Afifi, M.A., Wang, Y.C., Pereira, P.H.R., Huang, Y., Wang, Y., Cheng, X., Li, S. and Langdon, T.G., 2018. Mechanical properties of an Al-Zn-Mg alloy processed by ECAP and heat treatments. Journal of Alloys and Compounds, 769 (November), 631 - 639.
Full text available as:
|
PDF
Afifi-JAC 2018-accepted manuscript.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. 1MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1016/j.jallcom.2018.07.343
Abstract
An investigation was conducted to study the influence of equal-channel angular pressing (ECAP) and post-ECAP aging at 393 K for 20 h on the microstructures and tensile properties of a supersaturated Al-Zn-Mg alloy together with the effect of pre-ECAP heat treatments on the mechanical properties of the alloy after ECAP and after post-ECAP heat treatments. The results show that during ECAP processing for up to 4 passes for the supersaturated Al alloy there is a simultaneous occurrence of grain refinement, increases in the dislocation density and dynamic aging precipitation forming large numbers of fine spherical well-distributed precipitates which enhance the yield strength but decrease the ductility. During post-ECAP aging, there is a limited dislocation recovery with slight grain growth and the precipitate sizes increase together with the formation of a few larger platelet precipitates and the transformation of G.P. zones to η′ and η′ to η leading to a strength reduction after 4 passes of ECAP. The precipitates in the ECAP-processed alloy with pre-ECAP in the supersaturated state formed through dynamic aging precipitation are higher in their volume fraction, smaller in their size and more homogeneously distributed in the Al matrix than those in the alloy with pre-ECAP in the peak aging state which mainly come from the fragmented η′ existing in the matrix before ECAP. The strengths of the alloy both after ECAP processing and after post-ECAP heat treatments with pre-ECAP in the supersaturation state are higher than with pre-ECAP in the peak aging state.
Item Type: | Article |
---|---|
ISSN: | 0925-8388 |
Uncontrolled Keywords: | Al-Zn-Mg alloy; Equal-channel angular pressing; Post-ECAP aging; Pre-ECAP heat treatments; Tensile testing |
Group: | Faculty of Science & Technology |
ID Code: | 31197 |
Deposited By: | Symplectic RT2 |
Deposited On: | 04 Sep 2018 08:56 |
Last Modified: | 14 Mar 2022 14:12 |
Downloads
Downloads per month over past year
Repository Staff Only - |