Juszczyszyn, K., Gonczarek, A., Tomczak, J., Musial, K. and Budka, M., 2012. Probabilistic Approach to Structural Change Prediction in Evolving Social Networks. In: International Workshop on Complex Social Network Analysis (CSNA 2012) co-located with International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), 26-29 August 2012, Kadir Has University, Istanbul, Turkey.
Full text available as:
|
PDF
Juszczyszyn2012.pdf 848kB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
Abstract
We propose a predictive model of structural changes in elementary subgraphs of social network based on Mixture of Markov Chains. The model is trained and verified on a dataset from a large corporate social network analyzed in short, one day-long time windows, and reveals distinctive patterns of evolution of connections on the level of local network topology. We argue that the network investigated in such short timescales is highly dynamic and therefore immune to classic methods of link prediction and structural analysis, and show that in the case of complex networks, the dynamic subgraph mining may lead to better prediction accuracy. The experiments were carried out on the logs from the Wroclaw University of Technology mail server.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Uncontrolled Keywords: | social networks; mixture of Markov chains; prediction |
Group: | Faculty of Science & Technology |
ID Code: | 20437 |
Deposited By: | Symplectic RT2 |
Deposited On: | 11 Sep 2012 14:58 |
Last Modified: | 14 Mar 2022 13:45 |
Downloads
Downloads per month over past year
Repository Staff Only - |