Angelopoulos, C.M., Nikoletseas, S., Patroumpa, D. and Raptopoulos, C., 2016. Efficient collection of sensor data via a new accelerated random walk. Concurrency and Computation, 28 (6), 1796 - 1811.
Full text available as:
|
PDF
sigproc_camera.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. 1MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1002/cpe.3108
Abstract
Motivated by the problem of efficiently collecting data from wireless sensor networks via a mobile sink, we present an accelerated random walk on random geometric graphs (RGG). Random walks in wireless sensor networks can serve as fully local, lightweight strategies for sink motion that significantly reduce energy dissipation but introduce higher latency in the data collection process. In most cases, random walks are studied on graphs like Gn,p and grid. Instead, we here choose the RGG model, which abstracts more accurately spatial proximity in a wireless sensor network. We first evaluate an adaptive walk (the random walk with inertia) on the RGG model; its performance proved to be poor and led us to define and experimentally evaluate a novel random walk that we call γ-stretched random walk. Its basic idea is to favour visiting distant neighbours of the current node towards reducing node overlap and accelerate the cover time. We also define a new performance metric called proximity cover time that, along with other metrics such as visit overlap statistics and proximity variation, we use to evaluate the performance properties and features of the various walks.
Item Type: | Article |
---|---|
ISSN: | 1532-0626 |
Uncontrolled Keywords: | wireless sensor networks; random walks; data collection; sink mobility |
Group: | Faculty of Science & Technology |
ID Code: | 24077 |
Deposited By: | Symplectic RT2 |
Deposited On: | 21 Jun 2016 09:12 |
Last Modified: | 14 Mar 2022 13:56 |
Downloads
Downloads per month over past year
Repository Staff Only - |