Insights into the Evolution of Multicellularity from the Sea Lettuce Genome.

De Clerck, O., Kao, S-M., Bogaert, K.A., Blomme, J., Foflonker, F., Kwantes, M., Vancaester, E., Vanderstraeten, L., Aydogdu, E., Boesger, J., Califano, G., Charrier, B., Clewes, R., Del Cortona, A., D'Hondt, S., Fernandez-Pozo, N., Gachon, C.M., Hanikenne, M., Lattermann, L., Leliaert, F., Liu, X., Maggs, C., Popper, Z.A., Raven, J.A., Van Bel, M., Wilhelmsson, P.K.I., Bhattacharya, D., Coates, J.C., Rensing, S.A., Van Der Straeten, D., Vardi, A., Sterck, L., Vandepoele, K., Van de Peer, Y., Wichard, T. and Bothwell, J.H, 2018. Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 28 (18), pp. 2921-2933.

Full text available as:

[img] PDF
CURRENT-BIOLOGY-D-18-00475_R1.pdf - Accepted Version
Restricted to Repository staff only until 13 September 2019.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

7MB

DOI: 10.1016/j.cub.2018.08.015

Abstract

We report here the 98.5 Mbp haploid genome (12,924 protein coding genes) of Ulva mutabilis, a ubiquitous and iconic representative of the Ulvophyceae or green seaweeds. Ulva's rapid and abundant growth makes it a key contributor to coastal biogeochemical cycles; its role in marine sulfur cycles is particularly important because it produces high levels of dimethylsulfoniopropionate (DMSP), the main precursor of volatile dimethyl sulfide (DMS). Rapid growth makes Ulva attractive biomass feedstock but also increasingly a driver of nuisance "green tides." Ulvophytes are key to understanding the evolution of multicellularity in the green lineage, and Ulva morphogenesis is dependent on bacterial signals, making it an important species with which to study cross-kingdom communication. Our sequenced genome informs these aspects of ulvophyte cell biology, physiology, and ecology. Gene family expansions associated with multicellularity are distinct from those of freshwater algae. Candidate genes, including some that arose following horizontal gene transfer from chromalveolates, are present for the transport and metabolism of DMSP. The Ulva genome offers, therefore, new opportunities to understand coastal and marine ecosystems and the fundamental evolution of the green lineage.

Item Type:Article
ISSN:0960-9822
Uncontrolled Keywords:DMS; DMSP; Ulva; green seaweeds; multicellularity; phytohormones
Group:Faculty of Science & Technology
ID Code:31290
Deposited By: Unnamed user with email symplectic@symplectic
Deposited On:01 Oct 2018 09:19
Last Modified:01 Oct 2018 09:19

Downloads

Downloads per month over past year

More statistics for this item...
Repository Staff Only -