Budka, M., Eastwood, M., Gabrys, B., Kadlec, P., Salvador, M. M., Schwan, S., Tsakonas, A. and Zliobaite, I., 2014. From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors. In: The Thirteenth International Symposium on Intelligent Data Analysis (IDA 2014), 30 October - 01 November 2014, Leuven, Belgium, 49 - 60.
Full text available as:
|
PDF
oxeno_case_study_IDA.pdf - Accepted Version 284kB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1007/978-3-319-12571-8_5
Abstract
Automatic data acquisition systems provide large amounts of streaming data generated by physical sensors. This data forms an input to computational models (soft sensors) routinely used for monitoring and control of industrial processes, traffic patterns, environment and natural hazards, and many more. The majority of these models assume that the data comes in a cleaned and pre-processed form, ready to be fed directly into a predictive model. In practice, to ensure appropriate data quality, most of the modelling efforts concentrate on preparing data from raw sensor readings to be used as model inputs. This study analyzes the process of data preparation for predictive models with streaming sensor data. We present the challenges of data preparation as a four-step process, identify the key challenges in each step, and provide recommendations for handling these issues. The discussion is focused on the approaches that are less commonly used, while, based on our experience, may contribute particularly well to solving practical soft sensor tasks. Our arguments are illustrated with a case study in the chemical production industry.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
ISSN: | 0302-9743 |
Group: | Faculty of Science & Technology |
ID Code: | 23391 |
Deposited By: | Symplectic RT2 |
Deposited On: | 12 Apr 2016 14:48 |
Last Modified: | 14 Mar 2022 13:55 |
Downloads
Downloads per month over past year
Repository Staff Only - |