Salvador, M. M., Gabrys, B. and Zliobaite, I., 2014. Online Detection of Shutdown Periods in Chemical Plants: A Case Study. In: Knowledge-Based and Intelligent Information & Engineering Systems 18th Annual Conference (KES-2014), 15, 16 & 17 September 2014, Gdynia, Poland, 580 - 588.
Full text available as:
|
PDF
k14gen-001.pdf - Published Version Available under License Creative Commons Attribution Non-commercial No Derivatives. 594kB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
Official URL: http://www.sciencedirect.com/science/article/pii/S...
DOI: 10.1016/j.procs.2014.08.139
Abstract
In process industry, chemical processes are controlled and monitored by using readings from multiple physical sensors across the plants. Such physical sensors are also supplemented by soft sensors, i.e. adaptive predictive models, which are often used for computing hard-to-measure variables of the process. For soft sensors to work well and adapt to changing operating conditions they need to be provided with relevant data. As production plants are regularly stopped, data instances generated during shutdown periods have to be identified to avoid updating these predictive models with wrong data. We present a case study concerned with a large chemical plant operation over a 2 years period. The task is to robustly and accurately identify the shutdown periods even in case of multiple sensor failures. State-of-the-art methods were evaluated using the first half of the dataset for calibration purposes and the other half for measuring the performance. Results show that shutdowns (i.e. sudden changes) can be quickly detected in any case but the detection delay of startups (i.e. gradual changes) is directly related with the choice of a window size.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
ISSN: | 1877-0509 |
Uncontrolled Keywords: | change-point detection; online detection; shutdown periods; data streams; case study |
Group: | Faculty of Science & Technology |
ID Code: | 23389 |
Deposited By: | Symplectic RT2 |
Deposited On: | 12 Apr 2016 14:25 |
Last Modified: | 14 Mar 2022 13:55 |
Downloads
Downloads per month over past year
Repository Staff Only - |