Boryczka, U. and Budka, M., 2009. Finding groups in data: Cluster analysis with ants. Applied Soft Computing, 9 (1), 61 - 70 .
Full text available as:
|
PDF
Boryczka2009.pdf 614kB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1016/j.asoc.2008.03.002
Abstract
Wepresent in this paper a modification of Lumer and Faieta’s algorithm for data clustering. This approach mimics the clustering behavior observed in real ant colonies. This algorithm discovers automatically clusters in numerical data without prior knowledge of possible number of clusters. In this paper we focus on ant-based clustering algorithms, a particular kind of a swarm intelligent system, and on the effects on the final clustering by using during the classification differentmetrics of dissimilarity: Euclidean, Cosine, and Gower measures. Clustering with swarm-based algorithms is emerging as an alternative to more conventional clustering methods, such as e.g. k-means, etc. Among the many bio-inspired techniques, ant clustering algorithms have received special attention, especially because they still require much investigation to improve performance, stability and other key features that would make such algorithms mature tools for data mining. As a case study, this paper focus on the behavior of clustering procedures in those new approaches. The proposed algorithm and its modifications are evaluated in a number of well-known benchmark datasets. Empirical results clearly show that ant-based clustering algorithms performs well when compared to another techniques.
Item Type: | Article |
---|---|
Additional Information: | Published version does not have M Budka listed as an author. This is corrected by http://www.sciencedirect.com/science/article/pii/S1568494613002470 |
Group: | Faculty of Science & Technology |
ID Code: | 20910 |
Deposited By: | Symplectic RT2 |
Deposited On: | 19 Aug 2013 09:13 |
Last Modified: | 14 Mar 2022 13:47 |
Downloads
Downloads per month over past year
Repository Staff Only - |