Varello, S., Romano, G., Ruocco, N., Ianora, A., Bentley, M.G. and Constantini, M., 2016. First morphological and molecular evidence of the negative impact of diatom-derived hydroxyacids on the sea urchin Paracentrotus lividus. Toxicological Sciences.
Full text available as:
|
PDF
kfw053.pdf - Published Version Available under License Creative Commons Attribution Non-commercial No Derivatives. 1MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
Abstract
Oxylipins (including polyunsaturated aldehydes PUAs, hydoxyacids and epoxyalcohols) are the end-products of a lipoxygenase/hydroperoxide lyase metabolic pathway in diatoms. To date very little information is available on oxylipins other than PUAs, even though they represent the most common oxylipins produced by diatoms. Here, we report, for the first time, on the effects of two hydroxyacids, 5-and 15-HEPE, which have never been tested before, using the sea urchin Paracentrotus lividus as a model organism. We show that HEPEs do induce developmental malformations but at concentrations higher when compared to PUAs. Interestingly, HEPEs also induced a marked developmental delay in sea urchin embryos, which has not hitherto been reported for PUAs. Recovery experiments revealed that embryos do not recover following treatment with HEPEs. Finally, we report the expression levels of 35 genes (involved in stress, development, differentiation, skeletogenesis and detoxification processes) to identify the molecular targets affected by HEPEs. We show that the two HEPEs have very few common molecular targets, specifically affecting different classes of genes and at different times of development. In particular, 15-HEPE switched on fewer genes than 5-HEPE, up-regulating mainly stress-related genes at a later pluteus stage of development. 5-HEPE was stronger than 15-HEPE, targeting twenty-four genes, mainly at the earliest stages of embryo development (at the blastula and swimming blastula stages). These findings highlight the differences between HEPEs and PUAs and also have important ecological implications because many diatom species do not produce PUAs but rather these other chemicals derived from the oxidation of fatty acids.
Item Type: | Article |
---|---|
ISSN: | 1096-6080 |
Group: | Faculty of Science & Technology |
ID Code: | 30143 |
Deposited By: | Symplectic RT2 |
Deposited On: | 19 Dec 2017 10:07 |
Last Modified: | 14 Mar 2022 14:08 |
Downloads
Downloads per month over past year
Repository Staff Only - |