Roy, S., Sharma, A., Chaudhuri, A., Huang, Y., Langdon, T. G. and Suwas, S., 2022. Microstructure evolution and mechanical response of a boron-modified Ti-6Al-4V alloy during high-pressure torsion processing. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 860, 144124.
Full text available as:
|
PDF
Roy-Ti64 HPT_accepted.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. 5MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1016/j.msea.2022.144124
Abstract
Research was conducted on the microstructural evolution and ensuing mechanical response from high-pressure torsion (HPT) processing of Ti-6Al-4V alloy in the as-cast and β-forged conditions with and without 0.1 wt.% boron addition. The boron addition produces refinement of the prior β grains and the (α+β) colonies and introduces an additional TiB phase but this affects the deformation response and the microstructural evolution only at low strains of 0.5 to 5 rotations. In the initial condition the orientation of the (α+β) colonies significantly affects the deformation response and leads to differences in substructure formation in both the as-cast and β-forged conditions. This orientation dependence counts on the initial microstructural differences between the unmodified and the boron modified alloys. At higher strains, there is a similar deformation response and microstructure evolution all the alloys. The hardness variation with equivalent strain is similar for the unmodified and boron modified alloys in as-cast and β-forged conditions and represents various deformation regimes in HPT-processing. Strength modelling confirms a simultaneous contribution from microstructural refinement and increased dislocation density towards the hardness increment during HPT processing. Overall, the as-cast and β-forged Ti-6Al-4V-0.1B alloys possess identical deformation response to the β-forged unmodified Ti-6Al-4V alloy in the initial and intermediate stages. At high levels of straining, all alloys respond in an equivalent manner, thus ruling out any possible effects from additional TiB phase or microstructural refinement for the boron-modified alloys.
Item Type: | Article |
---|---|
ISSN: | 0921-5093 |
Uncontrolled Keywords: | Ti-6Al-4V alloy; boron modification; high-pressure torsion; X-ray diffraction line profile analysis; Hardness and strength modeling. |
Group: | Faculty of Science & Technology |
ID Code: | 37598 |
Deposited By: | Symplectic RT2 |
Deposited On: | 29 Sep 2022 15:25 |
Last Modified: | 03 Oct 2024 01:08 |
Downloads
Downloads per month over past year
Repository Staff Only - |