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Abstract

The existing approaches support Minkowski sums for the bound-
ary, set-theoretic and ray representations of solids. In this paper we
consider the Minkowski sum operation in the context of geometric
modeling using real functions. The problem is to find a real func-
tion f5(X) for the Minkowski sum of two objects defined by the
inequalities f1(X) > 0and f2(X) > 0. We represent the Minkowski
sum as composition of other operations: the Cartesian product, re-
sulting in a higher dimensional object, and a mapping to the orig-
inal space. The Cartesian product is realized as an intersection in
the higher-dimensional space, using an R-function. The mapping
projects the resulting object along n coordinate axes, where n is the
dimension of the original space. We discuss the properties of the
resulting function and the problems of analytic and numeric im-
plementation, especially for the projection operation. Finally, we
apply Minkowski sums to implement offsetting and metamorphosis
between set-theoretic solids with curvilinear boundaries.

1 Introduction

This paper deals with the Minkowski sum operation in solid modeling.
The Minkowski sum of two geometric objects results from vector sums
of all pairs of radius vectors taken from initial objects. It also can be
viewed as the union of instances of an object, when placed at all positions
corresponding to the points of another object. Minkowski sums are used
in solid modeling to generate offsets [1], blends [2], and sweeps [3], to
interpolate polyhedral shapes [4] and skeleton-based “implicit” surfaces
[5], and to avoid collisions [6,7]. In a solid modeler, this operation has to
result in a valid model, which again can be used as an operand for further
geometric transformations and analysis.

We consider the Minkowski sum in the context of geometric modeling
using real functions of several variables. The function representation (or
F-rep) defines a geometric object as the set of all points that satisfy the
inequality F'(X) > 0 where F'is a single real continuous function of several
variables. We do not require that the defining function F' be polynomial or
of any other specific type. The function F' may be defined by an analytical
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expression, or with a function evaluation algorithm, or with scattered data
and an appropriate interpolation procedure. This representation combines
many different models, such as the classic “implicits”, skeleton based “im-
plicits”, set-theoretic solids, and volumetric and procedural models [8],[9].
Set-theoretic operations are closed on this representation with the use of
R-functions, that is, C’*-continuous functions introduced by Rvachev [10]
(see a survey in [11]). Many geometric operations are also closed on F-rep,
including blending, offsetting, Cartesian products, sweeping and other (see
[8] and [12] for details). These operations generate new real continuous
defining functions and provide the closure property of the representation.

The existing approaches support Minkowski sums for the boundary,
set-theoretic and ray representations of solids. In this paper we consider
the problem of construction of a real continuous function defining the
Minkowski sum of two F-rep solids. We reduce the Minkowski sum to sim-
pler operations, the Cartesian product, resulting in a higher-dimensional
object, and a mapping to the original space. Then we describe these
operations using real functions of several variables. Finally, we discuss
the implementation problems, and give some examples. Thus, this paper
provides a theoretical solution to the problem. Practical 3D applications
of the proposed technique are time consuming and usually require use of
parallel or distributed processing.

2 Other works

While Minkowski sums are quite common in image processing, the number
of publications on this subject in geometric modeling is rather limited.
The main obstacle to the use of this operation are mathematical and
computational problems in its implementation for various representations.

Ghosh [3] provides a general framework for Minkowski operations (sums
and differences) for boundary-represented 2D and 3D objects. He de-
scribes an algorithm for computation of the resulting boundary for sums
of two polyhedral objects. A further generalization is done for two planar
objects whose boundaries are smooth curves. For the 3D case, the author
considers the example of the Minkowski sum of a space curve and a ball.
The result is a parametric equation for the swept solid boundary.

In the set-theoretic (or CSG) representation, it is important to provide
the point membership classification when introducing a new operation.
Parry-Barwick and Bowyer [13] proposed to use for this a multidimensional
space. Two operands of the Minkowski sum (a template and a model) span
different coordinates in this space. The translational sweep of the template
intersects the model considered as a set in the translation dimensions.
The Minkowski sum is given by the projection of the intersection into
the original space; the projection is computed by a recursive division of
the multidimensional space with pruning of the CSG tree that defines
the intersection of the sweep and the model. The authors mention that
applications of this operation are quite time consuming. In our work,
this approach provides a basis for a formal description of the geometric
solution and its further functional formulation.
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Menon et al. [7] propose to use the definition of the Minkowski sum
as the set-theoretic union of instances of one solid translated by radius-
vectors of the points of another solid. The approximation of this union
is implemented with the ray representation and with a finite number of
instances.

An application of Minkowski sums to metamorphosis of skeleton-based
implicit surfaces is presented in [5]. The skeletons are convex polygo-
nal shapes of various dimensions. The Minkowski sum is applied to the
corresponding elements of the skeletons of the operands, resulting in an
intermediate skeleton that generates a new implicit surface.

The overview shows that no general technique is available for imple-
menting Minkowski sums of solids defined by arbitrary real functions. In
the next section we give the formulation of the problem and describe the
proposed solution.

3 Problem statement and proposed solu-
tion

For two point sets G; and G5, the Minkowski sum (3 is defined as follows:
Gs=G1+Gy={ps:ps=p1+p2, pr€G1, ppeGa}, (3.1)

where py, pe, p3 are points, and p), ps, s are their radius vectors. This
definition depends on the choice of the origin of the radius-vectors; it is
easy to see, however, that a change of the origin leads only to a parallel
translation of the resulting sum.

Suppose the objects (G; and (75 are defined by the inequalities f;(X) >
0 and f2(X) > 0, where f; and f; are continuous real functions of a point
X. The problem is to find the function f; defining the Minkowski sum
Gs.

3.1 Geometric formulation

Let us start with the objects in two-dimensional space R* for the purposes
of exposition. A generalization for higher dimensions is straightforward.
We propose a formal description of the geometric solution, which cor-
responds to the set-theoretic formulation given in [13]. The geometric
solution consists of the following steps:

1. Represent the objects Gy and G in different spaces: G4 in R? with
coordinates (zy,y;), and Gy in R2 with coordinates (g, y2).

2. The set of all pairs of points of GG; and (G5 is the Cartesian product

GNg = (41 x Gy of (1 and Gy, which is a subset of the product R* =
RI x R3, the Euclidean space with the coordinates (xy,y1, 2, y2).

3. Let R2 be a two-dimensional Euclidean space with coordinates (xq, yo).
Define a mapping 7 : R* — R2 by the rule: if X; € R} and
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X, € R}, X; has the coordinates (z1,y;) and X, has the coordi-
nates (x2,yz2), then T'(Xy, X3) is the point in R2 with the coordinates
(x1+ 22,51 + y2).

4. By the definition of the Minkowski sum, the image G5 of G5 under
the mapping T is the Minkowski sum of GGy and Gf.

The above procedure can be considered as a geometric formulation of
the Minkowski sum operation. We now describe its main steps in terms
of real functions.

3.2 Functional formulation

Note that .
G3 = Gl X G2 = (Gl X Rg) N (R% X Gg)

Suppose (i is defined by a function fi(x1,y1), and G5 is defined
by f2(w2,y2). Then the products G; x R3 and R} x (5 are defined in
R* by the functions Fi(z1,y1,72,y2) and Fy(x1,y1,72,92) on R* such
that Fi(z1,y1,22,92) = fila,y1) and Fa(zi,y1,22,92) = fo(2a, y2) for
all (21, y1,22,y2) € R™. .

To obtain a function F3 that defines the intersection G3, we need to
apply to the functions Fy and F, an R-funclion for the intersection op-
eration. Thus, the function F3 that defines G35 = ;1 x G5 in R* has the
form:

Fa(x1,y1, %2, y2) = Fi(xn, i, w2, y2) & Fy (20, 41, 22, y2) (3.2)
where & stands for an R-function for intersection. Recall that R-functions
are C'’*-continuous real functions defining set-theoretic operations (see [10]
and surveys in [8,11]). The most practically useful R-function for the
intersection appears to be

Fl&F2:F1+F2—\/F12—|—F22 (33)

Note that this function has Cl-discontinuity only at the points where
Fy = Fy, = 0. There are C*-continuous R-functions for any natural k
as well. In Equation 3.2, we define the Cartesian product with an R-
intersection of the initial functions as proposed in [8].

Let us now outline how to obtain a function f3 that defines the set G5

in R2 from the function Fj that defines Gs in RY. We have Gy = T(ég),
hence a point Xy € RZ belongs to G5 if and only if the preimage T~*(Xj)

of X, under T' meets the set (5. Since a point of R* belongs to (5 if and
only if the value of Fj at this point is nonnegative, a point Xy belongs to

Gs if and only if
max{ Fg(Xl,XQ) : T(Xl,XQ) == Xo} Z 0,
so we can put

f3(Xo) = maxq{ F5( X1, X2) : T(X1, X2) = Xo }. (3.4)
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Note that the mapping T is linear; it follows that the preimages of
points under 7' are linear submanifolds in R* which are translations of
T70) = {(z1,y1, %2, 52) ce1 + 41 = 0,29+ y2 =0 }.

Let XO = T(X17X2)7 XO = (xovyO)v Xl = (xlvyl) and X2 = (x27y2)-
Then by the definition of T', 9 = x¢ — x; and ys = yo — y;; substituting
this in Equation 3.2, we get

F3(51?17 Y1, %0 — T1, Yo — yl)
= F1(51?17y1751?0 — Z1,Y0 — yl)&FZ(xlvylva — Z1,Y0 — y1)-
o , (33)
Define the function F5 on R* = R xR by the rule: Fy(xo,yo, 1,41) =
B2y, y1, 20 — T1, Yo — y1) and put Gz = { (w0, Y0, 71,41) € R 37(51?1751?0 -
T1,Y1, Yo — y1) € Gs }. It follows from the above argument that F3 defines
(3 in RY; furthermore, (3 is the projection of G to the factor R3 of the

product R* = R2 x R2. In this formulation, the Equation 3.4 takes the
form

f3(x0, yo) = max{ Fs(zo, yo, 71, 1) : (w1,11) € R }. (3.6)

Given (29, yo), we have the following necessary conditions for a point
(20, Yo, 1, y1) Where the maximum in the right side is attained:

OFy
x4
OFy
Iy

(0, Y0, T1,y1) =0
(3.7)

(%0, Y0, T1,y1) = 0.

Solving the last two equations in terms of x; and y;, we can find the
required maximum value in the right side of Equation 3.6, and thus derive
the required function f5(xo,y0). Of course, the solutions of the equations
are generally not unique, and not all of them correspond to a maximum,
but in a generic case the number of solutions is finite, so we only have to
evaluate F3 at these solutions. Note also that we do not really need to find
the maximum value of F3 here; if F5 is nonnegative at one of these points,
that suffices. To establish that a point is not in the projection, however,
we need to check that the values of F3 at all solutions of the system are
negative. It should be noted also that checking the values of F3 at several
points appears to be unavoidable, whatever implementation is used; this
is suggested by the fact that the projections (and the Minkowski sums)
of smooth objects may have singularities, which implies superposition of
“maximum” type of several smooth functions.

3.3 Properties of the resulting function

1. The non-compactness of the real line may cause some problems with
the application of the above “max-approach” to finding the projection of
Gis. For example, strictly speaking, the maximum in the right side of
Equation 3.6 may be never attained for some points (zq, yo) € R2, and we
have to use supremum rather than maximum in the definition of f5 (note
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however that this never occurs if (o, yo) lies in G or its sufficiently small
neighborhood). Of course, this never happens if instead of considering
functions on the whole R? we only want to define them on a sufficiently
big rectangle containing all figures in question (which is practically always
the case). If we still want to have the functions defined on the whole real
plane, we need either to take care of the behavior of the functions f; and
f2 at the infinity (for example, construct them in such a way that all
level lines are compact), or construct f5 in a sufficiently big rectangle and
extend it to a function on the whole plain that is negative outside this
rectangle; or, finally, take the maximum over a sufficiently big cell in R*
that contains (5 (in this case, in addition to checking the critical points,
we may need to consider separately the points of the boundary of this
cell).

2. It is easy to deduce from known facts in general topology (see, e.g.,
3.12.20 in [14]) that if all level lines of the functions f; and f; are compact,
then the function f5 is continuous (and in any case, it is continuous in a
neighborhood of G3). It is, however, well-known from the theory of bifur-
cations that generally, the functlon f3 obtained from a smooth function F}
as in Equation 3.6 need not be smooth at the points (2o, yo) where Fs at-
tains the same maximum value at two or more different values of (1, y1).
It is not clear under what conditions on f; and f; we may guarantee that
f3 is smooth; obviously, these conditions must also depend on the choice
of the R-function &.

The approach based on 3.6 is practical in the case of a sufficiently
simple analytic functional representations, which allow to solve the equa-
tions efficiently. Also, an estimate of the error of the calculation of the
Minkowski sum in this approach depends on the choice of the functions
f1 and f5. Some other approaches are presented in the next section.

4 Implementation and examples

In some simple cases it is possible to derive analytically the function that
defines the projection. For example for two unit balls defined by the
fUHCUOHS i@y, z) = 1 —af —yi — 2 and fowz,y2,22) = 1 — 25— y3 —
23, the Minkowski sum is defined, in accordance with Equation 3.5 and
Equation 3.3, as follows

fS(l’anano) = max{ fl(xlvylvzl) + f2(51?0 — T1,Y%0 — Y1,%0 — 21)

—\/ff(l'layhﬁ) + fi(zo — 21,90 — Y120 — 21) t (x1,y1,21) € R L
(4.1)
Applying Equation 3.7 extended to three variables (a1, y1,21), one can
derive the following solution:

f3($07y0720) =4- x?) - yg - 237

which is a correct result, representing the ball of radius 2.
In general case, a numerical projection algorithm is required.
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The simplest algorithm is based on using for deciding whether a given
point (2, yo) is in the projection of a 4-dimensional body P a uniform
two-dimensional grid with the step ¢ (consisting of the points of the form
(20, Y0, 1 + ne,y1 + me) in an appropiate boundmg box, and testing the
points of the grld for belongmg to P; (o, yo) is in the pI’OJeCtIOH if at least
one of the points of the grid is in P. To give an estimate of the error in
calculation of the Minkowski sum of two figures A and B using this ap-
proach, note first that, assuming the absolute precision of the calculation
of the functions, we never decide that a point belongs to the sum if in fact
it does not, and on the other hand, if £/2-neighbourhoods of points ¢ and
b lie respectively in A and B, then the £/2-neighbourhood of the point
(a,b) is in P, and hence at least one point of the e-grid meets P, so the
point @ + b is detected as belonging to the sum of A and B. Denote by As
(Bs), 6 > 0 the set of all points a of A (of B) with the property that the
d-neighbourhood of a is in A (respectively, B); we then get the following
inclusion for the figure M calculated using the e-grid algorithm:

As+BsC M C A+ B.
where § = ?5.

Note that this estimate only depends on A and B, and not on the
choice of the representing functions; various modifications of this projec-
tion algorithm, such as using quadratic approximations as described below
obviously improve the accuracy, but how much exactly cannot be esti-
mated without additional information about the representing functions.
Note also that As may be described as the result of removal from A of a
d-neighborhood of the boundary of A. The above estimate remains valid

NG

in the case of calculation of the sum of sets of dimension n, with § = .

In [15] some algorithms for projection along a one-dimensional sub-
space are described. The algorithm based on the union of maximal cross-
sections has shown the best accuracy and stability. This approximate
projection applies set-theoretic union to the interpolation terms between
adjacent cross-sections taken with a regular step:

Lo(Xn) = (fuV )V ) V) VvV AN, (42)

where f; defines the projection from E™ onto E™~! along z;, f1 defines the
initial object, IV is the number of cross-sections, V stands for an R-function
for union, and

fl*j = fl(l'l,l'g, sy i1, C;,wi_l, . .,l’n). (43)

Here the constant C]* = (; + Codx; defines the maximum of the function

f1(X,) between three cross-sections, where C; is the value of x; at the j-th
grid node with the grid step dz;. The parameter Cy is calculated using
quadratic interpolation:

Oy = 1 Jrge — hy (4.4)

2 fujre =21+ fij
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(a) Initial shape (b) Minkowski sum with a disk, R = 0.6

FIGURE 1. Offsetting operation with a Minkowski sum

Note that if Co < 0, then f7; = fi;, and if Co > 2, then [ = fi 12
This algorithm can be applied to calculation of the Minkowski sums of
one-dimensional objects. For the case of 2D objects, we need the pro-
jection along a two-dimensional subspace, which reduces to consecutive
projections along one-dimensional subspaces. We apply here the union
of maximal cross-sections along one-dimensional subspaces that span the
two-dimensional subspace, in two nested loops.

This algorithm was used to generate the following examples. Fig. 1
shows a traditional application of the Minkowski sum to generate an offset
solid [1]. A constant-radius offset of a 2D, R-functions based set-theoretic
solid, is generated by taking the Minkowski sum with a disk. As shown
in [4], Minkowski sums can also be effectively applied to define solid-
interpolating deformations (or metamorphosis). Figs. 2 and 3 illustrate a
metamorphosis process based on the following Minkowski sum:

falesyt) = fi (T ) 0 £ (522). (4.5

where f; and f; are the defining functions of the initial and the final
shapes, 0 < t < 1 is the parameter of metamorphosis, and & stands for
the functionally defined Minkowski sum proposed above. Fig. 2 shows
the initial (¢ = 0) and final (¢ = 1) 2D shapes constructed using set-
theoretic and blending operations based on R-functions. Fig. 3 shows
the intermediate steps of the metamorphosis defined by Equation 4.5. A
survey on shape metamorphosis can be found in [16]. Usually methods
of metamorphosis based on the boundary representation are sensitive to
the topological differences between two given shapes. Although, function-
based models of arbitrary topology can be transformed by a simple linear
interpolation between defining functions, there is practically no control
of the metamorphosis process. Here, we provided a different approach
based on the Minkowski sum. Note that this definition is applicable to
F-rep objects of arbitrary topology and dimension, including constructive
solids with curvilinear boundaries. The issues of the metamorphosis pro-
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(a) t=0: Silly boy (b) t=1: Wise pelican

FiGurge 2. Initial and final shapes for metamorphosis

(a) t=0.1 (b) t=0.2 (c) t=0.3 (d) t=0.4

(e) t=0.5 (f) t=0.7 (g) t=0.8 (h) £=0.9

FIGURE 3. Metamorphosis with Minkowski sums: intermediate shapes
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cess control using the time-dependent weighting functions require further
investigation.

5 Conclusion

In this paper we consider the Minkowski sum of two point sets defined by
continuous real functions. The geometric formulation of the Minkowski
sum and the corresponding functional definition are proposed. This allows
to apply the Minkowski sum to classic implicits, skeleton-based implic-
its, and constructive solids defined with set-theoretic, blending and other
operations based on R-functions. In particular, this approach helps to
solve the quite difficult problem of metamorphosis between two construc-
tive solids with curvilinear boundaries. Minkowski difference and other
Minkowski-type operations can be treated in a similar way.

The numerical algorithm applied for the projection is a grid search
type algorithm with some additional one-dimensional interpolation. More
effective global extremum search algorithms should be considered. Imple-
mentation of Minkowski sums for 3D objects will require parallel or dis-
tributed processing; we are planning to use networked workstations with
the PVM system. Because the numerical procedure is quite time con-
suming, the procedural definition is not dlrectly applicable in a modern
practical modeling system. It seems promising to combine this procedural
approach with the voxel-based output of the final Minkowski sum.
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