Virtual Screening of Bioassay Data.

Schierz, A. C., 2009. Virtual Screening of Bioassay Data. Journal of Cheminformatics, 1 (21).

This is the latest version of this eprint.

Full text available as:

[img]PDF
280kB
[img]PDF
280kB
[img]
Preview
PDF
289kB

DOI: 10.1186/1758-2946-1-21

Abstract

Background: There are three main problems associated with the virtual screening of bioassay data. The first is access to freely-available curated data, the second is the number of false positives that occur in the physical primary screening process, and finally the data is highly-imbalanced with a low ratio of Active compounds to Inactive compounds. This paper first discusses these three problems and then a selection of Weka cost-sensitive classifiers (Naive Bayes, SVM, C4.5 and Random Forest) are applied to a variety of bioassay datasets. Results: Pharmaceutical bioassay data is not readily available to the academic community. The data held at PubChem is not curated and there is a lack of detailed cross-referencing between Primary and Confirmatory screening assays. With regard to the number of false positives that occur in the primary screening process, the analysis carried out has been shallow due to the lack of crossreferencing mentioned above. In six cases found, the average percentage of false positives from the High-Throughput Primary screen is quite high at 64%. For the cost-sensitive classification, Weka's implementations of the Support Vector Machine and C4.5 decision tree learner have performed relatively well. It was also found, that the setting of the Weka cost matrix is dependent on the base classifier used and not solely on the ratio of class imbalance. Conclusions: Understandably, pharmaceutical data is hard to obtain. However, it would be beneficial to both the pharmaceutical industry and to academics for curated primary screening and corresponding confirmatory data to be provided. Two benefits could be gained by employing virtual screening techniques to bioassay data. First, by reducing the search space of compounds to be screened and secondly, by analysing the false positives that occur in the primary screening process, the technology may be improved. The number of false positives arising from primary screening leads to the issue of whether this type of data should be used for virtual screening. Care when using Weka's cost-sensitive classifiers is needed - across the board misclassification costs based on class ratios should not be used when comparing differing classifiers for the same dataset.

Item Type:Article
ISSN:1758-2946
Uncontrolled Keywords:Cheminformatics; virtual screening; Weka; cost-sensitive classification; PubChem
Subjects:Generalities > Computer Science and Informatics > Artificial Intelligence
Science > Chemistry
Group:Faculty of Science and Technology
ID Code:13334
Deposited By:Dr Amanda C. Schierz LEFT
Deposited On:21 Mar 2010 19:22
Last Modified:10 Sep 2014 15:48

Document Downloads

More statistics for this item...
Repository Staff Only -
BU Staff Only -
Help Guide - Editing Your Items in BURO