Baca, M., Popović, D., Lemanik, A., Bañuls-Cardona, S., Conard, N. J., Cuenca-Bescós, G., Desclaux, E., Fewlass, H., Garcia, J. T., Hadravova, T., Heckel, G., Horáček, I., Knul, M. V., Lebreton, L., López-García, J. M., Luzi, E., Marković, Z., Mauch Lenardić, J., Murelaga, X., Noiret, P., Petculescu, A., Popov, V., Rhodes, S. E., Ridush, B., Royer, A., Stewart, J. R., Stojak, J., Talamo, S., Wang, X., Wójcik, J. M. and Nadachowski, A., 2023. Ancient DNA reveals interstadials as a driver of common vole population dynamics during the last glacial period. Journal of Biogeography, 50 (1), 183-196.
Full text available as:
|
PDF
Baca et al 2022.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial. 2MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1111/jbi.14521
Abstract
Aim: Many species experienced population turnover and local extinction during the Late Pleistocene. In the case of megafauna, it remains challenging to disentangle climate change and the activities of Palaeolithic hunter-gatherers as the main cause. In contrast, the impact of humans on rodent populations is likely to be negligible. This study investigated which climatic and/or environmental factors affect the population dynamics of the common vole. This temperate rodent is widespread across Europe and was one of the most abundant small mammal species throughout the Late Pleistocene. Location: Europe. Taxon: Common vole (Microtus arvalis). Methods: We generated a dataset comprised of 4.2 kb long fragment of mitochondrial DNA (mtDNA) from 148 ancient and 51 modern specimens sampled from multiple localities across Europe and covering the last 60 thousand years (ka). We used Bayesian inference to reconstruct their phylogenetic relationships and to estimate the age of the specimens that were not directly dated. Results: We estimated the time to the most recent common ancestor of all last glacial and extant common vole lineages to be 90 ka ago and the divergence of the main mtDNA lineages present in extant populations to between 55 and 40 ka ago, which is earlier than most previous estimates. We detected several lineage turnovers in Europe during the period of high climate variability at the end of Marine Isotope Stage 3 (MIS 3; 57–29 ka ago) in addition to those found previously around the Pleistocene/Holocene transition. In contrast, data from the Western Carpathians suggest continuity throughout the Last Glacial Maximum (LGM) even at high latitudes. Main Conclusions: The main factor affecting the common vole populations during the last glacial period was the decrease in open habitat during the interstadials, whereas climate deterioration during the LGM had little impact on population dynamics. This suggests that the rapid environmental change rather than other factors was the major force shaping the histories of the Late Pleistocene faunas.
Item Type: | Article |
---|---|
ISSN: | 0305-0270 |
Uncontrolled Keywords: | habitat; Late Pleistocene; Microtus sp; mitochondrial DNA; paleoclimate; small mammals |
Group: | Faculty of Science & Technology |
ID Code: | 37861 |
Deposited By: | Symplectic RT2 |
Deposited On: | 29 Nov 2022 14:14 |
Last Modified: | 10 Nov 2023 01:08 |
Downloads
Downloads per month over past year
Repository Staff Only - |