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Abstract. This study examines a selection of off-the-shelf forecasting
and forecast combination algorithms with a focus on assessing their prac-
tical relevance by drawing conclusions for non-expert users. Some of the
methods have only recently been introduced and have not been part in
comparative empirical evaluations before. Considering the advances of
forecasting techniques, this analysis addresses the question whether we
need human expertise for forecasting or whether the investigated methods
provide comparable performance.

1 Introduction

Time series forecasting has been an active area of research in the last decades.
Numerous competitions and studies have been carried out, three extensive and
recent ones are described in [1], [2] and [3]. Makridakis and Hibon present
the results of a forecasting competition with 3003 time series in [1]. They found
that complex models do not necessarily outperform simple ones, that forecasting
performance depends on the accuracy measure and the forecasting horizon used
and that combinations of forecasts outperform individual methods on average.
Stock and Watson conducted an extensive study using 215 U.S. macroeconomic
series in [2], comparing 49 linear and nonlinear forecasting methods with no
clear-cut winner. Teräsvirta et al. re-examine the nonlinear methods used in [2]
with different model parametrisation in [3], still with non-conclusive results.

In all of these studies, forecasting experts spent time and knowledge de-
signing and tuning methods with different degrees of complexity only to come
to the same conclusion: No single best method that works well on all time se-
ries can be identified. Consequently, in practical applications, one would need
forecasting experts to investigate specific time series and suggest a forecasting
model. However, the fact that experts with sufficient application-specific and
forecasting expertise are mostly rare and expensive leads to the question of how
much loss in forecast accuracy one might expect from failing to consult experts,
but using off-the-shelf methods instead. This work provides an empirical com-
parison of one-step-ahead and multi-step-ahead forecasting methods that might
be chosen by users who are not forecasting experts. Results are compared with
outcomes of a recent forecasting competition ([4]).

The paper is organised as follows: Sections two and three introduce individual
forecasting methods and forecast combinations investigated here. Section four
describes methodology and results of the empirical study, section five concludes.
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2 Forecasting

Eight time-series forecasting algorithms for one-step-ahead prediction have been
investigated. Where suitable, the algorithms have been implemented with fixed
parameters as well as using a grid search for parameter estimation.
Näıve forecast: The forecast is equal to the value of the last observation.
Moving average: The forecast is calculated as the arithmetic mean of the last k
observations. The size of the time window is either set to 12 in order to account
for yearly seasonality or determined by grid-searching k-values from 1 to 24 and
choosing the k with the lowest in-sample mean squared error.
Single exponential smoothing: This method is given by the formula ŷt+1 = αyt +
(1 − α)ŷt, where yt and ŷt denote the observation and the forecast at time t,
respectively. A grid search between 0 and 1 is employed to find the smoothing
parameter α. Alternatively, it is set to the middle of the parameter range, 0.5.
Taylor’s exponential smoothing: A modified dampened trend exponential smooth-
ing was introduced in [5]. A growth rate and the level of the time series are
estimated by exponential smoothing and then combined with a multiplicative
approach. All parameters are determined by a grid search or again set to 0.5.
Polynomial regression: This algorithm fits polynomials of the orders one to six
to the time series by regressing time series indices against time series values. The
polynomial with the lowest error on a validation set is chosen. Alternatively, a
polynomial of order four is used.
Theta-model: The Theta-model was introduced in [6] and applies a coefficient
θ directly to the second order differences of a time series, resulting in different
series with modified curvature. Adopting formulas from [7], two curves with
θ = 0 and θ = 2 are used and their forecasts combined by a simple average.
ARIMA: Autoregressive integrated moving average models (ARIMA) according
to [8] are models with an autoregressive and a moving average part, fitted to dif-
ferenced data. The original series as well as its first and second order differences
are submitted to the automatic ARMA selection process of a MATLAB toolbox
([9]), choosing the prediction with the lowest in-sample error. The same process
is implemented with undifferenced series only.
Neural network: A feedforward neural network with one hidden layer containing
12 neurons, trained by a backpropagation algorithm with momentum has been
implemented. Input variables are 12 lagged values of the time series. These
characteristics have been selected based on findings of an extensive review of
work using artificial neural networks for forecasting purposes by Zhang et al. in
[10]. Ten neural networks have been trained and their predictions averaged to
obtain the final forecasts.

The one-step-ahead forecasting methods have also been implemented in a
multi-step version. The regression approach and the ARIMA model natively
provide multi-step forecasting. All the other methods have been modified in two
different ways: The iterated approach feeds the last prediction back to the model
as an input for the next step. The direct approach trains n different models for
a n-step prediction, directly on the multi-step problem.
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3 Forecast Combination

Several forecasts are often available for the same problem, which leads to the
question whether or not some or all of the individual forecasts can be combined
to obtain a superior forecast. An impressive amount of work has been done in
this area, reviews and summaries can be found in [11], [12] and [13]. Five forecast
combination methods are investigated here and will be described in the following
paragraphs. For the one-step-ahead forecast, past performance is assessed using
the mean squared error of a rolling window of the twelve latest observations
and forecasts. For the multi-step forecast, past performance is calculated in a
validation period prior to the testing set.
Simple average: This method averages all available forecasts.
Simple average with trimming: This algorithm averages individual forecasts as
well, but only the best performing 80% of the models are taken into account.
Variance-based model: Weights for a linear combination of forecasts are deter-
mined using past forecasting performance ([14]).
Outperformance method: In [15], Bunn proposes to determine weights based on
the number of times a method performed best in the past.
Variance-based pooling, two and three clusters: Past performance is used to
group forecasts into two or three clusters by a k-means algorithm as suggested by
Aiolfi and Timmermann in [16]. Forecasts of the historically better performing
cluster are then averaged to obtain a final forecast.

4 Experiments

A data set consisting of 111 monthly empirical business time series with 52 to 126
observations has been obtained from the 2006/2007 Forecasting Competition for
Neural Networks and Computational Intelligence [4]. The task was to predict
18 future values. Since the testing set will not be published before summer
2008, the last 18 observations of the provided time series are used for an out-
of-sample error estimation. For the multi-step-ahead prediction, this reduction
of the original length did not leave sufficient observations for the parameter
estimation of the models in some cases, thus, only series with more than 60
values have been considered here.

The mean squared error (MSE) and the symmetric mean absolute percentage
error (SMAPE) have been used for evaluating methods. The MSE is used in the
majority of empirical studies, while the SMAPE was used for results of the
forecasting competition. It is given by SMAPE = 1

n

∑n
t=1

|yt−ŷt|
(yt+ŷt)/2 ∗ 100, where

yt is the observation and ŷt the forecast. In the following tables for out-of-
sample performances, some values are given with parentheses, indicating fixed
parameter values for the regression, moving average and exponential smoothing
methods, and lacking preprocessing for the ARIMA method. MSE values are
given relative to the performance of the näıve forecast.
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4.1 Results

Tables 1 and 2 give average out-of sample MSE and SMAPE values. For one-
step-ahead forecasting, the ARIMA model gives the best performance, followed
by Taylor’s and single exponential smoothing. Except for the simple average and
the outperformance model, combinations outperform individual models, with the
three cluster variance-based pooling clearly being the best method.

Method SMAPE MSE
Näıve forecast 18.7 (-) 1.0 (-)
Moving average 15.9 (17.6) 0.78 (1.2)
Single exp. smoothing 15.9 (17.4) 0.77 (0.89)
Taylor’s exp. smoothing 16.0 (17.4) 0.74 (0.88)
Regression 45.1 (217.7) 13.0 (95.4)
Theta model 16.1 (17.4) 0.79 (0.89)
ARIMA 15.6 (15.6) 0.68 (0.69)
Neural network 17.0 (-) 1.2 (-)
Simple average 15.6 (50.1) 0.87 (2.28)
Simple average with trimming 14.8 (15.7) 0.65 (0.70)
Variance-based weights 14.4 (15.4) 0.59 (0.64)
Outperformance model 17.2 (16.4) 13.9 (0.79)
Variance-based pooling, 2 clusters 14.2 (15.6) 0.61 (0.68)
Variance-based pooling, 3 clusters 13.8 (15.4) 0.59 (0.63)

Table 1: Average out-of-sample error values for one-step-ahead methods, num-
bers in parentheses present results for minimised tuning efforts, where applicable.

In general, direct approaches perform better than iterated approaches for
multi-step-ahead forecasting when parameters are estimated by grid search,
which can be explained by the accumulation of the errors in iterated meth-
ods. Neural networks, however, are an exception. Direct Taylor’s exponential
smoothing performs very well for both error measures, while an iterated neural
network performs best in terms of the SMAPE. The ARIMA method does per-
form well again, but does not outperform the two approaches mentioned before.
Simple average with and without trimming provides best results for forecast
combinations.

In the result tables, the numbers in parentheses represent results from meth-
ods where parameter tuning efforts were minimised. It is interesting to look
at the effect this approach has: While it always worsens performance for the
one-step-ahead models, the impact is less clear for the multi-step-ahead models.
For individual multi-step methods, some methods provide better performance
compared to the same models with parameters estimated by grid search. For
combinations, performance is even significantly improved for most of the cases,
again with the variance-based pooling using three clusters being the best per-
forming method. This result could be explained by parameter estimation errors
and overfitting issues being a bigger problem for multi-step-ahead models. The
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combination of forecasts then produces a more stable and robust forecast.
Since the testing set of the NN3 forecasting competition will only be pub-

lished in summer 2008, a comparison of the results presented here and the results
of the competition is based on the out-of-sample error estimation for our exper-
iments and the testing results from the competition published in [4]. This is
disadvantageous for the results of this study, as fewer observations are available
for model training. In the competition, the best method had an SMAPE of
15.18%. The best multi-step-ahead forecasting method, a directly trained neu-
ral network, obtains an SMAPE of 16.32%, which would result in rank four of
25. Variance-based pooling (three clusters) on methods with fixed parameters
performed well for both error measures and produces an SMAPE of 17.08%,
which would be ranked in the seventh place.

Method SMAPE MSE
Moving average (iterated) 20.26 (21.82) 1.83 (4.04)
Moving average (direct) 18.08 (18.09) 0.80 (0.80)
Single exp. smoothing (iterated) 22.54 (24.44) 0.86 (0.88)
Single exp. smoothing (direct) 20.07 (21.67) 0.82 (0.84)
Taylor’s exp. smoothing (iterated) 31.15 (21.74) 1.70 (0.84)
Taylor’s exp. smoothing (direct) 17.91 (23.93) 0.74 (0.86)
Theta model (iterated) 23.58 (23.63) 2.14 (1.96)
Theta model (direct) 22.05 (22.86) 2.09 (2.08)
Neural network (iterated) 16.32 (-) 0.90 (-)
Neural network (direct) 20.90 (-) 1.30 (-)
ARIMA 20.36 (19.21) 0.81 (0.81)
Regression 78.48 (524.1) 5.03 (1215)
Simple average 19.48 (88.33) 0.80 (9.45)
Simple average with trimming 19.52 (18.98) 0.76 (0.81)
Variance-based weights 24.52 (19.44) 1.11 (0.80)
Outperformance model 28.00 (25.69) 1.19 (1.60)
Variance-based pooling, 2 clusters 20.68 (17.98) 1.08 (0.78)
Variance-based pooling, 3 clusters 24.36 (17.08) 1.25 (0.75)

Table 2: Average out-of-sample error values for multi-step-ahead models. Num-
bers in parantheses present results with fixed parameters, where applicable.

5 Conclusions

This work empirically investigated simple approaches of forecasting time series
and included both traditional methods as well as some recently introduced ap-
proaches. Generally, results of previous studies have been confirmed: Complex
methods do not necessarily outperform simple ones and performance of methods
differs according to error measures and forecasting horizons used. Regarding
the performance of the methods, variance-based pooling with three clusters is
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the best choice for one-step-ahead forecasting. In the multi-step case, a neural
network with an iterative approach works best for the SMAPE measure, while
variance-based pooling with three clusters performs well on both error measures
when used on individual methods with fixed parameters.

Furthermore, it can be concluded that easy-to-use off-the-shelf algorithms
seem to provide a forecast accuracy that can very well compete with the per-
formance of methods experts used in the NN3 forecasting competition. For the
multi-step prediction problem, efforts to estimate parameters as opposed to just
picking one and to perform preprocessing of the time series even appeared to be
harmful in the experiments presented here.
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