Pratt, S., Wansadhipathi-Kannangara, N.K., Bruce, C.R., Mina, J.G., Shams-Eldin, H., Casas, J., Hanada, K., Schwarz, R.T., Sonda, S. and Denny, P.W., 2013. Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii. Molecular and Biochemical Parasitology, 187 (1), 43 - 51.
Full text available as:
|
PDF
Publication 01.pdf - Published Version Available under License Creative Commons Attribution. 1MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1016/j.molbiopara.2012.11.007
Abstract
Sphingolipids are essential components of eukaryotic cell membranes, particularly the plasma membrane, and are involved in a diverse array of signal transduction pathways. Mammals produce sphingomyelin (SM) as the primary complex sphingolipid via the well characterised SM synthase. In contrast yeast, plants and some protozoa utilise an evolutionarily related inositol phosphorylceramide (IPC) synthase to synthesise IPC. This activity has no mammalian equivalent and IPC synthase has been proposed as a target for anti-fungals and anti-protozoals. However, detailed knowledge of the sphingolipid biosynthetic pathway of the apicomplexan protozoan parasites was lacking. In this study bioinformatic analyses indicated a single copy orthologue of the putative SM synthase from the apicomplexan Plasmodium falciparum (the causative agent of malaria) was a bona fide sphingolipid synthase in the related model parasite, Toxoplasma gondii (TgSLS). Subsequently, TgSLS was indicated, by complementation of a mutant cell line, to be a functional orthologue of the yeast IPC synthase (AUR1p), demonstrating resistance to the well characterised AUR1p inhibitor aureobasidin A. In vitro, recombinant TgSLS exhibited IPC synthase activity and, for the first time, the presence of IPC was demonstrated in T. gondii lipid extracts by mass spectrometry. Furthermore, host sphingolipid biosynthesis was indicated to influence, but be non-essential for, T. gondii proliferation, suggesting that whilst scavenging does take place de novo sphingolipid synthesis may be important for parasitism.
Item Type: | Article |
---|---|
ISSN: | 0166-6851 |
Uncontrolled Keywords: | toxoplasma; sphingolipid; inositol phosphorylceramide synthase; host–parasite interaction |
Group: | Faculty of Science & Technology |
ID Code: | 31220 |
Deposited By: | Symplectic RT2 |
Deposited On: | 12 Sep 2018 11:30 |
Last Modified: | 14 Mar 2022 14:12 |
Downloads
Downloads per month over past year
Repository Staff Only - |