Chapman, I., Franklin, D. J., Turner, A., McCarthy, E. and Esteban, G., 2019. Predator-prey interactions between the ciliate Blepharisma americanum and toxic (Microcystis spp.) and non-toxic (Chlorella vulgaris, Microcystis sp.) photosynthetic microbes. Aquatic Microbial Ecology, 83, 211-224.
Full text available as:
|
PDF (OPEN ACCESS ARTICLE)
a083p211.pdf - Published Version Available under License Creative Commons Attribution. 767kB | |
PDF
Accepted REVISED Manuscript FINAL.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Attribution Non-commercial. 871kB | ||
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.3354/ame01913
Abstract
Despite free-living protozoa being a major factor in modifying aquatic autotrophic biomass ciliate cyanobacteria interactions and their functional ecological roles have been poorly described, especially with toxic cyanobacteria. Trophic relationships have been neglected and grazing experiments give contradictory evidence when toxic taxa such as Microcystis are involved. Here two toxic Microcystis strains (containing microcystins), one non-toxic Microcystis strain and a non-toxic green alga, Chlorella vulgaris, were used to investigate predator-prey interactions with a phagotrophic ciliate, Blepharisma americanum. Flow cytometric analysis for microalgal measurements and a rapid UHPLC-MS/MS protocol to quantify microcystins showed non-toxic photosynthetic microbes were significantly grazed by B. americanum, which sustained ciliate populations. In contrast, despite constant ingestion of toxic Microcystis rapid egestion of cells occurred. The lack of digestion resulted in no significant control of toxic cyanobacteria densities, a complete reduction in ciliate numbers, and no observable encystment or cannibalistic behaviour (gigantism). Individual B. americanum morphological responses (biovolume and cell width) showed a significant decrease over time when sustained on non-toxic Microcystis compared 55 to grazed C. vulgaris populations, supporting previous studies that cyanobacteria may be a relatively poor source of nutrition. Results here provide an insight into the ecological interactions of ciliates and cyanobacteria, and for the first time B. americanum is shown to have the capacity to suppress potentially bloom-forming cyanobacteria. However, grazing can be significantly altered by the presence of microcystins, which could have an impact on bloom dynamics and overall community structure.
Item Type: | Article |
---|---|
ISSN: | 0948-3055 |
Group: | Faculty of Science & Technology |
ID Code: | 32531 |
Deposited By: | Symplectic RT2 |
Deposited On: | 15 Jul 2019 14:13 |
Last Modified: | 14 Mar 2022 14:17 |
Downloads
Downloads per month over past year
Repository Staff Only - |