Budka, M., Musial, K. and Juszczyszyn, K., 2012. Predicting the Evolution of Social Networks: Optimal Time Window Size for Increased Accuracy. In: 2012 ASE/IEEE International Conference on Social Computing, 3-6 September 2012, Amsterdam, The Netherlands.
Full text available as:
|
PDF
Budka2012a.pdf 524kB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
Official URL: http://events.nesteduniverse.net/SocialCom2012
Abstract
This study investigates the data preparation process for predictive modelling of the evolution of complex networked systems, using an e–mail based social network as an example. In particular, we focus on the selection of optimal time window size for building a time series of network snapshots, which forms the input of chosen predictive models. We formulate this issue as a constrained multi–objective optimization problem, where the constraints are specific to a particular application and predictive algorithm used. The optimization process is guided by the proposed Windows Incoherence Measures, defined as averaged Jensen-Shannon divergences between distributions of a range of network characteristics for the individual time windows and the network covering the whole considered period of time. The experiments demonstrate that the informed choice of window size according to the proposed approach allows to boost the prediction accuracy of all examined prediction algorithms, and can also be used for optimally defining the prediction problems if some flexibility in their definition is allowed.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Group: | Faculty of Science & Technology |
ID Code: | 20436 |
Deposited By: | Symplectic RT2 |
Deposited On: | 11 Sep 2012 14:47 |
Last Modified: | 14 Mar 2022 13:45 |
Downloads
Downloads per month over past year
Repository Staff Only - |