Sun, Z., Xi, K., Chen, J., Abdelkader, A., Li, M.-Y., Qin, Y., Lin, Y., Jiang, Q., Su, Y.-Q., Vasant Kumar, R and Ding, S., 2022. Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode. Nature Communications, 13 (1), 3209.
Full text available as:
|
PDF (OPEN ACCESS ARTICLE)
s41467-022-30788-5.pdf - Published Version Available under License Creative Commons Attribution. 3MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1038/s41467-022-30788-5
Abstract
Ionic-conductive polymers are appealing electrolyte materials for solid-state lithium-based batteries. However, these polymers are detrimentally affected by the electrochemically-inactive anion migration that limits the ionic conductivity and accelerates cell failure. To circumvent this issue, we propose the use of polyvinyl ferrocene (PVF) as positive electrode active material. The PVF acts as an anion-acceptor during redox processes, thus simultaneously setting anions and lithium ions as effective charge carriers. We report the testing of various Li||PVF lab-scale cells using polyethylene oxide (PEO) matrix and Li-containing salts with different anions. Interestingly, the cells using the PEO-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) solid electrolyte deliver an initial capacity of 108 mAh g-1 at 100 μA cm-2 and 60 °C, and a discharge capacity retention of 70% (i.e., 70 mAh g-1) after 2800 cycles at 300 μA cm-2 and 60 °C. The Li|PEO-LiTFSI|PVF cells tested at 50 μA cm-2 and 30 °C can also deliver an initial discharge capacity of around 98 mAh g-1 with an electrolyte ionic conductivity in the order of 10-5 S cm-1.
Item Type: | Article |
---|---|
ISSN: | 2041-1723 |
Group: | Faculty of Science & Technology |
ID Code: | 37053 |
Deposited By: | Symplectic RT2 |
Deposited On: | 13 Jun 2022 10:10 |
Last Modified: | 13 Jun 2022 10:10 |
Downloads
Downloads per month over past year
Repository Staff Only - |