introduction

Representations of geometric objects by continuous and dis
crete (sampled) scalar fields have recently attracted a lot
of attention from both research and application points of

view. This is due to many useful properties of such objects.
They can undergo set operations with controllable blending

offsetting, metamorphosis with arbitrarily changing tbpo

ogy, sweeping, and other operations. Scalar field models are

quite suitable, for example, for the reconstruction frongéa
clouds of points DBA*03] and for the description of inter-
nal material distributionBST04.

There is a large legacy of polygonal objects created
in CAD, computer animation, and other applications. The
availability of new modelling operations and application a

eas stimulates the search for methods for the conversion of

2D polygons and 3D polygonal objects to representations by
zero-level sets (2D contours and 3D isosurfaces) of scalar
fields.

Approximate and exact (up to the finite precision of com-
puting scalar field values) representations have to bendisti
guished. Several known approximations of polygonal ob-
jects by scalar field isosurfaces are suitable for visualiza
tion, animation, re-meshing and other purposes. On the othe
hand, approximation errors can be critical and even fatal
in some applications such as computer-aided manufacturing
and medical simulation$2[TJOQ.

An exact representation can be obtained using signed Eu-
clidean distance from a given point to the polygonal mesh
[PT93. The main problem with this solution is that the Eu-
clidean distance has points with the derivatives discaitin
(vanishing gradients) in its domain, which can cause appear
ance of unexpected artefacts in further operations on the ob
ject [BS04 [FPSMO08§.

A problem with some conversion methods is that they
generate not only the desired approximating zero-value iso
surface but some additional isosurfaces inside or outhiele t
considered solid object. Such additional internal or exter
nal zero-value points can be wrongly classified as object’s
boundary points and thus damage an application. Also ad-
ditional zero-value isosurfaces destroy the distancegutpp
of the scalar field, which is important in further operations
on objects, for example, in blending and material propertie
modelling.

A 2D polygon can be exactly described by a continuous
real function of two variables built using a monotone set-
theoretic formula (see details in the next section). This-so
tion produces a function with zero values only at the polygon
edges and no additional internal or external zero-value con

tours are generated. However, the monotone formula has noP

direct extension to the 3D polygonal object case.

The problem considered here is to find an algorithm for
the generation of scalar fields describing 2D and 3D polyg-
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onal objects with defining real functions satisfying the- fol
lowing requirements:

e real function of point coordinates takes zero value exactly
at the polygonal object boundary and has different signs
for internal and external points;

e No extra zero-value isosurfaces should be generated,;

o C! continuity of the function in the entire domain.

Taking into account existing difficulties with 3D exten-
sions of algorithms specifically designed for 2D polygons,
the best solution would be an algorithm with a dimension
independent formulation such that it can be directly ajplie
in 2D, 3D and higher dimensional space.

The main contributions of this paper are: 1) a new algo-
rithm for the construction of the set-theoretic expressan
the given polygonal object; 2) an algorithm for the procedu-
ral scalar field evaluation at the given point and 3) several
extensions to the basic algorithms to satisfy the optinorat
criteria. The proposed algorithms are based on the binary
space partitioning (BSP) of the object by the planes pass-
ing through the polygonal faces. The constructed BSP-tree
structure is used to generate the set-theoretic expregsien
cedurally with one to four set operations assigned to each in
ternal node of the tree, and a halfspace assigned to each tree
leaf corresponding to a partitioning plane. The scalar field
generated when we use some type of R-functions in the tree
nodes and defining functions of halfspaces in the leaves. Due
to the nature of BSP, this algorithm is practically dimensio
independent after the step of the BSP-tree construction for
the given polygonal object of arbitrary dimensionality.eTh
BSP-tree optimization is discussed and some extensions of
the basic tree construction algorithm are proposed. We also
provide several examples illustrating applications of BSP
fields describing polygonal objects.

2. Previous works

We discuss in this section several classes of methods for the
conversion of polygonal objects to scalar field representa-
tions: continuous and discrete field approximations, exact
representations utilizing distance functions and diffiéxer-
sions of set-theoretic expressions. Blobby mod#arp1],
radial-basis functions (RBFB[POK93 [YT02], and multi-
level partition of unity implicits (MPU) DBA*03] produce

a single isosurface which can approximate a given cloud of
polygonal mesh vertices. While highly complicated meshes
with huge number of vertices are well approximated, sim-
ple objects with the small number of vertices have rather big
approximation errors when distances to polygonal faces are
taken into account. The approximation with compactly sup-
orted radial basis functions (CSRBRJYR *05] has prob-
lems of creating bumpy surfaces and additional unwanted
zero-value isosurfaces not passing through given vertices
The polygonal mesh approximation method based on mov-
ing least squares (MLSPHOS04 deals with undesirable os-



2

cillations by adding points with normal constraints across
the surface of each polygonal face.

The piecewise linear approximation of the signed distance
function [WKO03] allows for a multiresolution representation
of the given mesh with the fast evaluation of the approxi-
mate distance. This method involves the binary space parti-
tioning in a way different from our approach. Another ap-
proximation method of the signed distance function for a
3D mesh interpolates between distance functions of its pla-
nar cross-section€fOSL9g. A pseudo-distance function is
used in the HybridTreeAGCAO06], which allows for polyg-
onal meshes to act as implicit surface primitives in various
free-form modelling operations.

Discrete approximation methods sample signed distance
or some other continuous function at the nodes of a reg-
ular volumetric grid or an octree gridFPRJO) [Ju04. A
physics-based level set method was usedzi@(Z to ap-
proximately reconstruct a given polygonal surface with-nor
mal constraints by a discrete scalar field sampled initially
with signed distance function values.

Continuous and discrete scalar field approximations of
polygonal meshes are useful for mesh repair, re-meshing,
rendering, object carving, animation, and metamorpho-
sis. However, errors inherent to approximation methods
are not acceptable in some critical applications such as
computer-aided manufacturing, material distribution mod
elling [BST04, and medical simulation$TJ0Q.

A polygonal mesh can be exactly represented by a zero-
level isosurface of the signed distance function from the
given point to the mesh polygons, which allows for offset-

f3 = f1 Va fo for the union;

f3 = f1 Aa T for the intersection, wheref; and f, are
defining functions of initial objects and/q, Aa are signs
of R-functions. One of the classes of R-functions is

f1 vy f2 = maxfy, o)
f1 Aq fo = min(fy, f5)

1)

These functions ar€? discontinuous at all points where
f1 = f». R-functions of another class:

fivo fo= f1+f2+\/ff+f22
fing fo= f1+f2—1/ff+f22

have C! discontinuity only at points where both arguments
are equal to zero. A recently proposed class of R-functions
called SARDF (Signed Approximate Real Distance Func-
tion) operations FPSMO0§ provides smooth approximation
of the min/max operations and therefore of the signed dis-
tance functions for complex objects constructed using set-
theoretic operations on primitives defined by distance func
tions. The distance property of a defining function is im-
portant in several applications such as rendering and shape
metamorphosis in computer graphics, aesthetic desigr; mod
elling material properties of objects in layered manufactu
ing, formulation of boundary conditions in engineeringlana
ysis, modelling offsets in computer-aided design, and oth-
ers BS04.

)

There are several approaches to constructing set-theoreti
representations of a given polyhedron. A convex polyhedron

ting, metamorphosis, smoothing, set operations and other is an intersection of all supporting halfspaces. A concave

object manipulationsHT93. The points of C! distance
function discontinuity form curves and surfaces in space

polyhedron has to be represented by set operations on spe-
cially selected convex polyhedra or its own supporting-half

that can cause appearance of unexpected edges in furthespaces. The cell partitior593 results in the representa-

operations such as blending, additional areas of stresses i
strength analysis, and other problems.

Another general approach to the exact conversion is to
describe a solid object with the given polygonal boundary
using set-theoretic (or simply set) operations on the sup-
porting halfspaces bounded by planes (straight lines in 2D)

passing through polygonal faces (edges in 2D) and on some
additional planar halfspaces in the general case. The theo-

retical basis for this approach is given by the Beynon theo-
rem [Bey74, which implies that a piecewise linear function

defining a polyhedron can be expressed by applying point-
wise min and max operations to a finite set of linear func-

tion of a concave polyhedron as union of its convex parts
(cells). These convex cells share common faces inside the
initial polyhedron. When R-functions are applied to get the
polyhedron’s defining function, “internal zeroes" appeiar a
the points of all shared internal faces. Similar effectsuocc
when applying the more general BRep-CSG conversion al-
gorithm to the polygonal mesiB[03.

In the convex decomposition of 2D polygoné/{V82]
[TM84], a polygon is represented by its convex hull with
some inner regions subtracted. These inner regions are pro-
cessed recursively in the same manner to generate lower
levels of the convex decomposition. The application of

tions. When a set-theoretic expression is obtained, one canmin/max or other R-functions to this representation leads t

formally define the scalar field by replacing the halfspaces
by their defining linear functions and using min/max (or
other R-functions as explained below) for the set-theoreti
operations (seegha07 for more details).

An object resulting from the set-theoretic operations has
the defining function expressed as follows:

the appearance of "external zeroes" at the edges of thedneste
convex hulls with the disadvantages discussed earlier.

The optimal set-theoretic expression of a 2D polygon
called a monotone formuleRva74 [Pet84 includes each
of the supporting halfplanes only once and does not include
any additional halfplane. An efficient algorithm for derigi



Figure 1: A simple polygon (green) constructed from three
planar halfspaces: A (grey) with the boundary line ST, B
(yellow and green left to the line ST), C (blue and green right
to the line ST).

this representation from an arbitrary given polygon was pro
posed in PGHS8§. The remarkable property of the mono-
tone formula is that it does not generate any internal or ex-
ternal zeroes when applying R-functions.

It is difficult to extend exact 2D conversion algorithms to
3D polyhedra. Unfortunately, an analogue of the monotone
formula for 3D polyhedra is not known. The convex decom-
position algorithms based on nested convex hulls can be ex-

tended to 3D space, but they do not converge for some types

of polyhedra KW92]. There is a need of a dimension inde-
pendent conversion algorithm, which can be applied diyectl
to polygons in 2D, polyhedra in 3D and to higher dimen-
sional polytopes.

3. Scalar fields based on BSP-trees

In this section we present our approach to the exact conver-
sion. We suppose that the initial polygonal object is a aose
manifold and contains no degenerate boundary elements. If
these requirements are not satisfied, the resulting sceldr fi
will not be an exact representation in the general case.

First, we consider a set-theoretic construction of a 2D

polygon as a representative of the general case problem. We

show in subsection 3.1 that the existing methods are not sat-
isfactory in terms of the above requirements to the scalar
field. Then, we propose an original set-theoretic solutmn t
the given 2D problem (section 3.2) and the proposed solu-
tion is applied in section 3.3 to devise a basic dimension in-
dependent algorithm and its optimizations for the exact con
version.

3.1. Construction of a scalar field for a simple 2D
polygon

As an introduction to our approach, let us consider the set-
theoretic construction of a simple polygon on a 2D plane
from three semi-infinite planar halfspaces as shown in Fig.
1. Three intersecting halfspaces a given as follows: A (shown
in grey in Fig. 1) with the boundary straight line ST, B (yel-
low and green left to the line ST) with the boundary DE-
FGHIJK, C (blue and green right to the line ST) with the
boundary LMNOPQR. The boundaries of B and C intersect
in the points S and T. The problem is to construct a defining
function f(x,y) for the simple polygon IJSMNOPQTEFGH
(shown in green in Figl) such that f (x,y) = 0 only at the
points of the polygon boundaryf (x,y) > 0 inside the poly-
gon, and f(x,y) < 0 outside the polygon. The function has
to be C! continuous everywhere except the polygon bound-
ary, where onIyC0 continuity is allowed. Note that no inter-
nal or external non-boundary points are allowed to have zero
function value or zero function gradient value.

The presented 2D problem can be simply solved by us-
ing a monotone formulaqva74 [Pet84 [DGHS88 men-
tioned above. However, as it was mentioned an extension of
the monotone formula construction algorithm to the case of
3D polyhedrons is problematic. Therefore, we are looking
for an alternative dimension independent solution.

Another approach is to apply a kind of cell partitioning
[BCOJ to the polygon as shown in Fig2. The boundaries
of two halfspaces AN B) (left in Fig. 2) and (—-ANC)
(middle) share the segment ST. After applying union to these
halfspaces we obtain the desired polygon (right in F2y.
The defining function constructed using the set-theoratic e
pression and R-functions is as follows:

fp = (fA Na fB) Va (— faAa fc) 3)

This defining function for the polygon takes zero values at
its boundaries. Additionally, the function takes zero eslu
at the internal segment ST, which becomes a set of points
with internal zeroes in respect to the polygon. The convex
decomposition approaches will generate external zeroes of
the function. Therefore, the cell partitioning and convex d
composition do not satisfy the requirements to the solution

3.2. Proposed solution

We propose to directly construct a set-theoretic exprassio
for the polygon in such way that the corresponding defining
function does not have internal or external zeroes.

The proposed steps of the set-theoretic construction of a
polygon with the defining function without non-boundary
zeroes are shown in Fig3. At each step, the union or in-
tersection operation is applied to planar regions, which do
not share boundary elements inside or outside the desired
polygon. this guarantees the defining function without in-
ternal and external zeros. The defining function consttlcte



(AN B) U(-ANC)

Figure 2: Cell partition of the polygon with internal zeroes
of the defining function at the points of the segment ST

(AuC)nB)
v (-ANC)

Figure 3: Set-theoretic construction of the polygon with a
defining function without non-boundary zero points.

using the set-theoretic expression shown in F3d.and R-
functions is as follows:

fs = ((faVa fc) Aa f8) Va (— faia fo) )

In total, the evaluation of the functiors requires apply-
ing four R-functions. This example was selected as a rep-
resentative of the general case and we can use the derived
defining function for any configuration involving two in-
tersecting halfspaces and a partitioning line (plane in. 3D)
However, there can be an important particular case, when
the number of the required R-functions is reduced from four
to two. If the boundary of the halfspace B does not intersect
the boundary of C in the area right to the halfplane A (no in-
tersection of the ray JK with the segments MN and NO in the
above example), then the polygon can be described by a sim-
ple set-theoretic expressiofAUC) N B. Symmetrically, if
the boundary of the halfspace C does not intersect the bound-
ary of B in the area of the halfplane A (no intersection of the
ray QR with the segments EF and FG), then the polygon can
be described by another expressigriAUB) NC.

3.3. BSP-tree construction and function evaluation

In this section we describe our algorithm for the scalar field
generation for the given polygonal object. The presented in
the previous section set-theoretic description and thkauisca
field generation for a 2D polygon reduces the problem to op-
erations on two parts of the polygon divided by a partitignin
straight line. If we select only supporting straight lineerg-
tinuations of polygon edges) for partitioning the polygon
and apply the described procedure to the both parts of the
polygon recursively, finally we can construct a set-theoret
expression involving only supporting halfplanes. The data
structure corresponding to such a recursive procedureis th
binary space partitioning tree (BSP-treEXIN8(]. Note that

the same procedure can be applied in 2D and 3D spaces
with very small modifications. There are two independent
parts in the scalar field generation based on BSP-trees: a pre
processing step of the BSP-tree construction and the func-
tion evaluation at the given point utilizing the construtte
BSP-tree. In this section we present an algorithm for the con
struction of BSP-tree in 3D case. The construction of BSP-
tree in the 2D case can be easily done in the similar way.

3.3.1. Basic BSP-tree construction

The construction of the BSP-tree is a recursive procedure
that contains the following main steps: selection of theebas
polygon according to some criteria, construction of the par
titioning plane containing the base polygon, division c th
rest of polygons into the "positive" and "negative" groups
based on the side of the partitioning plane, and recursive
processing of the "positive" set and the "negative" setuin o
approach we use the classic construction procedure of the
BSP-tree that has been formalized FKN80]. As BSP is a
dimension independent structure by its nature, the alyorit
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is given for the case of a 3D input polyhedron with planar by Make_Node, which storescut _pl ane, pos_tree,
polygons as its boundary faces, but can be directly applied andneg_t r ee.

in 2D with reformulation for polygon edges and partitioning

straight lines. Each partitioning plane contains at least 0 3.3.2. Function evaluation procedure

polygonal face. The algorithm for the BSP-tree construrctio

is as follows: The set-theoretic expression and the corresponding func-
tional expression for a single partitioning plane (stralgre
Bui I d_Tree (polygon_list pl){ in 2D) were given in Section 3.2. In general, one needs to
node current_node = Make_Node(); build a corresponding Constructive Solid Geometry (CSG)
p0 = Sel ect_Pol ygon(pl); tree for the given polygonal object and then to apply R-
current_node. cut_plane = Make_Pl ane(p0); functions in its nodes to evaluate the entire scalar fielduin
po: ygg:_: : z: Egs—: : z: B 8j case, the constructed BSP-tree helps evaluate the scidar fie
fgrygacﬁ pol ygog_k in ;;I ’except b0 procedL_JraIIy without building an equiyalent CSG-_tree. The
classify p[k] against cut_plane; evaluation procedure for the scalar field at the given point
if (pl[k] is on the positive side) starts from the root of the BSP-tree and applies the follow-
Add(pl [K], pos_list); ing functional expressions at the nodes recursively:
else if (pl[k] is on the negative side)
| Add(pl [K], neg_list); fa, pos tree=0,neg tree=0
el se _
Splft_Pongon(pl[k], cut_pl ane, f(x) = fa/a o, pos treez 0,neg tree—0

faVa fc, pos tree=0,neg tree£ 0

pos_parts, neg_parts); ((faVa fe) Aa fp) Vo (— fa Aa fc), otherwise

Add (pos_parts, pos_list);
Add (neg_parts, neg_list);

}
if (pos_list is not enpty)
current_node. pos_tree = where for the given nodefy is a signed distance to the
Buil d_Tree(pos_list); partitioning plane of the current noddy, is a defining func-
el se current_node. pos_tree = 0; tion for the positive subtree of the node, arfglis a defining
if (neg_list is not enpty) function for the negative subtree.
current_node. neg_tree =
Buil d_Tree(neg_list); L
el se current_node. neg_tree = O 3.3.3. Optimization of BSP-trees

return current_node; The selection of the base polygon and the partitioning plane

is the crucial part of the BSP-tree construction. Depend-
ing on criteria for the base polygon selection different BSP

trees can be obtained. In our work we use two different ap-
proaches: "naive" selection, where the polygon is randomly
selected from the polygon list, and "optimized" selection.

The optimization means using selection criteria that allow
for obtaining a tree with the following properties:

Here "pos" refers to positive and "neg" refers to negative.
The BSP-tree building proceduBi | d_Tr ee processes
the list pl of the input polygonal faces. At the first iteratio
this list is a list of all faces in the input mesh. A polygon
that is selected by th8el ect _Pol ygon function is the
base for a partitioning (cutting) plarsut _pl ane passing
through it. The selection criteria for the polygon are dis- e Minimization of polygon splitting operations to reduce
cussed in subsection 3.3.3. The equation for this plane is the total number of nodes and the number of operations
calculated by thévake_Pl ane procedure. The rest of the in the function evaluation
polygons from the input list are classified against the parti e Minimization of computational errors during the function
tioning plane into two groups depending on which side of the  evaluation and BSP-tree construction;
plane they are residing. We classify the polygon as positive e Balancing the BSP tree, i.e., minimization of difference

if for any vertex Px from this polygon the next inequality is between positive and negative list for the minimization of
satisfied: the depth of the tree.
(Px—Pg)®n >0, To provide the generation of BSP-trees with these proper-

where Py is a point on the base plane amds the normalto ~ ties, we propose to use the following criteria:
the plane. If some polygon intersects the partitioning @lan ~ For the given partitioning plané> and the list of polygons
itis splitinto two parts byspl i t _Pol ygon, each of which F containing the list of verticey:
is added to the respective list. The polygonpos_| i st ) _ )

. . . Ksmn(P)Astmn
and inneg_| i st are processed recursively by the proce-
dureBui | d_Tr ee to create positive and negative subtrees

of the created node. Finally a node of the BSP-tree is created Kaist(P) = o (distancey, P))

€V,v¢P

)



©

(d)

Figure 4: (a) 2D polygon and colour maps of the scalar
fields for its optimized BSP-tree with applied min/max func-
tion (b), R-functions of Eq. 2 (c), SARDF operations (d).

Kangle(P) = min (anglen¢,n
angle(P) feF’fgp( ene,n))
Nt
KeeelP) = Noom s Noack > Neront
reel % ,otherwise
front

where Niront IS @ number of faces that lie in the positive
half-space of the plan® and Nyackis @ number of faces that
lie in the negative half spaceyspit is a number of faces that
are split by the plane® and n is a normal toP. The mean-
ing of these criteria is the following: maximization d€gjs;
and Kangle @llows to avoid of degenerate faces after splitting
of the polygon, maximization oKtree allows to balance the
tree and minimization oKgpji allows to minimize the poly-
gon splitting operations.

We select the base polygon with the plaRewhere one
of the following conditions is satisfied:

e Kspit =0
e K(P) = Kiyist(P) * Kangle(P) * Ktree(P) is maximal

Fig. 4 shows examples of BSP-fields generated using an
optimized BSP-tree for a 2D polygon. The shown colour
maps illustrate the behaviour of different R-function®fr
left to right): min/max, R-functions with square roots (Eq.
2), and SARDF operations ("smooth min/max@HSMO08§.

(b)

Figure 5: Table model

@)

(b)
Figure 6: Dolphin model

R-functions defined by Eq. 2 generate @-continuous
field, but it does not well approximate the distance func-
tion. The SARDF type of R-functions generate a scalar field,
which both is C!-continuous and provides better approxi-
mation of the distance function. On the other hand, min/max
operations provide the highest speed of calculations and
SARDF operations are the slowest. Therefore, the choice of
R-functions entirely depends on the requirements of the par
ticular applications to the scalar field.

4. Experiments

We first discuss the results of our experiments with the ba-
sic and optimized BSP-tree construction algorithms. Then,
several operations employing the obtained scalar fields are
illustrated.

4.1. Exact conversion of polygonal objects with sharp
features and arbitrary topology

We did not make any assumption about objects geometry
features or its topology in the formulations of the BSP-tree
generation and the function evaluation algorithms. Here we
show how our method can be applied to objects that usually

Note that an exact representation of the polygon by a signed cannot be easily converted using existing methods. Figs.

scalar field is obtained in all cases. The min/max functions
do not provide a satisfactory field as it has lines with van-
ishing gradients of the defining function in the domain. The

6 and 7 illustrate the conversion of polygonal models with
sharp features. These figures include the original mesh and a
colour map of a cross-section of the functionally represegnt



Non-optimized Optimized
Model Vertices | Faces| Planes| Splittings | Set operationg Splittings | Set operations
Block with hole 72 144 20 118 80 0 31
Table 64 124 59 56 113 0 68
Dolphin 282 562 562 1503 3249 572 1775
Rocker arm (low poly) 470 940 933 3253 6221 976 2828
Chain 768 1536 384 118 80 0 31

Table 1: Tests of the BSP-tree optimization

(@ (b)

Figure 7: Block with hole model

(€Y

(b)

Figure 8: Chain model

model that we obtain from the initial model. The colour dis-
tribution for each model is set up only to illustrate the be-
haviour of the defining function, not to compare models with
each other. For example, for the "Block with hole" model,
which has a quite small number of polygons, the approxi-
mation methods based on RBF and MFBPPOK93[YTO02]
[OBA*03] can only produce some oval shapes for the block
and for the hole, which is unacceptable in most applications
Figures 7, 8 and 9 illustrate the conversion of polygonal

(@ (b)

Figure 9: Rocker arm model

Figure 10: Model with missing polygons and BSP field

models with non-zero genus and objects with disjoint com-
ponents.

The main feature of the monotone formula for a 2D poly-
gon is the minimal number (N-1) of set-theoretic operations
on N supporting halfspaces of the polygon. The main pur-
pose of the BSP-tree optimization described above is to min-
imize the number of nodes in the BSP-tree and thus the to-
tal number of set-theoretic operations. Table 1 shows the re
sults of testing the optimization. Here the number of planes
means the number of unique supporting halfspaces with pla-
nar boundaries (several mesh triangles can belong to one
plane). The main result is that we can achieve the drastic re-
duction of the number of polygon splitting operations. la th
case of low number of polygons the optimization leads to the
elimination of splitting and to the number of set-theorefe
erations very close to the number of planes (see "Block with
hole" and "Table"). For more complex models the number
of set-theoretic operations remains about three timegiarg
than the number of planes. Further research is necessary to
achieve the minimal number provided by the monotone for-
mula in 2D.

4.2. Conversion of incomplete meshes

As mentioned above, the input meshes should be closed
manifolds. However, if the mesh is not a closed manifold, the
BSP field can be created from the input mesh and in many
cases represent the model that topologically and geometri-
cally close to the original model. In figud® we show how

our method can be applied to a model with missing poly-
gons. From the original mesh (see figuréa) we remove



(@ (b)

Figure 13: Phases of motion of the functionally represented
polygonal rocker arm along a helical trajectory (a), and the
solid sweep (b).

problematic for solids with complex topology, shape vary-
ing sweep generators, and sweeps with self intersections.
We have applied the algorithm for sweeping by a moving
solid [SP9§ devised for function-based solid models. Its ad-
vantage is the generality of the approach resolving theebov
difficulties. Fig. 13 shows a sweep by the Rocker arm mod-
elwith non-zero genus moving along a helical trajectorye Th
Figure 12: Blend initial polygonal model was converted to a scalar field model
and the algorithm $P96 was applied to obtain the scalar
field defining the final sweep.

25% of triangles (red colour in the figure) and create BSP
field from the rest of triangles (green colour). The result- 4.5. Self-replicating
ing functionally represented model (see Higb) is visually
close to the original, however some artefacts appeared. It
means that for the objects with incomplete boundaries the al
gorithm is not guaranteed to produce the intuitively expect
exact representation.

Self-replicating of solid objects represented by polydona
meshes can easily be done if we have function representa-
tions of these objects. In this case we can apply any periodic
function to the function representation and obtain the aded
result. On figure14 we show how the Rabbit model can be
self-replicated by adding only several lines of code to the
4.3. Offsetting and blending of polygonal meshes original function.

For some models the BSP-field is close to the monotonous

field. In this case the BSP-field has distance properties and 5. Conclusions
we can use an offset operation with simple modification of
the function: F(x,y,z) —d > 0, where d is an offset value.
For example, in chain model (see Figu8 we have BSP-
field with distance properties for positive offset (s&db),
however we do not have distance properties for negative off-
set (see Figl1a). Unfortunately, at present we cannot guar-
antee the distance properties for the generated BSP-field.
This can be the base for the future research on the BSP-tree
optimization. If the distance property is provided, we also
can apply a blending operation to two converted polygonal
objects. Fig.12 shows a blending union with added material
between the Rabbit and the Table models. The existing problems of input polygonal meshes such as
self-intersections, topological inconsistencies, largmber

of holes, and triangles with very high aspect ratios infleenc
the quality of the obtained results. A robust conversion pro
Sweeping by a moving solid is one of the most impor- cedure requires special mesh pre-processing to provide an
tant operations in CAD. It can be applied in simulation of input mesh as a closed manifold. The function evaluation
numerically controlled machining, robot motion planning, procedure is time consuming. For some applications it can
and maintainability simulation. In general, the operati®n be reasonable to switch to continuous approximations of the

We proposed, implemented and tested a new dimension in-
dependent algorithm for the conversion of a polygonal ob-
ject to a representation by a signed scalar field without van-
ishing gradients and extra zero-level isosurfaces. The-alg
rithm provides an exact representation of polygonal object
including those with small number of vertices, sharp fea-
tures, missing polygons, non-zero genus, and severalmtisjo
components. Under exact representation we mean the theo-
retical model without taking into account the finite preaisi

of computing scalar field values.

4.4. Sweeping



Figure 14: Self-replicating of the Rabbit model: a) Orig-
inal model, b) Self-replicated model, c) Zoom of the self-
replicated model in the head area.

obtained scalar fields using B-splines or wavelets. However
it would mean loosing the exact representation of the initia
polygonal object.

The proposed algorithm is in some aspects superior in
comparison with the monotone set-theoretic formula avail-
able for 2D polygons. For example, the monotone formula
is not directly applicable to objects with non-zero genug an
with disjoint components. The ultimate goal of this reskarc
is to achieve for 3D polyhedra the property of the minimal
number of operations of the monotone formula. Although
the proposed optimizations of the basic algorithm have sig-
nificantly reduced the number of operations, the monotone
formula property has been achieved only for relatively sim-
ple objects with the low number of polygons. Further re-
search will be needed in this direction, for example, on the
detection of the special cases described in Section 3.2.
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