Gabrys, B. and Bargiela, A., 1997. Integrated Neural Based System for State Estimation and Confidence Limit Analysis in Water Networks. In: The 8th European Simulation Symposium, Ess 96. Society for Computer Simulation, 398-402.
Full text available as:
|
PDF
Gabrys_Bargiela_1996_Int_SE_CL_Water_Systems.pdf - Accepted Version 54kB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
Abstract
In this paper a simple recurrent neural network (NN) is used as a basis for constructing an integrated system capable of finding the state estimates with corresponding confidence limits for water distribution systems. In the first phase of calculations a neural linear equations solver is combined with a Newton-Raphson iterations to find a solution to an overdetermined set of nonlinear equations describing water networks. The mathematical model of the water system is derived using measurements and pseudomeasurements consisting certain amount of uncertainty. This uncertainty has an impact on the accuracy to which the state estimates can be calculated. The second phase of calculations, using the same NN, is carried out in order to quantify the effect of measurement uncertainty on accuracy of the derived state estimates. Rather than a single deterministic state estimate, the set of all feasible states corresponding to a given level of measurement uncertainty is calculated. The set is presented in the form of upper and lower bounds for the individual variables, and hence provides limits on the potential error of each variable. The simulations have been carried out and results are presented for a realistic 34-node water distribution network.
Item Type: | Book Section |
---|---|
ISBN: | 978-1565550995 |
Number of Pages: | 56 |
Group: | Faculty of Science & Technology |
ID Code: | 9644 |
Deposited By: | Professor Bogdan Gabrys LEFT |
Deposited On: | 11 Mar 2009 22:03 |
Last Modified: | 14 Mar 2022 13:21 |
Downloads
Downloads per month over past year
Repository Staff Only - |