Vos, D., Stafford, R., Jenkins, E.L. and Garrard, A., 2021. A model based on Bayesian confirmation and machine learning algorithms to aid archaeological interpretation by integrating incompatible data. PLoS One, 16 (3), e0248261.
Full text available as:
|
PDF (OPEN ACCESS ARTICLE)
journal.pone.0248261.pdf - Published Version Available under License Creative Commons Attribution. 5MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1371/journal.pone.0248261
Abstract
The interpretation of archaeological features often requires a combined methodological approach in order to make the most of the material record, particularly from sites where this may be limited. In practice, this requires the consultation of different sources of information in order to cross validate findings and combat issues of ambiguity and equifinality. However, the application of a multiproxy approach often generates incompatible data, and might therefore still provide ambiguous results. This paper explores the potential of a simple digital framework to increase the explanatory power of multiproxy data by enabling the incorporation of incompatible, ambiguous datasets in a single model. In order to achieve this, Bayesian confirmation was used in combination with decision trees. The results of phytolith and geochemical analyses carried out on soil samples from ephemeral sites in Jordan are used here as a case study. The combination of the two datasets as part of a single model enabled us to refine the initial interpretation of the use of space at the archaeological sites by providing an alternative identification for certain activity areas. The potential applications of this model are much broader, as it can also help researchers in other domains reach an integrated interpretation of analysis results by combining different datasets.
Item Type: | Article |
---|---|
ISSN: | 1932-6203 |
Uncontrolled Keywords: | Algorithms; Archaeology; Bayes Theorem; Geology; Machine Learning; Plants; Soil |
Group: | Faculty of Science & Technology |
ID Code: | 36899 |
Deposited By: | Symplectic RT2 |
Deposited On: | 03 May 2022 13:25 |
Last Modified: | 03 May 2022 13:25 |
Downloads
Downloads per month over past year
Repository Staff Only - |