Ding, Z., 2022. Automatic 3D Neuron Tracing from Optical Microscopy Images. Doctoral Thesis (Doctoral). Bournemouth University.
Full text available as:
|
PDF
DING, Zhangcan_Ph.D._2021.pdf Available under License Creative Commons Attribution Non-commercial. 26MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
Abstract
Neuron tracing is the process of reconstructing three-dimensional morphology of neurons from microscopy images. It is essential for delivering more comprehensive understanding of the relationship between neuronal structure and function, which is the fundamental to know how the brain works. However, currently neuron tracing remains a challenging task, due to the natural complexity of neuronal structure, inadequate available data and computational limitation. In recent years, many automatic neuron tracing methods have been developed in the research field, with limited success on specific issues. The lack of a robust neuron tracing method with more general applicability greatly restrains systematic characterisation and analysis on neuronal morphology. To address aforementioned challenges, we first establish a pipeline to generate more standard data, in which we specifically propose a novel approach for automatic refinement on semi-manual reconstruction. Following the pipeline, we manage to generate more than 1000 full morphology data. Second, based on the generated standard reconstruction, we conduct a systematic and quantitative analysis to identify the most critical obstacles in neuron tracing. Third, we propose a novel neuron tracing method by embedding occupancy learning with curve skeleton extraction, which tackles the major issues of weak and punctuated signal, as concluded from the previous analysis. We curated a large dataset to train and test the model. The experimental results show it exceeds other counterpart approaches in most terms of evaluation metrics. At last, we propose a novel learning model for automatic neuron tracing, which learns to directly extracts the skeleton from a raw image. It addresses the main issue of close but irrelevant signal, as concluded previously. We train and bench test it on the curated dataset, as well as a public dataset. Experiments show it achieves state-of-the-art performances in all cases.
Item Type: | Thesis (Doctoral) |
---|---|
Additional Information: | If you feel that this work infringes your copyright please contact the BURO Manager. |
Uncontrolled Keywords: | neuron tracing; neuron reconstruction; deep learning |
Group: | Faculty of Media & Communication |
ID Code: | 37275 |
Deposited By: | Symplectic RT2 |
Deposited On: | 25 Jul 2022 09:44 |
Last Modified: | 01 Aug 2024 01:08 |
Downloads
Downloads per month over past year
Repository Staff Only - |