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Abstract— The combination of forecasts is a well established
procedure for improving forecast performance and decreasing
the risk of selecting an inferior model out of an existing pool of
models. Work in this area mainly focuses on combining several
functionally different models, but some publications also deal
with combining forecasts with the same functional approach. In
the latter case, individual forecasts are generated by diversifying
one or more model parameters or, if dealing with hierarchical
data, by using forecasts from different levels. This work looks
at multi-dimensional data from airline industry, with the aim of
improving the forecast of cancellation rates for bookings. Three
different methods are employed for the generation of individual
forecasts.

Forecast combinations are usually implemented in a more or
less static structure, either including all available forecasts or
trimming a fixed percentage of the worst performing models.
For a big number of individual forecasts, this procedure can
become inefficient. In this paper, a dynamic approach of pooling
and trimming is applied to the generated forecasts for airline
cancellation data.

I. INTRODUCTION

Forecasting demand and cancellation rates for flights is a

crucial part in airline revenue management. The knowledge

of the point in time when it is beneficial to restrict bookings

in a lower-fare class to leave space for later booking high-

fare customers is of both economical and ecological interest,

producing a higher revenue for a high-demand flight and

fewer unoccupied seats in a low-demand one. In previous

work [1], the combination of forecasts and especially multi-

level combinations for seasonality forecasts as a part of

the demand prediction have proven very successful. Similar

improvements are hoped for by investigating cancellation

forecasts. There are two contributions in this work: Firstly,

different approaches to generating individual forecasts for

airline cancellation rates are investigated. Secondly, a dy-

namic combination approach being able to efficiently deal

with the great number of individual forecasts is applied.

Empirical evaluations for both of these aspects is presented.

All experiments were carried out using booking and cancella-

tion data for several flights obtained from Lufthansa Systems

Berlin GmbH.

A. Time series forecasting

Time series forecasting is a very active area of research. As

far as individual methods are concerned, approaches based
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on exponential smoothing are popular, yet simple to use

methods ([2], [3]). Statisticians and econometricians tend to

rely on complex ARIMA models and their derivatives ([4]).

The machine learning community mainly looks at neural

networks, either using Multi-Layer-Perceptrons with time-

lagged time series observations as inputs as, for example, in

[5] and [6], or recurrent networks with a memory, see, for

example, [7]. Extensive empirical studies have been carried

out, a very recent one being the M3 competition, which

investigated 3003 time series. Results have been published

in [3]. It seems, however, as if no method has ever proven

successful across various studies and time series. This is

mainly due to the fact that time series can have very diverse

characteristics and underlying data generation processes,

which makes it impossible to design a method working well

for all of them.

Traditionally, several functionally different approaches are

being applied to a problem before picking the one that is

most suitable. More recently however, other approaches than

just using different methods have been pursued in order to

try a number of different individual forecasts. One method

was proposed in [8] under the name of thick modelling. The

general idea here is to generate different models using the

same functional approach by varying one or more parameters

used in the building or forecasting process of the model. This

has shown to decrease model risk and improve forecasting

performance.

A second method can be used in applications where data

is available in a hierarchical structure. In airline industry,

booking and cancellation numbers can be aggregated on

different levels, for example for each or all points of sale

or days of the week. A recent example of a publication

investigating approaches to hierarchical forecasting is [9].

B. Forecast combination

Research in the area of combination of time series fore-

casts has a long track record, with the first related publication

dating back to 1969. The motivation comes from the fact

that all models of a real world data generation process are

likely to be misspecified and picking only one of the available

models is risky, especially if the data and consequently the

performance of models change over time. Forecast combina-

tion is a reliable method of decreasing model risk and aims

at improving forecast accuracy by exploiting the different

strengths of various models while also compensating their

weaknesses.

Usually, weighted linear combinations of forecasts with

equal weights or weights that are in some way based on past
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performance are employed ([10]), furthermore, regression

models can be used ([11], [10]). Literature in the area of

nonlinear forecast combination is quite sparse, which is

probably due to the lack of evidence of success as stated

in [10]. Quite recently, pooling algorithms have been investi-

gated, providing the possibility of dynamically trimming bad

forecasts from the ensemble and generating a more efficient

combination. Aiolfi and Timmermann proposed variance-

based pooling in [12], which was used in investigations done

in this work.

This paper looks at an approach to generate an extensive

pool of diverse individual forecasts by using parameter, level

and functional diversification. Both traditional combination

methods and a pooling approach extended to multi-level

forecasts are compared. Section II looks at the diversifica-

tions using the example of airline cancellation data, section

III describes the traditional combination algorithms and the

pooling approach that are compared in empirical experiments

in section IV. The last section concludes.

II. GENERATING DIVERSE INDIVIDUAL FORECASTS

It is a common agreement that individual forecasts in

a combination should differ from each other to produce a

combination result that improves upon individual forecasts.

In general, it is desirable that the forecasts to be combined

are as accurate as possible, while weaknesses one forecast

may have should preferably be compensated by the others.

The concept of encompassing is investigated in [13], stating

that one important characteristic of a superior individual

forecast is its encompassing of rival forecasts, i.e. it includes

all the information other models give. Forecasts that are

encompassed by others are redundant in a combination. A

recent application of this concept is given in [14].

This leads to the question of how to generate a pool of

diverse individual forecasts. The most natural way is using

methods with different functional approaches. Examinations

presented in [15] and [16] come to the conclusion that

both linear and nonlinear models should be present in a

forecast combination. In previous work published in [17], a

functionally diverse method pool consisting of methods like

moving average or exponential smoothing, ARIMA models

and neural networks has been investigated. However, the

airline booking and cancellation time series used in this

work can be characterised as being very short, prone to

problems related to predicting small numbers and subject

to strong time restrictions as many forecasts have to be

generated in a very short time. For these reasons, only

simple individual methods can be applied here; namely, three

different forecasts are used: single exponential smoothing,

Brown’s exponential smoothing and a regression approach.

These methods have proven to be successful in both forecast

accuracy and compliance with time restrictions.

Individual forecasts can furthermore be diversified by

thick modelling as presented in [8]. Airline cancellation

forecasting at Lufthansa Systems Berlin is based on rates,

restricting actual rates to certain confidence limits in both

the history building and the forecasting process. Preliminary

experiments have shown that manipulating some parameters

for confidence limit calculation, making them slimmer or

wider, has a positive effect if the resulting individual fore-

casts are combined. Four different sets of parameter values

are used to add a second dimension to the set of individual

forecasts.

The third and last diversification method can only be

applied to hierarchical data sets, who are however quite

common in service and retail industry. The history for

airline cancellation rate forecasts in this application is usually

built on the finest possible level, which means using data

collected per fareclass, day of week, point of sale and origin-

destination-itinerary. On this finest level, important character-

istics that are only visible when looking at the bigger picture,

i.e. a higher aggregation level, might be lost. On the other

hand, using a high level might omit characteristics specific

to certain parts of the data and lead to inferior forecasts

as well. Generation of forecasts based on different levels

and combining the resulting individual forecast saves the

forecaster from having to choose one single aggregation level

for the forecasting process. In this example, forecasts are

generated using data from the finest level as well as data

aggregated over days of week, fareclass and compartment.

III. COMBINING AND POOLING FORECASTS

Five different traditional forecast combination methods

have been evaluated in the empirical experiments. Most of

them have been introduced a long time ago, though still

many researchers rely on these basic methods. Traditional

combination methods include:

• Simple average : The available forecasts are averaged.

• Simple average with trimming: The forecasts are av-

eraged as well, but only the best 80% are taken into

account.

• Outperformance model: Weights for a linear combi-

nation are assigned based on the number of times a

forecast performed best in the past [18].

• Variance-based model: Weights are assigned in relation

to past error variance [19].

• Optimal model: Weights are calculated according to

[20], taking covariance information into account.

All of the methods have strengths and weaknesses as

reviewed in [21]. The simple average with and without

trimming has the reputation of being notoriously hard to

beat. The outperformance model, only rewarding methods

performing best at a given point of time, omits all relative

performances in its weight calculation. Only the optimal

model takes covariance information of the individual fore-

casts into account, which is regarded as unstable especially

if the number of forecasts is high in relation to the available

forecasts as stated in many publications, for example in [20]

and [12].

Relatively recently, Aiolfi and Timmermann introduced

conditional combination strategies in [12]. Following empi-

rical results saying that a good or bad performing forecast

is more likely to keep performing well or badly instead of
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changing its performance, they group a number of forecasts

that are diversified in functional approach and model para-

meters in two or three clusters using a k-means algorithm

on their past error variance. Forecasts are then pooled within

the groups before combining them with one of the following

strategies:

• selecting the previously best performing cluster and

averaging the forecasts contained in it,

• excluding the cluster that performs worse and averaging

forecasts from the other clusters,

• combining forecast averages of each of the clusters

using least squares regression or

• doing the same as in the previous approach but shrink

weights towards equal weights.

In this work, the second approach has been investigated

using three and four clusters. The combination method used

for obtaining one forecast per pool is the simple average with

trimming. Past experiments have shown that if the number

of forecasts in a cluster exceeds five, it is useful to dismiss

the worst performing ones.

IV. EMPIRICAL INVESTIGATION

The data set investigated comprises 63 weeks of

booking and cancellation data for 16 Origin-Destination-

Opportunities (ODOs), which represent the routing between

an origin and destination airport. Eleven of the flights take

place within Europe, five of them are intercontinental ones.

From the 63 available weeks, the first 28 are used as an

initial period for history building for the individual models.

The first 54 weeks are then used for learning forecast

combination weights. Yearly seasonality is not accounted for

in the cancellation rate forecasting process, as it is included

in the booking forecasts. Out-of-sample error calculation

takes place over the last ten weeks. The error measure used

is the mean absolute deviation of the forecasted and the

actual net booking numbers. The forecasted net bookings

are calculated by the difference of the booking forecast

and the absolute forecasted cancellation numbers in their

unconstrained version, which means that all influences re-

sulting from booking classes being closed for various reasons

have been removed. The booking forecast is obtained using

a single established method to assess the impact of the

cancellation rates only. Forecasts are made for final booking

and cancellation numbers on the finest possible level at 22

precedent data collection points (DCPs) of pre-defined time

spans before departure. Errors are aggregated over point of

sale and fareclass by simply adding them up to obtain a

high level view, which the given result numbers are based

on. Result tables in this section give numbers that represent

the relative improvement compared to the best individual

forecast for each of the DCPs the best individual forecast

being determined dynamically for each DCP. Three sets of

experiments are carried out, which are described in more

detail in the next sections.

A. Ordinary combinations

As mentioned in the introduction, the most widely used

combination types are combinations of functionally differ-

ent forecasts. The three different individual models, single

exponential smoothing, Brown’s exponential smoothing and

regression, have been combined with the five traditional

combination models presented in section III.

Fig. 1. Sketch of a combination of three forecasting methods.

A sketch of this procedure can be found in Figure 1. The

pooling approach has been omitted for this experiment as

well as the next one, as the number of three forecasts is too

small to be organised in three or four clusters.

As shown in Table I, each forecast combination fails to

outperform the best individual method on average. The most

stable method, the outperformance model, only improves

upon the best individual method at six out of the 22 data

collection points. The best case here is an improvement of

2.5%, while the worst case deteriorates performance by 4.2%.

The basic experiments show that the simple combination

of three functionally different individual forecasts does not

improve performance when applied to airline cancellation

forecasting. Reasons for that can be the small number of

individual forecasts and their correlation, as combinations do

generally not improve performance if input forecasts are too

similar. The next two experiments investigate other methods

of extending the pool and the diversity of available input

forecasts.

B. Adding parameter diversified forecasts

In this experiment, the pool of forecasts is generated as

depicted in Figure 2. Each of the three forecasting methods

is built in four different ways, by diversifying a parameter set

for calculating confidence limits in each of the forecasting

processes.

Table II shows small improvements compared to the

previous experiment, especially for the simple average with

trimming, the outperformance model and the variance-based
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TABLE I

RELATIVE IMPROVEMENT IN % OF FIVE FORECAST COMBINATION

MODELS (SIMPLE AVERAGE (AVG), SIMPLE AVERAGE WITH TRIMMING

(SAT), OUTPERFORMANCE MODEL (OUTP), VARIANCE-BASED (VAR),

OPTIMAL (OPT)) COMPARED TO THE BEST OF 3 INDIVIDUAL FORECASTS.

PERFORMANCE IS GIVEN FOR 22 DATA COLLECTION POINTS (DCP).

DCP AVG SAT OUTP VAR OPT

0 -12.413 -12.413 -0.964 -11.157 -8.447
1 -0.164 -0.164 -1.281 -0.297 -4.835
2 1.951 1.951 0.093 1.858 4.348
3 3.493 3.493 2.502 3.566 3.346
4 1.823 1.823 2.112 2.022 1.637
5 0.233 0.233 1.119 0.886 -0.265
6 -0.718 -0.718 0.311 -0.005 -4.002
7 -1.141 -1.141 0.025 -0.271 -6.185
8 -1.904 -1.904 -0.261 -0.873 -5.307
9 -3.049 -3.049 -1.146 -1.852 -9.838

10 -4.433 -4.433 -1.795 -2.912 -7.265
11 -4.954 -4.954 -1.954 -2.870 -6.559
12 -5.139 -5.139 -2.207 -2.960 -5.535
13 -5.073 -5.073 -2.214 -3.253 -4.577
14 -6.836 -6.836 -3.183 -4.952 -4.730
15 -7.601 -7.601 -3.213 -5.596 -5.364
16 -7.857 -7.857 -4.228 -6.740 -9.290
17 -6.550 -6.550 -3.808 -5.549 -8.606
18 -5.517 -5.517 -3.776 -4.972 -7.916
19 -4.660 -4.660 -3.548 -4.331 -8.733
20 -3.587 -3.587 -2.534 -3.264 -6.241
21 -1.977 -1.977 -1.621 -1.800 -8.783

average -3.458 -3.458 -1.435 -2.515 -5.143
minimum -12.413 -12.413 -4.228 -11.157 -9.838
maximum 3.493 3.493 2.502 3.566 4.348

approach. The first two of them are now able to outperform

the best individual method at 13 of the 22 data collection

points. Mainly due to a performance outlier at the first data

collection point however, the overall improvement is still

negative, if only slightly.

The results of this experiment show that all of the com-

bination methods were able to improve their average per-

formance and increase the number of data collection points

at which individual methods were outperformed. However,

methods still suffer from negative performance outliers,

especially at the early DCPs and there are still many cases

where performance gets worse.

C. Adding the level dimension

Encouraged by the small improvements using parameter

diversification, two more diversification dimensions are now

added, exploiting the hierarchical nature of the airline data

in this application. In addition to the functionally different

forecasts using diversified parameters for their forecasting

processes, forecasts are now also generated on the basis

of the data aggregated over day of week and compartment

as indicated in Figure 3. The sets of different parameters

have been reduced to two for this experiment to reduce

computational effort.

Because of the larger number of individual forecasts gene-

rated, the variance-based pooling approach described in sec-

tion III has been employed in addition to the five traditional

combination methods. Because of the non-deterministic na-

Fig. 2. Sketch of a combination of three forecasting methods, with
additionally diversifying model parameter values.

TABLE II

RELATIVE IMPROVEMENT IN % OF FIVE TRADITIONAL FORECAST

COMBINATION MODELS COMPARED TO THE BEST INDIVIDUAL METHOD.

ADDITIONAL INDIVIDUAL FORECASTS WERE GENERATED USING

PARAMETER DIVERSIFICATION.

DCP AVG SAT OUTP VAR OPT

0 -19.943 -12.200 -5.202 -18.501 -8.867
1 -2.050 -1.721 -3.086 -2.127 -4.441
2 -0.127 0.775 -1.877 -0.157 2.227
3 1.599 2.923 0.902 1.668 2.123
4 0.397 2.080 0.866 0.641 1.090
5 -0.360 1.923 0.859 0.497 -1.157
6 -0.834 1.321 0.334 -0.002 -1.975
7 -0.216 2.107 0.846 0.759 -4.042
8 0.250 2.656 2.214 1.239 -4.019
9 -0.853 1.503 1.290 0.264 -8.757

10 -1.528 1.313 1.253 0.079 -6.135
11 -1.392 2.012 1.699 0.719 -4.095
12 -1.284 1.257 1.244 0.421 -3.213
13 -1.588 1.083 1.034 0.117 -4.393
14 -2.496 0.401 0.893 -0.763 -3.788
15 -3.544 -1.014 0.689 -1.665 -4.459
16 -3.688 -2.422 -0.237 -2.549 -8.057
17 -3.338 -2.320 -0.663 -2.395 -7.725
18 -3.229 -2.044 -1.390 -2.622 -6.032
19 -2.957 -2.666 -1.757 -2.625 -14.953
20 -2.401 -1.594 -1.251 -2.088 -4.261
21 -1.326 -1.048 -0.944 -1.161 -7.593

average -2.314 -0.258 -0.104 -1.375 -4.660
minimum -19.943 -12.200 -5.202 -18.501 -14.953
maximum 1.599 2.923 2.214 1.668 2.227

ture of the clustering algorithm, eight structures are genera-

ted, picking the best one based on their pseudo-out-of-sample

performance.

Amazing improvements can be observed in the result table

III. The best traditional models, the outperformance and the

variance-based model, outperform the best individual method

at 21 out of 22 data collection points with improvements

of up to 33.5%. The outstanding method however is the

variance-based pooling, with three and with four clusters.
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Fig. 3. Sketch of a combination of three forecasting methods, with
additionally diversifying model parameters and learning levels.

Both methods achieve improvements of up to 37%, outper-

forming all other combination methods at every single data

collection point. Even in the worst case, improvements for

this method amount to 2%. On average, the performance of

both pooling methods is quite similar.

Exploiting information from higher data aggregation levels

to generate a bigger pool of individual models leads to sig-

nificant improvements in the cancellation forecast delivered

by traditional combining models, however, at few DCPs,

performance is still worse than that of the best individual

model. The extremely good results of the dynamic pooling

approach, which always outperforms individual forecasts in

this experiment, shows that the extension of this approach to

hierarchical data was successful.

V. ANALYSING VARIANCE-BASED POOLING

The variance-based pooling approach excluded a dynamic

number of forecasts from each generated structure. With

regards to the application, it is interesting to analyse how

often which individual methods got excluded. This is shown

in Table IV. For example, the first cell to the top left means,

that a forecast using exponential smoothing (m1), parameter

set one (p1) and a low aggregation level for both day of week

(l1) and compartment (c1) was not present in 48.2% of the

best structures.

One thing that becomes clear in the table is that forecasts

being calculated on the low levels are being excluded most

frequently (first column) while forecasts from the high levels

(fourth column) are included most of the times. This strongly

indicates that higher level forecasts perform better than the

low level ones. Furthermore, Brown’s exponential smoothing

(m2, second and fifth row) is excluded more frequently than

forecasts based on the other two methods, making it the

seemingly weakest individual method of the three.

Having a closer look at the generated result structures,

TABLE III

RELATIVE IMPROVEMENT IN % OF FIVE TRADITIONAL FORECAST

COMBINATION MODELS (SIMPLE AVERAGE (AVG), SIMPLE AVERAGE

WITH TRIMMING (SAT), OUTPERFORMANCE MODEL (OUTP),

VARIANCE-BASED (VAR), OPTIMAL (OPT)) AND THE VARIANCE-BASED

POOLING APPROACH USING 3 AND 4 CLUSTERS (VBP3/VBP4)

COMPARED TO THE BEST INDIVIDUAL METHOD. ADDITIONAL

INDIVIDUAL FORECASTS WERE GENERATED USING PARAMETER AND

LEVEL DIVERSIFICATION.

DCP AVG SAT OUTP VAR OPT VBP3 VBP4

0 -11.8 -7.4 -0.5 -10.8 -45.9 4.7 2.0
1 1.3 0.1 1.0 0.7 -18.3 6.8 6.3
2 4.8 4.1 4.8 3.7 -6.1 4.6 6.0
3 5.8 5.3 6.1 5.1 -5.1 7.7 5.8
4 2.7 2.2 2.8 2.3 -11.4 7.9 9.1
5 1.3 2.9 1.4 2.0 -9.7 5.0 5.3
6 3.0 4.3 2.1 3.4 -16.8 4.7 5.8
7 6.8 8.3 6.5 7.6 -16.2 9.3 8.9
8 10.8 12.8 10.9 12.5 -7.6 14.7 14.8
9 11.5 13.7 11.0 13.4 -13.4 14.6 15.1

10 13.5 16.5 15.3 16.8 4.7 19.3 19.5
11 17.3 20.4 19.9 21.6 8.4 23.9 24.2
12 17.7 21.0 21.0 23.5 8.1 24.9 25.0
13 17.6 21.0 22.0 24.8 12.0 26.6 26.9
14 16.1 20.3 23.7 28.0 17.7 32.4 32.4
15 13.0 18.2 24.7 28.5 -3.2 34.9 34.6
16 7.5 15.8 22.5 28.8 20.0 36.9 36.9
17 7.0 16.3 23.2 30.8 26.6 35.9 35.9
18 3.5 14.1 23.6 31.4 14.2 37.6 37.5
19 -4.2 8.6 22.7 31.4 26.3 37.5 36.9
20 -13.1 1.4 21.2 33.5 30.6 37.0 37.3
21 -49.3 -26.7 12.6 29.3 18.9 31.0 34.8

avg 3.8 8.8 13.6 16.7 1.5 20.8 21.0
min -49.3 -26.7 -0.5 -10.8 -45.9 4.6 2.0
max 17.7 21.0 24.7 33.5 30.6 37.6 37.5

TABLE IV

PERCENTAGE OF TIMES A FORECAST GOT EXCLUDED FROM A

COMBINATION.

l1c1 l1c2 l2c1 l2c2

p1m1 48.2 5.5 11.2 1.5
p1m2 72.5 27.0 26.4 12.9
p1m3 56.4 13.1 17.3 5.7
p2m1 64.0 8.4 16.7 2.1
p2m2 83.1 27.9 28.8 12.3
p2m3 71.8 15.5 22.3 5.6

one example structure for pooling with three clusters is

shown in Figure 4. The best performing cluster contains four

methods, which were combined using a simple average to

obtain the first input for the final combination. The second

cluster contains eight methods. Since this number exceeds

the maximum allowed number of five individual forecasts

per combination, the worst performing 3 ones are trimmed

before averaging the remaining five to obtain the second

input for the final combination. The third cluster contains

the twelve worst performing forecast of the method pool and

is discarded completely; the remaining two pooled forecasts

are averaged.

In the experimental results presented in the previous sec-

tion, it can clearly be seen that adding forecasts diversified

by the level of their calculation to the pool of individual
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Fig. 4. One generated pooling structure, using three clusters. The worst
performing cluster is discarded.

forecasts is very beneficial. However, it can also be seen

that the variance-based pooling significantly outperforms the

other combination approaches. Two reasons for this success

can be given. Firstly, as opposed to all other methods, the

number of forecasts included in the combination is deter-

mined dynamically for each problem by generating clusters

and omitting the worst one. If using the simple average with

trimming, the cutoff point is arbitrary and could exclude a

method with a performance very similar to one retained for

the combination. The other methods try to make use of all

available forecasts, regardless of how bad they might be.

The average number of forecasts included in a combination

based on variance-based pooling is 17.4, ranging from 15.5 to

19.0 for different flights. Simple average with 80% trimming

would statically include 19.2 methods in a combination.

The second reason for the superior performance can be at-

tributed to inner cluster weights. In the three-cluster-scenario,

the pooled forecasts of the two best performing clusters

would get weights of 1

2
each, in the four-cluster-scenario,

the three best performing clusters would get weights of 1

3
.

This is not related to the number of methods in each cluster,

which can range from one to five in the algorithm used here.

The weight assigned to a cluster is then distributed evenly,

meaning it has to be divided by the number of forecasts in

the cluster. Considering the example above, each of the nine

forecasts included in the combination would get a weight of
1

9
in a simple average combination. With the variance-based

pooling however, the forecasts of the first cluster would get

increased weights of 1

8
each, while the five forecasts of the

second cluster would decrease their weights to 1

10
each as

depicted in Figure 5.

Keeping in mind that one cluster contains forecasts with

similar performance and information, a bigger group of

forecasts agreeing with each other is consequently punished

and looses weight in favour of forecasts grouped in smaller

clusters. In this way, the pooling approach can ensure a

better balance in the combination by taking interaction and

similarity of forecasts into account when calculating weights.

Fig. 5. Combination weights for a generated pooling structure using three
clusters, left: simple average, right: variance-based pooling.

VI. CONCLUSION

This work investigated time series forecasting and forecast

combinations applied to airline cancellation data. Experi-

ments combining three different methods did not improve

forecasting performance, on the contrary, performance gets

worse compared to the best individual forecast. Therefore,

diversification procedures for generating a larger pool of

input forecasts have been investigated. Generating more fore-

casts by parameter diversification slightly improved results,

still without a robust performance gain. However, additional

generation of forecasts on different aggregation levels of

the data before combining resulted in a significant reliable

performance gain; in the best case improvements of up

to 37% compared to the best individual forecast could be

achieved.

In general, it was shown that parameter and level diversi-

fication procedures can make forecast combinations success-

ful, even if the basic combination of functionally different

forecasts is not very promising due to high correlation

values and a small number of applicable methods. It was

furthermore shown that the variance-based pooling approach

proposed by Aiolfi and Timmermann can successfully be

extended to using input forecasts from multiple levels and

thus is an astonishingly useful method when dealing with

hierarchical data. Reasons for the superior performance have

been discussed and are related to better exploiting disagree-

ment of individual forecasts and the dynamic number of

forecasts included in a combination structure.

The investigation of the variance-based pooling approach

was not exhaustive, more numbers of clusters as well as

other outer- and inner-cluster combination methods could

still be evaluated. Future work will also look at dynamically

evolving combination structures for cancellation forecasting,

as previously done for seasonality forecasts ([22]).
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