Soraghan, S., 2018. A perceptually motivated approach to timbre representation and visualisation. Doctoral Thesis (Doctoral). Bournemouth University.
Full text available as:
|
PDF
SORAGHAN, Sean_D.Eng_2016.pdf 18MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
Abstract
Musical timbre is a complex phenomenon and is often understood in relation to the separation and comparison of different sound categories. The representation of musical timbre has traditionally consisted of instrumentation category (e.g. violin, piano) and articulation technique (e.g. pizzicato, staccato). Electroacoustic music places more emphasis on timbre variation as musical structure, and has highlighted the need for better, more in-depth forms of representation of musical timbre. Similarly, research from experimental psychology and audio signal analysis has deepened our understanding of the perception, description, and measurement of musical timbre, suggesting the possibility of more exact forms of representation that directly reference low-level descriptors of the audio signal (rather than high-level categories of sound or instrumentation). Research into the perception of timbre has shown that ratings of similarity between sounds can be used to arrange sounds in an N-dimensional perceptual timbre space, where each dimension relates to a particular axis of differentiation between sounds. Similarly, research into the description of timbre has shown that verbal descriptors can often be clustered into a number of categories, resulting in an N-dimensional semantic timbre space. Importantly, these semantic descriptors are often physical, material, and textural in nature. Audio signal processing techniques can be used to extract numeric descriptors of the spectral and dynamic content of an audio signal. Research has suggested correlations between these audio descriptors and different semantic descriptors and perceptual dimensions in perceptual timbre spaces. This thesis aims to develop a perceptually motivated approach to timbre representation by making use of correlations between semantic and acoustic descriptors of timbre. User studies are discussed that explored participant preferences for different visual mappings of acoustic timbre features. The results of these studies, together with results from existing research, have been used in the design and development of novel systems for timbre representation. These systems were developed both in the context of digital interfaces for sound design and music production, and in the context of real-time performance and generative audio-reactive visualisation. A generalised approach to perceptual timbre representation is presented and discussed with reference to the experimentation and resulting systems. The use of semantic visual mappings for low-level audio descriptors in the representation of timbre suggests that timbre would be better defined with reference to individual audio features and their variation over time. The experimental user studies and research-led development have highlighted specific techniques and audio-visual mappings that would be very useful to practitioners and researchers in the area of audio analysis and representation.
Item Type: | Thesis (Doctoral) |
---|---|
Additional Information: | In collaboration with ROLI, London. If you feel that this work infringes your copyright please contact the BURO Manager. |
Uncontrolled Keywords: | timbre; audio; visualisation |
Group: | Faculty of Media & Communication |
ID Code: | 30469 |
Deposited By: | Symplectic RT2 |
Deposited On: | 12 Mar 2018 11:58 |
Last Modified: | 09 Aug 2022 16:04 |
Downloads
Downloads per month over past year
Repository Staff Only - |