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Introduction

There are two main sources of
uncertainty and errors in water
distribution system simulations. The
first one is associated with the
modelling of physical elements and
represents static (or slowly changing)
inaccuracy of the network model. The
second source of uncertainty has a
dynamic nature and represents
inaccurate predictions of consumptions
and measurement noise. While, for
instance, the pipes’ C factors change
gradually over years or decades,
consumptions and flows in the network
change from minute to minute and are
not well characterised as statistical
processes (the difficulty of deriving and
validating a probability density function
for water use at some location at some
particular moment).

Model inaccuracy

A considerable amount of research
focused on improving the network
model accuracy has been accomplished
and reported by many researchers in the
last two decades. The research has
identified that one of the main sources
of inaccuracy of network model is the
simplified representation of various
hydraulic elements. Consequently, the
topics of network model calibration and
simplification (skeletonization) and
their effect on the quality of the results
produced with these models have been

studied at great length10,16,17,21. The
conclusion appears to be that if enough
effort is put into refining the network
models, any practical degree of
accuracy can be attained.

Consumption predictions and
measurement uncertainty

The uncertainty associated with both
the consumption predictions and the
measurements has a more dynamic
nature and because of that it is
considerably more difficult to quantify.
Often, when considering water network
operations, researchers had tried to
avoid tackling the problem by assuming
that this data is known exactly.
However, it is now recognised that
ignoring these uncertainties leads to
unrealistic simulation results.

Although the predictions of total
water consumptions in large systems
can be accurate to several percent of the

load4,9,20, the equivalent predictions at a
nodal level, for a small number of
consumers, are frequently 50- 100- or
more% in error. Attempts to model
nodal consumptions by categorising the
types of consumptions and combining
them to represent the overall nodal

load21,24 have been successful in that
they enhanced the understanding of the
origins of the uncertainty, but the
assessment of the impact of this
uncertainty on the performance of water
system models has received only little

attention in the literature2,3. 

State estimation

The calculation of all flows and
pressures in a water distribution system
can be accomplished by formulating
and solving the mass and/or energy
conservation equations as implied by
the measurements in the system. Since
the flows and pressures are related
through the equations describing the
hydraulic elements, it is necessary to

calculate either flows or pressures but
not both. In either case however it is
necessary that there are as many
independent equations as there are
variables that are to be calculated.

Unfortunately, using a minimal set of
measurements, while being correct, is
not a very practical proposition since the
measurements can, and do, become
corrupted or unavailable thus
preventing the analytical solution to the
equations. A state estimation

technique1,18,19 overcomes this
difficulty by allowing the processing of
additional equations, which are added to
the minimal set so as to provide a degree
of immunity to meter failures. However,
the computational effort associated with
the state estimation procedure is
considerably higher than the solution of
the minimum measurement set.
Consequently, a lot of research has been
directed towards improving the
efficiency and the numerical
characteristics of the state estimation
procedures through the use of sparsity
exploiting techniques and numerically

stable factorisation 1,3,18. An alternative
route to the improvement of
computational performance has been
the use of parallel and distributed

computation14,15. This approach has
enabled state estimation of large-scale
systems but has also highlighted the
potential problems associated with the
coordination of state estimates
calculated for individual sub-

systems14,22.
More recently the state estimation

problem has been formulated in terms of

analog neural networks6,7,8,11,12,13



which, by exploiting their highly
parallel structure, delivers high
computational efficiency while
optimizing the global state estimation
criterion. The neural network approach
is thought to combine the efficiency of
hierarchical algorithms, implemented
on parallel or distributed systems, with
known robustness and optimality of the
global state estimators.

Water network model

A mathematical model of a water
distribution network combines the
physical laws governing the system
with the pressure-flow equations for
each element in the system. The model
relates either, the network’s nodal
pressures or the network’s flows to
measurement and pseudomeasurement
values and is expressed by the following
vector equation:

z=g(x)+ω (1)

where z is a measurement vector; g(x)
are nonlinear functions describing
system; x is a state vector; ω is an
unknown vector that accounts for
measurement noise, model errors and
disturbances.

Since ω is unknown and non-
negligible, finding a solution to
equation (1) involves minimization of
the discrepancies between the actual
measurements and the values calculated
from the mathematical model. This can
be expressed as:

(2)

where  is an estimate of the state
vector; E() is a cost function to be
minimized; 

is a measurement weight matrix.
The state estimate vector ,

calculated in this way, is found for a
specific set of measurements
represented by z. The question therefore
arises: How confident one can be about
this state estimate, when it is known that
the measurement vector, z, is not single
valued but can take a whole range of
values from the region [z-δz, z+δz],
which indeed, reflects the reality of the
(uncertain) knowledge about a large
proportion of consumptions in a water
system.

In order to account for the input data
uncertainty, the following model with
unknown-but-bounded errors has been
adopted:

z=g(x)+ω, , i=1,...,m (3)

where e is the vector representing the
maximum expected measurement
errors.

The solution of (3) can no longer be
expressed as a single valued state
estimate but as a set of confidence

limits3 (i.e. the upper and lower limits
on every variable of the state estimate).

The best known and mathematically
the most reliable method of quantifying
the uncertainty of the solution to non-
linear systems with uncertainties is the
Monte Carlo method. The basic idea
behind this method is to use the
deterministic state estimator repeatedly
for a large number of measurement
vectors chosen from within the range [z-
δz, z+δz]. Each calculated state estimate
is checked against the maximum and
minimum values obtained in earlier
simulations and the new limits are set as
appropriate. In this way the error
bounds for state variables are gradually
increased and, after many trials, they
asymptotically reach their true values.

The accuracy of this method stems
from its full recognition of the non-
linearity of the water network model but
its application is restricted by its
computational inefficiency

By linearising the network models
and calculating the sensitivities of state
variables with respect of individual
measurements, we were able to obtain a
good approximation to Monte Carlo
results while avoiding repeated solution

to network equations3,11. The solution
described in this paper builds on this
result and combines it with a very fast,
and efficient solver of an
overdetermined set of linear equations.

Neural network approach

A simple recurrent neural network
has been used as a basis for constructing
a system capable of finding the state
estimates with corresponding
confidence limits.

The three-layer network shown at
Fig. 1 plays a central role as a very fast

solver of the linearised water network
equations

(4)

and the associated optimization
problem

(5)

where  is a Jacobian matrix

evaluated at ; r is a vector of
residuals (an estimate of ω); k=0,1,...
represents a step of the estimation

process; ; and

 represents a correction vector at
the k-th step of estimation process.

The process of constructing this
neural network involves the application
of the standard gradient method to (5)
and obtaining a set of differential
equations on the basis of which the
neural network is designed. The details
about the construction of the neural
network, its VLSI implementation and
its performance have been published

in6,7,8,12,13. 
Using the neural network as a

building block the combined State
Estimation / Confidence Limit Analysis
system has been constructed as
illustrated in Fig. 2. The process of
finding a solution by this system
consists of two separate stages.

At the first stage of calculations a
neural linear equations solver is
combined with Newton-Raphson
iterations to find a solution to an
overdetermined set of nonlinear
equations. During this stage, the
Jacobian matrix, J, is updated and the

optimal state estimate vector, , is
found for a single valued vector of
measurements z.
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The second stage of calculations, uses
the same NN, but the Jacobian matrix
evaluated at  remains constant. The
confidence limits are evaluated by
accumulating the effects of the
perturbations of the measurement
vector. The result is that, rather than a
single deterministic state estimate, a set
of all feasible states corresponding to a
given level of measurement uncertainty
is identified.

The set is presented in the form of
upper and lower bounds for the
individual variables, 

(6)

and hence provides limits on the
potential error of each variable.

An example simulation result for one
of the nodes in a 34-node water network
is presented in Fig. 1. The iterative
nature of the solver is apparent by
looking at the lower part of the diagram
which indicates the instances of
activation of the linear estimator. The
upper part of the diagram shows that the
selected state variable converges
asymptotically during the period 1-2
and, during the period 2-3, the process
of calculation of the confidence limits is
accomplished. It is clear that the
Confidence Limits Analysis technique
benefits here from an extreme
efficiency of the neural equation solver.
The simulated time of the calculations,
as indicated in Figure 3., is of the order
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Fig. 2. Neural based system for state 
estimation and confidence limit 

analysis.
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of microseconds. But, it has to be
pointed out that such a fast execution is
achievable only if the neural structure
was implemented in hardware (e.g.
using VLSI or electro-optical
technology). The more detailed
description of the system from Fig. 2

can be found in13.
Although the presented results

concern water distribution systems the
neural solver could be applied to a broad
class of nonlinear systems. The only
requirement is the differentiability of
the nonlinear system model in order to
arrive at the linearised model that can be
solved by the neural estimator.

Summary

Modelling and simulation of all
complex engineering systems is subject
to a degree of uncertainty. Every effort
should be made to ensure that the
mathematical models reflect the
physical system operations as
accurately as possible. However, it is
argued here that some uncertainty is
unavoidable and the potential effects of
this uncertainty must not be ignored.

Recent research has resulted in a
number of methods for the assessment
of the influence of uncertainty in
mathematical models or measurements.
They are referred to in the literature as
sensitivity analysis, error propagation,
perturbation theory, or confidence limit
analysis. A characteristic feature of all
these methods is that they are
computationally demanding.

This paper makes a contribution to
the future development of real-time
decision support in water distribution
systems by demonstrating that the
recurrent neural networks have
potential for a dramatic improvement of
computational efficiency of state
estimation and confidence limit
analysis.

It is envisaged that, with the current
rate of development in the electronics
industry and the emergence of new
technologies, an implementation that
takes the full advantage of the inherent
parallelism of neural networks will be
realised in the very near future.
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