Chandrasekaran, S., Hu, R., Yao, L., Sui, L., Liu, Y., Abdelkader, A., Li, Y., Ren, X. and Deng, L., 2023. Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries. Nano-Micro Letters, 15, 48.
Full text available as:
|
PDF (OPEN ACCESS ARTICLE)
s40820-023-01022-8.pdf - Published Version Available under License Creative Commons Attribution. 7MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
DOI: 10.1007/s40820-023-01022-8
Abstract
Rechargeable zinc-air batteries (ZABs) are a promising energy conversion device, which rely critically on electrocatalysts to accelerate their rate-determining reactions such as oxygen reduction (ORR) and oxygen evolution reactions (OER). Herein, we fabricate a range of bifunctional M–N–C (metal-nitrogen-carbon) catalysts containing M–N x coordination sites and M/M xC nanoparticles (M = Co, Fe, and Cu) using a new class of γ-cyclodextrin (CD) based metal–organic framework as the precursor. With the two types of active sites interacting with each other in the catalysts, the obtained Fe@C-FeNC and Co@C-CoNC display superior alkaline ORR activity in terms of low half-wave (E 1/2) potential (~ 0.917 and 0.906 V, respectively), which are higher than Cu@C-CuNC (~ 0.829 V) and the commercial Pt/C (~ 0.861 V). As a bifunctional electrocatalyst, the Co@C-CoNC exhibits the best performance, showing a bifunctional ORR/OER overpotential (ΔE) of ~ 0.732 V, which is much lower than that of Fe@C-FeNC (~ 0.831 V) and Cu@C-CuNC (~ 1.411 V), as well as most of the robust bifunctional electrocatalysts reported to date. Synchrotron X-ray absorption spectroscopy and density functional theory simulations reveal that the strong electronic correlation between metallic Co nanoparticles and the atomic Co-N4 sites in the Co@C-CoNC catalyst can increase the d-electron density near the Fermi level and thus effectively optimize the adsorption/desorption of intermediates in ORR/OER, resulting in an enhanced bifunctional electrocatalytic performance. The Co@C-CoNC-based rechargeable ZAB exhibited a maximum power density of 162.80 mW cm−2 at 270.30 mA cm−2, higher than the combination of commercial Pt/C + RuO2 (~ 158.90 mW cm−2 at 265.80 mA cm−2) catalysts. During the galvanostatic discharge at 10 mA cm−2, the ZAB delivered an almost stable discharge voltage of 1.2 V for ~ 140 h, signifying the virtue of excellent bifunctional ORR/OER electrocatalytic activity. [Figure not available: see fulltext.].
Item Type: | Article |
---|---|
ISSN: | 2311-6706 |
Uncontrolled Keywords: | CD-MOF; Cyclodextrin; ORR/OER; Single-atom catalyst; Zinc-air battery |
Group: | Faculty of Science & Technology |
ID Code: | 38320 |
Deposited By: | Symplectic RT2 |
Deposited On: | 06 Mar 2023 11:53 |
Last Modified: | 06 Mar 2023 11:53 |
Downloads
Downloads per month over past year
Repository Staff Only - |