Skip to main content

Forecasting with Big Data: A Review.

Hassani, H. and Silva, E., 2015. Forecasting with Big Data: A Review. Annals of Data Science, 1-15.

Full text available as:

[img]
Preview
PDF
Big Data Forecasting MARCH2015.pdf - Published Version

513kB

Official URL: http://www.springer.com/

DOI: 10.1007/s40745-015-0029-9

Abstract

Big Data is a revolutionary phenomenon which is one of the most frequently discussed topics in the modern age, and is expected to remain so in the foreseeable future. In this paper we present a comprehensive review on the use of Big Data for forecasting by identifying and reviewing the problems, potential, challenges and most importantly the related applications. Skills, hardware and software, algorithm architecture, statistical significance, the signal to noise ratio and the nature of Big Data itself are identified as the major challenges which are hindering the process of obtaining meaningful forecasts from Big Data. The review finds that at present, the fields of Economics, Energy and Population Dynamics have been the major exploiters of Big Data forecasting whilst Factor models, Bayesian models and Neural Networks are the most common tools adopted for forecasting with Big Data.

Item Type:Article
ISSN:2198-5804
Group:Bournemouth University Business School
ID Code:21835
Deposited By: Symplectic RT2
Deposited On:10 Apr 2015 14:18
Last Modified:14 Mar 2022 13:51

Downloads

Downloads per month over past year

More statistics for this item...
Repository Staff Only -