Skip to main content

Image Segmentation based on Multi-region Multi-scale Local Binar Fitting and Kullback-Leibler Divergence.

Chen, D.S., Tian, F., Liu, L., Liu, X. and Jin, Y., 2018. Image Segmentation based on Multi-region Multi-scale Local Binar Fitting and Kullback-Leibler Divergence. Signal, Image and Video Processing, 12 (5), 895-903.

Full text available as:

[img]
Preview
PDF
imageSeg-mmlbf.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

4MB

DOI: 10.1007/s11760-017-1234-0

Abstract

The inhomogeneity of intensity and the noise of image are the two major obstacles to accurate image segmentation by region-based level set models. To provide a more general solution to these challenges and address the difficulty of image segmentation methods to handle an arbitrary number of regions, we propose a region-based multi-phase level set method, which is based on the multi-scale local binary fitting (MLBF) and the Kullback–Leibler (KL) divergence, called KL–MMLBF. We first apply the multi-scale theory and multi-phase level set framework to the local binary fitting model to build the multi-region multi-scale local binary fitting (MMLBF). Then the energy term measured by KL divergence between regions to be segmented is incorporated into the energy function of MMLBF. KL–MMLBF utilizes the between-cluster distance and the adaptive kernel function selection strategy to formulate the energy function. Being more robust to the initial location of the contour than the classical segmentation models, KL–MMLBF can deal with blurry boundaries and noise problems. The results of experiments on synthetic and medical images have shown that KL–MMLBF can improve the effectiveness of segmentation while ensuring the accuracy by accelerating this minimization of this energy function and the model has achieved better segmentation results in terms of both accuracy and efficiency to analyze the multi-region image.

Item Type:Article
ISSN:1863-1703
Uncontrolled Keywords:Image segmentation; Kullback–Leibler;divergence; Multi-scale local binary fitting; Multi-region; Active contour model
Group:Faculty of Science & Technology
ID Code:30152
Deposited By: Symplectic RT2
Deposited On:03 Jan 2018 10:04
Last Modified:14 Mar 2022 14:08

Downloads

Downloads per month over past year

More statistics for this item...
Repository Staff Only -