Wireless personal area networks and free-space optical links.

Huang, P., 2006. Wireless personal area networks and free-space optical links. Doctorate Thesis (Doctorate). Bournemouth University.

Full text available as:

PDF (.pdf supplied by EThOS)
Pi_Huang.pdf - Submitted Version



This thesis is concerned with the link layer design of indoor (IrDA) and outdoor infrared links, as well as the performance of the higher layers of two major Wireless Personal Area Network (WPAN) technologies: IrDA and Bluetooth. Recent advancesin wireless technology have made it possible to put networking technology into small portable devices. During the past few years, WPAN technologies have been the subject of a tremendous growth both in research and development. Although many studies have been conducted on wireless links to address different issues on physical and link layers, wireless communications are still characterised by high error rates becauseof the frequently changing medium. On the other hand, performance studies of the higher layers are also very important. In this thesis, for the first time, a comprehensivestudy of the interactions betweenthe higher and the lower protocol layers of IrDA and Bluetooth has been carried out to improve the overall system performance. Mathematical models for the link layers are introduced for the infrared systems: infrared data association (IrDA) and free space optics (FSO). A model for the IrDA (indoor infrared) link layer is developed by considering the presence of bit errors. Based on this model, the effect of propagation delay on the link through put is investigated. An optimization study is also carried out to maximize the link throughput. FSO (outdoor infrared) links are often characterized by high speed and long link distance. A mathematical model for the FSO link layer is also developed. Significant improvement of the link throughput is achieved by optimizing the link parameters. Based on the link layer model, the performance of the IrDA higher layers (transport, session and application layers) is investigated. First, a mathematical model of TinyTP (transport protocol) is elaborated and subsequently verified by simulations. The effects of multiple connections and available buffer size are investigated. The throughput at the TinyTP level is optimized for different buffer sizes. Subsequently, the session layer, including Object Exchange (OBEX) and IrDA Burst (IrBurst) protocols, is studied and modelled. The derived mathematical model is verified by simulation results. A set of protocol parameters and hardware selection guidelines is proposed to optimize the overall system performance while also keeping the hardware requirementto a minimum. Finally, two rapidly developing IrDA applications, IrDA financial messaging(IrFM) and IrDA simple connection (IrSC), are studied. IrFM is investigated by comparison to other digital payment technologies, while the performance of IrSC is compared in two different technical approaches. In order to improve the throughput and minimize the transmission delay for the Bluetooth data applications, a systematic analysis is carried out for the Bluetooth Logical Link Control and Adaptation Layer Protocol (L2CAP). L2CAP is layered above the Bluetooth link layer (Baseband) and is essential to Bluetooth data applications. A simple and intuitive mathematical model is developed to derive simple equations for the L2CAP throughput and the average packet delay. The derived throughput equation, which is validated by simulations, takes into account bit errors as well as packet retry limits. Finally, a number of easy-to-implement performance enhancement schemes are proposed, including the optimum use of the protocol parameters.

Item Type:Thesis (Doctorate)
Additional Information:A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the degree of Doctor of Philosophy. If you feel this work infringes your copyright please contact the BURO manager.
Group:Faculty of Science and Technology
ID Code:338
Deposited On:07 Nov 2006
Last Modified:10 Sep 2014 14:38


Downloads per month over past year

More statistics for this item...
Repository Staff Only -