Ianora, A., Bentley, M.G., Caldwell, G.S., Casotti, R., Cembella, A.D., Engström-Öst, J., Halsband, C., Sonnenschein, E., Legrand, C., Llewellyn, C.A., Paldavičienë, A., Pilkaityte, R., Pohnert, G., Razinkovas, A., Romano, G., Tillmann, U. and Vaiciute, D., 2011. The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Marine Drugs, 9 (9), 1625 - 1648 .
Full text available as:
|
PDF (OPEN ACCESS ARTICLE)
marinedrugs-09-01625-v2.pdf - Published Version Available under License Creative Commons Attribution. 1MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.3390/md9091625
Abstract
Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.
Item Type: | Article |
---|---|
ISSN: | 1660-3397 |
Uncontrolled Keywords: | allelopathy ; biotoxins ; signal molecule ; teratogen ; toxic algae ; Animals ; Ecosystem ; Phytoplankton ; Plankton ; Zooplankton |
Group: | Faculty of Science & Technology |
ID Code: | 22335 |
Deposited By: | Symplectic RT2 |
Deposited On: | 10 Aug 2015 09:30 |
Last Modified: | 14 Mar 2022 13:52 |
Downloads
Downloads per month over past year
Repository Staff Only - |