Baca, M., Popović, D., Baca, K., Lemanik, A., Doan, K., Horáček, I., López-García, J.M., Bañuls-Cardona, S., Pazonyi, P., Desclaux, E., Crégut-Bonnoure, E., Berto, C., Lenardić, J.M., Miękina, B., Murelaga, X., Cuenca-Bescós, G., Krajcarz, M., Marković, Z., Petculescu, A., Wilczyński, J., Knul, M.V., Stewart, J. R. and Nadachowski, A., 2020. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quaternary Science Reviews, 233 (April), 106239.
Full text available as:
|
PDF (OPEN ACCESS ARTICLE)
1-s2.0-S0277379119303889-main.pdf - Published Version Available under License Creative Commons Attribution Non-commercial No Derivatives. 1MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1016/j.quascirev.2020.106239
Abstract
© 2020 The Authors The harsh climatic conditions during the Last Glacial Maximum (LGM) period have been considered the cause of local extinctions and major faunal reorganizations that took place at the end of the Pleistocene. Recent studies have shown, however, that in addition many of these ecological events were associated with abrupt climate changes during the so-called Late Glacial and the Pleistocene/Holocene transition. Here we used ancient DNA to investigate the impact of those changes on European populations of temperate vole species (Microtus arvalis). The genetic diversity of modern populations and the fossil record suggests that the species may have survived cold episodes, like LGM, not only in the traditional Mediterranean glacial refugia but also at higher latitudes in cryptic northern refugia located in Central France, the northern Alps as well as the Carpathians. However, the details of the post-glacial recolonization and the impact of the Late Glacial and Early Holocene climate changes on the evolutionary history of the common vole remains unclear. To address this issue, we analysed mtDNA cytochrome b sequences from more than one hundred common vole specimens from 36 paleontological and archaeological sites scattered across Europe. Our data suggest that populations from the European mid- and high latitudes suffered a local population extinction and contraction as a result of Late Glacial and Early Holocene climate and environmental changes. The recolonization of earlier abandoned areas took place in the Mid- to Late Holocene. In contrast, at low latitudes, in Northern Spain there was a continuity of common vole populations. This indicates different responses of common vole populations to climate and environmental changes across Europe and corroborates the hypothesis that abrupt changes, like those associated with Younger Dryas and the Pleistocene/Holocene transition, had a significant impact on populations at the mid- and high latitudes of Europe.
Item Type: | Article |
---|---|
ISSN: | 0277-3791 |
Uncontrolled Keywords: | Common vole; mtDNA; Post-glacial recolonization; Ancient DNA; Younger Dryas; Holocene |
Group: | Faculty of Science & Technology |
ID Code: | 33970 |
Deposited By: | Symplectic RT2 |
Deposited On: | 05 May 2020 10:57 |
Last Modified: | 14 Mar 2022 14:21 |
Downloads
Downloads per month over past year
Repository Staff Only - |