Yang, B., Katsaros, K.V., Chai, W. K. and Pavlou, G., 2018. Cost-efficient Low Latency Communication Infrastructure for Synchrophasor Applications in Smart Grids. IEEE Systems Journal, 12 (1), 948-958.
Full text available as:
|
PDF (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users...)
Binxu16-LowLatComm4SG-Systems(pre-cameraready).pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. 2MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1109/JSYST.2016.2556420
Abstract
With the introduction of distributed renewable energy resources and new loads, such as electric vehicles, the power grid is evolving to become a highly dynamic system, that necessitates continuous and fine-grained observability of its operating conditions. In the context of the medium voltage (MV) grid, this has motivated the deployment of Phasor Measurement Units (PMUs), that offer high precision synchronized grid monitoring, enabling mission-critical applications such as fault detection/location. However, PMU-based applications present stringent delay requirements, raising a significant challenge to the communication infrastructure. In contrast to the high voltage domain, there is no clear vision for the communication and network topologies for the MV grid; a full fledged optical fiber-based communication infrastructure is a costly approach due to the density of PMUs required. In this work, we focus on the support of low-latency PMU-based applications in the MV domain, identifying and addressing the trade-off between communication infrastructure deployment costs and the corresponding performance. We study a large set of real MV grid topologies to get an in-depth understanding of the various key latency factors. Building on the gained insights, we propose three algorithms for the careful placement of high capacity links, targeting a balance between deployment costs and achieved latencies. Extensive simulations demonstrate that the proposed algorithms result in low-latency network topologies while reducing deployment costs by up to 80% in comparison to a ubiquitous deployment of costly high capacity links.
Item Type: | Article |
---|---|
ISSN: | 1932-8184 |
Additional Information: | (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works |
Uncontrolled Keywords: | Medium voltage power grid, phasor measure- ment units, delay, synchronization, real topologies |
Group: | Faculty of Science & Technology |
ID Code: | 24913 |
Deposited By: | Symplectic RT2 |
Deposited On: | 01 Nov 2016 15:15 |
Last Modified: | 14 Mar 2022 14:00 |
Downloads
Downloads per month over past year
Repository Staff Only - |