Skip to main content

The CrowdHEALTH project and the Hollistic Health Records: Collective Wisdom Driving Public Health Policies.

Kyriazis, D., Autexier, S., Boniface, M., Engen, V., Jimenez-Peris, R., Jordan, B., Jurak, G., Kiourtis, A., Kosmidis, T., Lustrek, M., Maglogiannis, I., Mantas, J., Martinez, A., Mavrogiorgou, A., Menychtas, A., Montandon, L., Nechifor, C-S., Nifakos, S., Papageorgiou, A., Patino-Martinez, M., Perez, M., Plagianakos, V., Stanimirovic, D., Starc, G., Tomson, T., Torelli, F., Traver-Salcedo, V., Vassilacopoulos, G., Magdalinou, A. and Wajid, U., 2019. The CrowdHEALTH project and the Hollistic Health Records: Collective Wisdom Driving Public Health Policies. Acta Informatica Medica, 27 (5), 369 - 373.

Full text available as:

[img]
Preview
PDF
AIM-27-369.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

490kB

DOI: 10.5455/aim.2019.27.369-373

Abstract

Introduction: With the expansion of available Information and Communication Technology (ICT) services, a plethora of data sources provide structured and unstructured data used to detect certain health conditions or indicators of disease. Data is spread across various settings, stored and managed in different systems. Due to the lack of technology interoperability and the large amounts of health-related data, data exploitation has not reached its full potential yet. Aim: The aim of the CrowdHEALTH approach, is to introduce a new paradigm of Holistic Health Records (HHRs) that include all health determinants defining health status by using big data management mechanisms. Methods: HHRs are transformed into HHRs clusters capturing the clinical, social and human context with the aim to benefit from the collective knowledge. The presented approach integrates big data technologies, providing Data as a Service (DaaS) to healthcare professionals and policy makers towards a "health in all policies" approach. A toolkit, on top of the DaaS, providing mechanisms for causal and risk analysis, and for the compilation of predictions is developed. Results: CrowdHEALTH platform is based on three main pillars: Data & structures, Health analytics, and Policies. Conclusions: A holistic approach for capturing all health determinants in the proposed HHRs, while creating clusters of them to exploit collective knowledge with the aim of the provision of insight for different population segments according to different factors (e.g. location, occupation, medication status, emerging risks, etc) was presented. The aforementioned approach is under evaluation through different scenarios with heterogeneous data from multiple sources.

Item Type:Article
ISSN:0353-8109
Uncontrolled Keywords:health analytics; holistic health records; public health policy making
Group:Faculty of Science & Technology
ID Code:33818
Deposited By: Unnamed user with email symplectic@symplectic
Deposited On:01 Apr 2020 09:48
Last Modified:01 Apr 2020 09:48

Downloads

Downloads per month over past year

More statistics for this item...
Repository Staff Only -